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Abstract— We present a novel unsupervised framework,
which links continuous visual features and symbolic textual
descriptions of manipulation activity videos. First, we extract
the semantic representation of visually observed manipulations
by applying a bottom-up approach to the continuous image
streams. We then employ a rule-based reasoning to link visual
and linguistic inputs. The proposed framework allows robots
(1) to autonomously parse, classify, and label sequentially
and/or concurrently performed atomic manipulations (e.g. “cut-
ting” or “stirring”), (2) to simultaneously categorize and identify
manipulated objects without using any standard feature-based
recognition techniques, and (3) to generate textual descriptions
for long activities, e.g. “breakfast preparation”. We evaluated the
framework using a dataset of 120 atomic manipulations and 20
long activities.

I. INTRODUCTION

Integration of textual descriptions and visual features has
gained an increasing attention in natural language processing,
computer vision, and robotics ( [1]–[6]). The main challenge
consists in bridging the gap between perceived continuous
visual features and discrete symbolic linguistic constructions.
In the context of robot learning from demonstration, this
problem is called symbol grounding [7] referring to the
grounding of the observed high-level symbolic action or
object concepts into the low-level sensory-motor data.

In this work, we introduce a novel unsupervised method
allowing the discretization of visually observed continuous
manipulations into the high-level symbolic object-action
concepts which can be directly mapped to their counter-
parts in linguistic video descriptions. This helps robots to
ground language in vision, i.e. makes the symbol grounding
problem treatable. For instance, in human-robot interaction
tasks, e.g. dinner preparation, robots can autonomously parse
individual atomic actions and the role of each manipulated
tool and associate them with human instructions. Thus,
robots can learn how each visual entity in the continuous
demonstration is described in language, e.g. “a big knife”,
or what a symbolic action command “cut” means in terms
of interactions between visual entities. Likewise, given a set
of human demonstrations, robots can further learn the most
probable atomic action sequence, e.g. a long-term action plan
to prepare the dinner. As robots perform the planned actions,
they can also verbally inform the user about each action.

State of the art methods approach this problem by apply-
ing pre-trained object and action detectors to the observed
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demonstrations. We, however, do not employ object or action
recognition, since it is not feasible to introduce every possible
tool or action type that robots may encounter. Instead,
our framework allows robots to autonomously categorize
a) demonstrated actions based on their semantic similarities
and b) manipulated objects based on their roles in actions.
Thus, our framework neither requires prior object or action
knowledge, nor performs action or object recognition in the
traditional sense. The framework assigns linguistic labels to
the acquired action and object concepts by extracting them
from textual descriptions of the demonstrations.

Our framework has two phases: learning and testing. In
the learning phase, we employ the “Semantic Event Chain”
(SEC) concept [8], which captures the semantic represen-
tation of a continuous manipulation by discretizing it into
states (Sec. III-A.2). A pattern of SEC states forms symbolic
action concepts and suggests object categories based on
their roles in the manipulation. Learning is concluded by
labeling these symbolic object and action concepts with lin-
guistic labels extracted from textual video descriptions. In the
testing phase, we analyze chained manipulation sequences,
which are decomposed into sequentially and/or concurrently
performed manipulation instances. We compute object and
action concepts for each instance and match them with the
learned labeled concepts to generate textual descriptions.

We applied our framework to a large publicly available
manipulation action (ManiAc) dataset [9] with 120 demon-
strations of 8 manipulation types (e.g. “cutting”) and 20
long activities (e.g. “breakfast preparation”). We used the
Mechanical Turk (MTurk) crowdsourcing platform to acquire
5 textual descriptions for each video. In the experiments on
the ManiAc dataset, our approach outperformed the standard
action recognition methods. We also obtained promising
results on the description generation for long activities.

Contributions: (1) We introduce a novel unsupervised
method for grounding language in vision by linking low-level
visual sensory data to their symbolic descriptions. (2) We
label visual object and action concepts by using their textual
descriptions only, without employing any standard feature-
based recognition techniques. (3) We generate a textual
description for an unseen complex activity, in which various
manipulations are chained sequentially or concurrently. (4)
We evaluate our framework on a large dataset.

II. STATE OF THE ART

Related literature on linking natural language and vision
mostly focuses on either generating textual descriptions for



Fig. 1. Overview of the proposed framework. Headers written in red indicate the main contribution of this work.

static scenes (e.g. [10], [11]) or learning linguistic descrip-
tions only for object concepts (e.g. [4]), without considering
action information. In [1]–[3], [5], [12], textual descriptions
of videos are generated by employing supervised visual
detectors. Semantic hierarchies are used to generate the
descriptions by detecting pre-trained 〈subject, object, action〉
triplets [1]. A similar data-driven approach in [2] considers
the best two visual object detector results as subject and
object candidates. In [12], a more accurate probabilistic
factor-graph model is created by including the scene (loca-
tion) information. The recent method along these lines uses
Hidden Markov Models (HMMs) to learn a statistical relation
between followed motions, manipulated objects, and their
manually assigned linguistic descriptions [5]. In [13], HMMs
are also used for recognizing events based on motion profiles.
In [14], discriminative models (e.g. Conditional Random
Fields) predict semantic representations of the visual content,
which are then translated into textual descriptions.

All these approaches analyze short videos and rely on
visual feature-based object and action descriptors (e.g. SIFT,
STIP, improved dense trajectories), which require large sets
of labeled training data. Such methods are limited to known
object-action classes and suffer from the generalization prob-
lem if training data are limited. Unlike these methods, our
unsupervised SEC approach considers only the roles of the
manipulated objects to learn object and action categories,
without employing any conventional visual object or action
detector. In our framework, structured linguistic information
is further employed to label these learned categories, whereas
the aforementioned approaches use linguistic information to
tackle the problem of inaccurate or missing visual detections.
In this respect, our approach bears similarities to [15] which
introduces a hyperfeature coding of videos to be aligned with
linguistic data using unsupervised hand and object detection.

In the context of robotics, HMMs are used to represent
human whole-body motion data by considering the joint
angle or position data only, without incorporating object in-
formation [6]. Although this method supports a bi-directional
mapping between human whole-body motion and linguistic

utterances, using only motion data limits the application of
the method to manipulations, in which the motion profiles
of objects and hands vastly vary between demonstrations. In
addition, classical HMM-based approaches are not suitable
for recognizing parallel streams of actions [16] and cannot
easily describe motions with repetitions or recursions [17].
SECs obey the Markovian assumption, but in contrast to
HMM-based generative frameworks, the states in SECs are
observable and represent topological changes in the scene.

Another line of work uses deep networks for generating
video descriptions. In [3], recurrent neural networks are used
to map image sequences to word sequences, after being
trained on raw images and optical flow data. In [18], video
descriptions are generated by fusing appearance and optical
flow cues extracted from a spatio-temporal convolutional
network. Although these approaches show promising results
on unconstrained videos, they omit the action semantics and
require tuning of a large set of hyper-parameters. Since
they depend on the the motion features, they require a
large training set, because optical flow features can vary
significantly even between the same action demonstrations.
In contrast, our approach extracts only descriptive spatio-
temporal discontinuities in relations between objects and
subjects in the scene, which remain stable for a given manip-
ulation type, even with large motion and object variations.

III. OUR APPROACH

We refer to our system as “ViLaRob” standing for “cou-
pling Vision and Language for Robotics”. The proposed
framework shown in Fig. 1 consists of two processing
phases: learning and testing, results of which are combined in
a robot memory. In the learning phase (Fig. 1 green box), we
process visual and linguistic features extracted from an input
atomic manipulation video annotated with textual descrip-
tions. In the visual process, the scene content is encoded by
graphs derived from tracked unique image segments. Graphs
are converted into SECs which are used to learn action
concepts, i.e. SEC models, in an unsupervised way. Given
the SEC, the framework estimates an action concept index by



comparing it with the learned SEC models and categorizes
the tracked image segments as manipulator, primary and
secondary objects. These action and object information are
stored as a visual quadruple. In the linguistic process, we
use the MTurk platform to obtain textual descriptions for
each video. We parse the textual descriptions and extract
labels of the action and its participants (semantic role fillers).
The extracted label set for each video is converted into a
linguistic quadruple. Learning is concluded by combining
visual and linguistic quadruples. The combined data is stored
as Object-Action Concepts (OACs) in the robot memory
(Fig. 1 blue box). OACs are co-joint symbolic representations
of the robot’s sensorimotor experience, which is very much
related to the object-action complexes introduced in [19].

In the testing phase (Fig. 1 orange box), we process videos
showing novel long manipulation activities, e.g. “making a
sandwich”. The process starts with extracting the long SEC
representation, which is decomposed into chunks by con-
sidering the interaction between the estimated manipulator
and objects in the scene. Each SEC chunk is compared
to the learned SEC models to estimate an action concept
index. After applying the object role categorization, we
generate visual quadruples for each chunk. The framework
then compares these quadruples with the learned OACs in
the robot memory, assigns labels to objects and actions, and
generates a linguistic description for the novel long activity.

In the following, we detail processing steps in Fig. 1,
where black headers represent modules inherited from our
previous works [8], [9], [20], [21], whereas red headers
indicate our main contributions in the ViLaRob framework.

A. Learning Stage: Visual Process

1) Image Segmentation, Tracking, and Graphs: The input
of our framework is an RGB-D image stream of a human
manipulation demonstration. After applying a color and
depth-based image segmentation [22], we track all objects
and hands in the scene. Each segmented image is converted
into a graph, in which nodes show segment centers and
edges represent the contact (i.e. touching) relation between
segment pairs. In Fig. 2, some images with the tracked image
segments and graphs are shown for a sample cutting action.

2) Semantic Event Chains (SECs): Given a continuous
graph sequence, an exact graph matching method is applied
to extract a set of main graphs representing topological
changes in the scene. Main graphs are used to construct
the SEC matrix (ψ). SEC rows describe spatial relations
between two objects and columns encode the topological
scene structure at each main graph. Spatial relations in the
SEC rows are Not touching (N), Touching (T), and Absence
(A). Fig. 2 shows the SEC matrix for a cutting example. For
instance, the third SEC row represents the spatial relations
between nodes 9 and 7, i.e. the left hand and the knife. The
third SEC column indicates the state when the left hand starts
grasping the knife. The SEC matrix encodes object pairs that
produce at least one relational change (e.g. from N to T ) and
ignores those with static relations (e.g. between the left and
right hands). The SEC concept was introduced in [8].

Fig. 2. A sample cutting action with (a) original images, (b) segments
and main graphs. Numbers represent graph nodes and edges are given by
blue lines. (c) The SEC matrix in which N represents two disjoint object
segments, T shows a touching relation between two objects, and A is for
the absence of an object. (d) Extracted manipulator, primary and secondary
objects with corresponding linguistic labels (shown in blue boxes).

3) Learning SEC Models: Given a set of human demon-
strations, we employ the unsupervised learning framework
introduced in [9] to learn an action concept, i.e. a SEC
model matrix (ψm). The learning method works in an on-
line fashion and is initiated once a new manipulation is
observed. For instance, when the first atomic manipulation
is demonstrated, the extracted SEC sample ψ1 is treated as
the first model ψm

1 and stored in a library. Once the i-th
demonstration is shown, we encode it again by a SEC ψi and
measure the semantic similarities ζ(·, ·) with all existing SEC
models in the library. The similarity between a SEC sample
and a model, i.e. ζ(ψi, ψ

m
j ), is computed by comparing rows

and columns as described in [8]. If the computed maximum
similarity is higher than an automatically estimated threshold
[9], the new SEC sample ψi is assigned to the most similar
model ψm

Λ , where Λ = arg max1≤j≤η(ζ(ψi, ψ
m
j )) and η is

the total model number in the library. The model ψm
Λ is then

updated with additional rows or columns that might exist in
ψi. In this way, the SEC models will only consist of those
rows and columns that are frequently observed in all assigned
SEC samples. If the maximum similarity is lower than the
threshold, the SEC sample ψi is introduced as a new action
model, i.e. ψm

η+1. All learned SEC models are stored in the
library as a set of action concepts Ψm = {ψm

1 , · · · , ψm
η+1}.

4) Visual Quadruples: We assign an action concept index
to a SEC sample and categorize SEC graph nodes, i.e. image
segments, according to their roles in the action. The action
concept index, Λ, of the SEC sample is the index number of
the best fitting SEC model computed in section III-A.3. For
instance, the SEC sample in Fig. 2 has the highest similarity
with the first model ψm

1 , thus, Λ = 1.
To categorize SEC graph nodes, we employ the method

in [20], which assumes that each manipulation involves
three main participants: manipulator (M ), primary (P ) and
secondary (S ) objects. The manipulator, M , e.g. a hand,
frequently interacts with other objects in the scene and is
estimated as the graph node that participates in most of the
relational changes (e.g. from N to T ) and has the longest



touching relations in the SEC. The object, which has the
longest touching relations with M , is then considered as
the primary object P , e.g. a knife in the cutting action.
Secondary objects, S , represent those nodes that interact,
i.e. have touching relations, with P , e.g. a cucumber to be
cut. In Fig. 2, nodes 9, 7, and 8 are respectively categorized
as M , P , and S . This categorization method does not rely
on object recognition, but applies a rule-based reasoning to
identify the naked graph nodes based on changes in their
spatio-temporal contact relations (see [20]). Although here
we focus on uni-manual manipulations only, the framework
can be extended to bi-manual manipulations.

The estimated SEC action concept index and object cate-
gories from each manipulation video are stored as a visual
quadruple, i.e. QV = (Λ,M ,P ,S ), to be later matched
with linguistic counterparts. In Fig. 2, the obtained visual
quadruple is QV = (Λ = 1,M = 9,P = 7,S = 8).

B. Learning Stage: Linguistic Process

We now describe the fully automatic unsupervised gener-
ation of linguistic quadruples. We assume that the concep-
tualization of the visual input expressed in natural language
corresponds to our visual encoding of the action by visual
quadruples, i.e. elements of visual quadruples are described
by certain syntactic structures in language.

1) Mechanical Turk Textual Descriptions: For action
videos, we obtain textual descriptions (e.g. Fig. 5), which
are processed to generate symbolic labels for the action,
manipulator, and manipulated objects. The descriptions can
be grammatically incorrect and contain typos. Therefore, we
do not rely on one description per video, but obtain several
of them and extract most frequent labels as described below.

2) Description Parsing: First, each textual description is
parsed in order to abstract from syntactic variations. In the
experiment described below, we use the Boxer parser [23].

3) Semantic Roles: In language, verbs often refer to
actions. We extract verbs from the parsed description as
potential labels for the action shown in the video. Each action
has participants, e.g. an agent, a manipulated object, an
instrument. In language, the participants are often described
by noun phrases linked to the verb syntactically. Each
participant plays a certain role in the action called a semantic
role [24]. For each verb, we extract fillers (noun phrases) of
the semantic roles of
• agent (deliberately performing the action, e.g. person),
• patient (undergoing the action, e.g. carrot in cutting),
• instrument (the main tool, e.g. knife in cutting), and
• location (where the action occurs, e.g. bowl in stirring).
We assume that agents are expressed by syntactic subjects,

patients – by direct objects, instruments – by prepositional
phrases with the instrument prepositions (e.g. cutting with a
knife) or by the verb use and its synonyms (using a knife
for cutting), and locations – by prepositional phrases with
location prepositions (e.g. on, from, at). We also handle
constructions like PART of NOUN (e.g. piece of cucum-
ber), where PART is any noun referring to a part of an
object (e.g. piece, slice), and NOUN as the corresponding

object label (e.g. cucumber). Based on these assumptions,
we formulate rules for automatically extracting nouns as
potential labels for objects participating in the action. For
finding synonyms and location/instrument prepositions, we
use lexical databases WordNet and FrameNet.1 The men-
tioned patterns cover most frequent syntactic constructions,
but are not exhaustive. Corpora mining can be employed to
further expand patterns.

A role filler may be expressed by a pronoun or not linked
to the action verb syntactically, e.g. knife is not linked to
cut in “A person grasps a knife and cuts a cucumber”. To
resolve the reference or detect missing role fillers which are
not covered by the above patterns, we select the noun in the
sentence that is most likely to be a filler of the corresponding
role. For this purpose, we use a database of dependency
tuples extracted from a large corpus [25]. A dependency
tuple consists of a syntactic relation type, the fillers of the
relation, and the frequency of their co-occurrence in a corpus,
e.g. 〈prep phrase, cut, with, knife, 7399〉. For each action
verb without a role filler, we select nouns with the highest
frequencies to be the role fillers in the database.

We also extract action and object descriptors (slow, gently,
red, long etc.) expressed by adverbs and adjectives. As
a result, for each textual description, we obtain several
semantic structures, each containing a name and descriptors
for action, agent, patient, instrument, and location.

4) Linguistic Quadruples: For each video, the semantic
structures are converted into quadruples in three steps. First,
we calculate frequencies of each linguistic action label (Λ′)
in the semantic structures, so that synonyms in the WordNet
database are considered to be the same label, e.g. cut and
slice. Second, we merge semantic structures that share the
action label and calculate frequencies of each role filler
and their descriptors. Third, we map the fillers of the roles
agent, patient, instrument, and location to manipulator (M ′),
primary (P ′) and secondary (S ′) objects. Agents are directly
mapped to M ′. If an instrument filler has a higher frequency
than a location filler, the instrument filler is mapped to P ′

and the patient filler is mapped to S ′, e.g. in “cut a cucumber
with a knife”, knife and cucumber are mapped to P ′ and S ′,
respectively. Otherwise, the patient filler is mapped to P ′

and the location is mapped to S ′, e.g. in “put a box on a
cup”, box and cup are linked to P ′ and S ′, respectively.

We finally store the action label and the role fillers for
each video description as a linguistic quadruple, i.e. QL =
(Λ′,M ′,P ′,S ′). For the example in Fig. 2 the obtained
quadruple is QL = (Λ′ = “cut”,M ′ = “person”,P ′ =
“knife”,S ′ = “cucumber”). Note that each element of QL

is assigned a normalized frequency value and attributes.

C. Robot Memory: Object-Action Concepts (OACs)

We now match the elements of quadruples QL and QV

in order to find the most probable linguistic labels for the
learned SEC models and graph nodes, i.e. image segments
in SECs. The most frequent action label Λ′ in QL is directly

1https://wordnet.princeton.edu, https://framenet.icsi.berkeley.edu



mapped to the SEC action index Λ in QV , e.g. in Fig. 2, the
label “cut” is mapped to the first SEC model ψm

1 . Likewise,
M ′, P ′, and S ′ in QL are respectively mapped to their visual
counterparts in QV , cf. Fig. 2. Thus, without applying object
recognition, we can label, for instance, the pink segment, i.e.
node 7, in Fig. 2 as “knife” with the attributes “medium sized”
and “red”. The final matched data between QL and QV

form a set of Object-Action Concepts (OACs) as ΩOAC =
{· · · , (Λi,Λ′i), (Mi ,M

′
i ), (Pi ,P

′
i ), (Si ,S

′
i ), · · · } where i is

the observed manipulation number in the learning stage. The
learned ΩOAC is stored in the robot memory to identify new
visual quadruples detected in the testing stage.

D. Testing Stage

1) SEC Decomposition: The testing phase starts with an
analysis of an unseen long manipulation video, e.g. showing
“making a sandwich”, which needs to be first temporally
decomposed into chunks to detect each sequentially or con-
currently performed atomic action such as cutting or stirring.

First, we extract the event chain of a long manipulation
sequence. The decomposition process is triggered with the
estimation of the manipulator M (see section III-A.4) from
the long SEC. Next, we apply the method introduced in [20],
which searches for [N,T ] and [T,N ] relational changes in
SEC rows that involve the manipulator M . These changes
are cutting points; a change from N to T indicates the start
point, whereas a change from T to N defines the end point of
the manipulation. For instance, when a hand grasps a knife,
the relation in the corresponding SEC row switches from N
to T . These semantic relational changes indicate potential
temporal borders, in which atomic actions take place.

Fig. 3 (a) depicts the event chain for a sample manipulation
sequence, in which a hand is removing a cup, putting an
apple down, and hiding it with the cup. In this example, the
segment 7 is correctly estimated as the manipulator. Colored
blocks in the SEC highlight sequences of [N,T, · · · , T,N ]

Fig. 3. (a) SEC with [N,T, · · · , T,N ] colored blocks, i.e. unique SEC
chunks. (b) Visual manipulator, primary and secondary object segments in
SEC chunks. (c) Linguistic object labels. (d) Mapped manipulation labels.

relations that belong to the manipulator. These blocks repre-
sent the start and end points of the three unique SEC chunks.

2) Parsing Visual Quadruples: Once the long SEC Ψ is
decomposed, we obtain sequentially performed k different
SEC chunks as Ψ = {ψ1, · · · , ψk}. In each chunk ψi, we
employ the technique described in Sec. III-A.4 and search
for the primary (Pi ) and secondary (Si ) objects. We assume
that each chunk ψi involves at most one primary object,
since a hand can grasp and manipulate only one object
at a time. However, there might be n different secondary
objects, i.e. Si = {s ji : j ∈ [1, · · · , n]}. We treat each s ji
as an indicator of a potential parallel action stream because,
if different manipulations share the same temporal interval,
each has to have a unique secondary object. We apply the
brute force combinatorial process in [20], which assesses
each set of {M ,Pi , s

j
i } as one manipulation hypothesis ψji .

Each hypothesis is compared with the learned SEC models
in Ψm to explore the best matching action concept index Λji .

Finally, we construct visual quadruples for each hypoth-
esis as Q

ψj
i

V = (Λji ,M ,Pi , s
j
i ). To identify object and action

labels, we compare each Q
ψj

i

V with the already labeled visual
quadruples, i.e. the learned ΩOAC (see Sec. III-C). The
comparison of objects is based on matching the color and
texture features of the image segments in Q

ψj
i

V with that of
stored in ΩOAC . The labels of the best matched elements
in ΩOAC are assigned to the corresponding elements in
Q
ψj

i

V . We emphasize that this feature comparison step is not
employed for any object detection purpose, but to search for
the most similar segments in the memory. This step is not a
contribution of the framework; any other matching method
can be employed instead.

Fig. 3 (b) shows the estimated Pi and Si in each SEC
chunk. For instance, in the temporal interval of the blue block
in Fig. 3 (a), segment 2 is estimated as P1 , since it has
the most touching relations with the previously detected M
(segment 7). Segments 5 and 8 are estimated as secondary
objects s11 and s21 , since they are the only segments touching
to P1 in the blue block. Thus, the framework returns two
parallel manipulation hypotheses: ψ1

1 = {7, 2, 5} and ψ2
1 =

{7, 2, 8}, which are most similar to models ψm
Λ1

and ψm
Λ2

.
Fig. 3 (c) shows the matched linguistic labels obtained by
comparing these object segments with those in ΩOAC . M
is labeled as “person” and P1 as “yellow cup”. Secondary
objects s11 and s21 are labeled as “green apple” and “big red
cup”. Fig. 3 (d) shows the best matched action labels (Λ′i) for
each chunk, e.g. the framework detects two parallel actions
labeled as “take” and “reveal” in the blue SEC chunk.

3) Generating Textual Descriptions: The labeled visual
quadruples are used for generating a textual description. For
each visual quadruple, we generate a sentence “Determiner
(A, The) + manipulator + action verb (3rd person present) +
primary object description + preposition + secondary object
description”. Object description is given as “determiner (a,
the) attributes (adjectives) object noun”. The positions of
primary and secondary object descriptions can be inter-
changeable depending on whether a location or an instrument



Fig. 4. Sample frames for eight different actions in the ManiAc dataset.

preposition is more frequently used with the action verb in
the MTurk descriptions. For example, the following sentence
is generated for the action sequence in Fig. 3: “A person
takes a yellow cup from a big red cup and reveals a green
apple hidden under the yellow cup. The person takes the
green apple from the big red cup. The person hides the green
apple with the yellow cup.” Unknown actions and objects are
labeled with “manipulate” and “something”, respectively.

IV. EXPERIMENTAL EVALUATION

For the evaluation, we used the publicly available manipu-
lation action dataset ManiAc2 [9] with eight atomic manipu-
lation types: stirring, cutting, chopping, hiding, putting, tak-
ing, pushing, and uncovering. In contrast to other datasets,
MainAc focuses on human-object interactions recorded as
RGB-D image streams and has high intra-class variations.
For each type, there are 15 videos, with five human subjects
manipulating 30 objects. Fig. 4 shows a sample frame
for each manipulation type. We used these, in total, 120
manipulations for the learning phase of our framework.

A. Learning Phase

To obtain textual descriptions for atomic action videos, we
employed the Amazon Mechanical Turk platform. In each
MTurk task description, we showed a video and the instruc-
tion: Watch the video and describe actions and manipulated
objects in the video and their aspects. Example description:
A person is gently cutting a green long cucumber with a
red knife. We collected five descriptions per video, i.e. 600
descriptions for 120 videos in total. We obtained a significant
variance between acquired textual descriptions. Fig. 5 shows
example descriptions and the extracted linguistic quadruple
QL for a cutting video. We obtained one QL per video.

Given the 120 atomic videos, we extracted the corre-
sponding SEC representations and learned SEC models using

2https://fortknox.physik3.gwdg.de/cns/index.php?page=maniac-dataset

Fig. 5. Collected descriptions and extracted linguistic quadruple.

TABLE I
PERCENTAGE OF DESCRIBED ACTION LABELS FOR EACH SEC MODEL.

Λ ψm
1 ψm

2 ψm
3 ψm

4 ψm
5 ψm

6 ψm
7

Λ′

cut: 88 stir: 100 move: 79 hide: 76 take: 76 put: 92 reveal: 68
chop: 4 slide: 7 close: 8 move: 8 place: 8 uncover: 8
slice: 4 put: 7 cover: 8 put: 8 take: 8
saw: 4 push: 7 put: 8 remove: 8 remove: 8

lift: 8

the online learning approach (Sec. III-A.3). Our learning
method retrieved 7 SEC models, i.e. action concepts, for
8 manipulation types, such that Ψm = {ψm

1 , · · · , ψm
7 }.

This is because the learning approach merged cutting and
chopping samples and generated one single model for both
types. Those two manipulations are indeed similar since
both yield the same consequence, i.e. splitting objects into
parts. Primitives, i.e. SEC columns, in both action types are
the same. Differences are the followed motion and velocity
profiles of the movements, which are not captured by SECs.

All 120 SEC samples were compared with these 7 models
in Ψm to predict the action concept index Λ. After catego-
rizing the manipulated objects as M , P , and S , we extracted
the QV representation of each video and matched them with
the QL counterparts to create ΩOAC . Table I shows the
distribution of the matched linguistic labels (Λ′) for each
SEC model in Ψm. For example, model ψm

1 was learned
from both cutting and chopping video samples which were
mostly (88%) described as “cut”, but rarely as “chop”,“slice”,
or “saw” by the MTurk annotators. Having mostly the same
symbolic labels for the cutting and chopping videos supports
our claim that these actions are semantically similar.

Fig. 6 shows the labeled manipulator, primary and sec-
ondary objects for actions: “cut” and “stir”. For instance, our
approach learned that the primary object for cutting is mostly
labeled as “knife” with various attributes, e.g. “medium sized
red” or “black”. The same label was also learned for the
primary object in stirring. Indeed, in the ManiAc dataset,
some subjects selected knives as the tool for stirring. Note
that such a top-down reasoning plays a vital role for cognitive
robots to explore grounded object affordances.

We also manually validated the generation of linguistic
and visual quadruples in the learning phase, see Fig. 7. For

Fig. 6. Learned object labels for actions cut (left) and stir (right). Each box
indicates a different concept, labels of which are given beneath. Attributes
of each object are given under the corresponding image, if there are any.



Fig. 7. Accuracy measures in the visual and linguistic quadruple generation
in the learning phase. Note that for linguistic quadruples, we validated verb
and noun labels only; attributes (adjectives and adverbs) were ignored.

the visual quadruples, the accuracy indicates the percentage
of correctly estimated (true-positive) action concept indices
and object roles. For the linguistic quadruples, the accuracy
is the percentage of linguistic labels that we validated as
acceptable for describing objects and actions in the video.

B. Testing Phase

ManiAc also provides 20 long chained activities, e.g.
“making a sandwich” or “preparing a breakfast”. These
activities are composed of over 100 different versions of the
8 atomic actions and some novel action types, e.g. pouring,
which were not seen in the learning phase. Atomic actions
are presented sequentially or concurrently in different scene
contexts. We used these 20 long activities for testing.

First, the 20 activities were converted into SECs, each of
which was decomposed into smaller chunks (Sec. III-D.1).
In each SEC chunk, we parsed all possible action hypotheses
by categorizing the objects as M , P , and S (Sec. III-D.2).
An action concept index Λ was assigned to each hypothesis
after comparing the hypotheses with the 7 models in Ψm.
The predicted action indices and temporal borders of SEC
chunks were then compared with the ground truth provided
in the dataset to measure the action decomposition and
classification accuracies, i.e. the average true positive rates.
The average decomposition and classification accuracies are
90.9% and 84.9%, respectively. These results are comparable
with our previous findings reported in [20], [21].

To generate textual descriptions for the 20 long activities,
we computed the QV representation of each hypothesis and
matched them with the already labeled data in ΩOAC . This
matching process returns linguistic labels for the action and
objects in the hypotheses. Note that novel objects that were
unseen in the atomic videos but appeared in the long videos
were manually appended to the OACs with their linguistic
labels. By employing the matched linguistic descriptors in
all hypotheses (Sec. III-D.3), we generated in total 104
textual descriptions. Fig. 8 shows the qualitative results of
automatically generated descriptions for three long activities.

We asked three validators to label each sentence, action
verb, and object noun phrase as correct (all description parts
are correct), partially correct (some parts are correct), and
wrong (all parts are wrong), cf. Fig. 8. Table II shows

TABLE II
AVERAGE ACCURACY OF GENERATED DESCRIPTIONS.

One Two All Three
C C+P C C+P C C+P

Sentence description .61 .95 .56 .93 .42 .91
Action verb .92 .94 .91 .93 .75 .91
Primary object noun .70 .82 .64 .77 .61 .73
Secondary object noun .74 .89 .70 .84 .68 .80

percentages of the descriptions that are correct (C) and
correct or partially correct (C+P) according to any one, any
two, or all three validators. The inter-annotator agreement
Fleiss’ kappa is 0.76. The pairwaise unweighted Cohen’s
kappa is 0.73, 0.83, and 0.71 for each pair of validators.
These values show that the three validators have a high level
of agreement. We also asked the validators to indicate the
number of atomic actions that were not described, which is
measured as 0.26 per video.

Most errors in the generated descriptions resulted from the
errors in the object matching. Lack of context sensitivity was
also an issue. The same manipulation action might need to
be labeled differently depending on the manipulated objects.
For example, if a bowl is used to cover an apple, it can
be described as hiding an apple with a bowl. But sandwich
making cannot be described as hiding the bread with cheese.
Another issue concerns composite entities. If a piece of
cheese is put on the bread, the resulting object is a sandwich,
while our method still calls it cheese.

The runtime of the SEC model learning is about 25 mins,
although the segmentation, tracking, and SEC extraction run
in real-time (25 Hz) on a PC with Intel Core i7 3.33 GHz
CPU with 11.8 GB RAM and an Nvidia card GTX 295.
Linguistic semantic roles are generated in around 6 ms per
textual description on average, while linguistic quadruples
are generated in about 45 ms per video on average. In
the testing phase, the average temporal decomposition and
recognition time is about 8 secs per video.

V. CONCLUSION

We introduced a novel framework for grounding language
in vision by bridging the gap between continuous visual in-
formation and discrete linguistic descriptions of manipulation
activities. The framework allows robots to identify and learn
co-joint object-action concepts without prior knowledge.

The proposed framework identifies three action partici-
pants: manipulator, primary and secondary objects. This is
clearly a limitation from a cognitive point of view, because
humans distinguish between more action components, e.g.
instrument, location, destination, which are reflected in the
linguistic descriptions of the scenes. We plan to extend our
visual and linguistic perception to cover more action compo-
nents for a better cognitive approximation. Another limitation
concerns the accurate segment tracking and object matching
methods. Since both are not in the focus of this study, their
naive implementations inject noise to the generated video
descriptions. We plan to employ more advanced computer
vision methods for the improvement. Context sensitivity and



Fig. 8. Three long activities together with the automatically generated textual descriptions. Black bars represent start and end points of each detected
atomic action. Green, blue, and red boxes respectively highlight correct, partially correct, and wrong descriptions. Words in red indicate false labels.

composite entities pose challenges for the linguistic process
(Sec. IV-B). We will address these issues by (a) using more
training data to learn object-dependent action labels and
(b) applying world knowledge resources to relabel composite
entities. Future work also concerns the execution of learned
action concepts with robots by employing generic execution
skills, cf. [26]. We also plan to introduce an interactive
dialog allowing robots to ask human demonstrators for help
in identifying unknown object or action concepts not stored
in the OACs. Such human-robot interaction would boost
the performance of our framework in novel scenes, e.g.
any mismatched concept in the new scene can be directly
corrected by the human. To evaluate the scalability of our
framework, we plan to benchmark it with more manipulation
datasets (e.g. [15]) from various domains.
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