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Abstract— Autonomous elevator navigation represents a crit-
ical challenge for service robots operating in multi-floor envi-
ronments. This paper presents a novel framework that inte-
grates autonomous elevator operation with human assistance,
enabling robots to navigate elevators in diverse scenarios with
varying human presence. Our approach determines whether
autonomous operation is feasible based on real-time environ-
mental constraints and reactively switches to seeking human
help when necessary. We demonstrate how combining different
navigation cost metrics allows the robot to navigate safely
among humans and reliably detect door states based on LiDAR
data, even with humans entering or exiting the elevator. We
validate our system through comprehensive testing in both
simulated human-robot interaction scenarios and real robot
experiments using the humanoid household robot ARMAR-7.
Results show significantly improved success rates across diverse
elevator situations compared to pure autonomous or help-
seeking baselines.

I. INTRODUCTION

As robots continue to be integrated into human-centered
environments, their capacity to autonomously navigate multi-
floor buildings, e.g., for fetch-and-delivery tasks, becomes
increasingly essential. Navigating between floors via eleva-
tors represents a critical capability for service robots, yet
presents significant challenges in environments without spe-
cialized robot interfaces. Unlike navigation on a single floor,
elevator operation demands complex sequences of actions —
summoning the elevator, entering, selecting the destination
floor, and exiting — while adhering to social compliance and
collision avoidance in confined spaces designed primarily
for human use. These challenges are amplified in public
environments with dynamic human presence, where robots
must adapt their strategies based on the current state of the
environment.

Veloso etal. ([1], [2]) introduced the paradigm of sym-
biotic autonomy, wherein robots understand their limita-
tions and proactively seek human assistance to overcome
them. Their CoBots requested help for tasks beyond their
capabilities, such as pressing elevator buttons or opening
doors. This approach, while effective when humans are avail-
able, leaves robots dependent on assistance and potentially
stranded when humans are absent. We propose a hybrid
approach that combines autonomous operation with human
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Fig. 1. The humanoid robot ARMAR-7 dynamically selects between
autonomous elevator operation and requesting help. It considers humans
for finding suitable poses for button pressing (top) and approaches humans
and talks to them to convey its help intent (bottom).

assistance. Our system continuously evaluates environmental
conditions to determine the optimal strategy: operating the
elevator independently when possible, or engaging with
humans when autonomous operation is hindered. Compared
to Veloso etal. [2], our approach offers advantages. While
their system relies exclusively on human assistance, our
robot can successfully navigate elevators both when humans
are available to help and when it is alone. This eliminates
the substantial waiting periods documented in [2], where
robots would remain idle for extended durations until hu-
man assistance became available. By integrating autonomous
capabilities with human interaction, our system maintains
continuous operation across varying human presence sce-
narios, addressing a critical limitation in previous elevator
navigation systems. Even in case the robot is able to operate
the elevator autonomously, the robot needs to be aware of
humans to avoid collisions while navigating or pressing the
buttons. Thus, the robot must constantly monitor and adapt
to human movements to prevent collisions in these confined
spaces.

Beyond human awareness, the affordance spaces — defined
as “social spaces related to potential activities provided by
the environment” [3] — play a central role in effective elevator
operation. These spaces directly correspond to the specific
activities required for elevator use, such as accessing button
panels or positioning inside the elevator for transport be-
tween floors. Human presence significantly constrains these
available affordance spaces, creating a dynamic decision
framework for autonomous operation. The robot can lever-
age this spatial awareness to identify appropriate positions



for button interaction, or importantly, to determine when
autonomous operation is infeasible due to spatial constraints.
This affordance-based reasoning enables more socially aware
decision-making about when to proceed autonomously ver-
sus when to request human assistance. To address these
challenges, we extend the work in [4], which calculates
optimal robot placements for mobile manipulation tasks, to
affordance spaces relevant for elevator use.

Given that the viability of autonomous operation fluc-
tuates with dynamic human positioning, we propose an
adaptive approach that integrates behavior trees into the
robot’s cognitive architecture. This integration enables re-
active switching between autonomous operation and help-
requesting strategies based on real-time interpretation of the
scene. The behavior tree framework systematically manages
the execution of autonomous skills, continuously monitors
their execution progress, and dynamically adapts subsequent
goals based on current environmental conditions. This re-
active behavior ensures the robot can seamlessly transition
between operational modes when affordance spaces become
constrained or available, optimizing both task completion and
social appropriateness in shared elevator environments.

We evaluate the effectiveness of our approach using a set
of scenarios to assess the robot’s performance in elevator-
taking in the presence of humans. The scenarios consider
multiple human behaviors, initial positioning and human
goals. We compare our approach to baselines using this
framework and evaluate its performance in real robot ex-
periments on a humanoid household robot.

II. RELATED WORK
A. Robot Skills for Autonomous Elevator Use

Navigating elevators with robots has been of interest to
the community for a long time. While most of the work
focused on robots without the ability to press the buttons
(11, 2], [5], [6]), humanoid robots ([7], [8]) and robots
specifically built for navigating elevators have also been used
([9], [10], [11]). While many aspects like button detection
([12], [13]), elevator button pressing ([7], [11]), elevator
door state estimation ([5], [9]), floor number recognition [8],
navigation ([14], [15]), as well as entering and exiting the
elevator in the presence of humans ([16], [17]) have been
studied, no work so far has focused on the options for a
robot that can navigate the elevator autonomously but still
ask humans for help.

For the button detection, recent works ([18], [12], [13])
use neural networks trained (additionally) on an elevator
button dataset to detect buttons. One option is to then use an
optical character recognition approach to detect the button
label [12]. By using a depth camera, these detected buttons
can be converted into 3D point clouds ([19], [7]). Button
pressing is usually done by moving the robotic arm to the
button pose or slightly behind it ([19], [9], [7]). Compared to
our robot, which features humanoid hands, past work used
either grippers [7] or even simpler end-effectors [9].

The elevator door state can be detected reliably with Li-
DAR sensors ([9], [5], [20]), e. g.,, by calculating an opening

angle [20] or determining if the door space is occupied by
obstacles [5]. However, existing methods fail to differentiate
between door occlusion by humans and actual door closure,
leading to false closed-door detection when humans occupy
or traverse the doorway.

Regarding the necessary navigation, past work has mostly
focused on entering the elevator in the presence of hu-
mans ([17], [16], [6]). After humans are detected, either
an occupancy grid is constructed ([6], [17]) or a learned
controller is directly used for navigating into the elevator
respecting the humans [16]. With the occupancy grid, dif-
ferent navigation approaches have been employed, namely
potential field navigation [17] and a human-aware navigation
approach ([6], [15]).

B. Interaction With Humans in Elevator Use

One focus of past work on taking elevators has been inter-
actions with humans. Humans were asked to press elevator
buttons and hold the door open for the robot ([1], [2]). Other
work has addressed navigation into the elevator ([16], [17])
or initiating communication when humans are blocking the
doorway [21]. Recent work also incorporated social-aware
navigation ([6], [20]) to ensure proper distance to humans
and to respect affordance spaces ([22], [23]). The used
algorithms were quite simple, especially compared to the
numerous human-aware capabilities found in [24]. One way
of representing distances to humans is the Proxemics model
developed by Hall [25] with an intimate, personal, social, and
public zone. However, even keeping a personal distance of
0.5m — 1 m can block the robot from entering most occupied
elevators due to the limited space, even though it would still
fit inside. For robots operating close to humans, signaling
the robot’s intent to human bystanders is important [26]. In
[27], a robot used eye gaze to guide humans in identifying
locations on a map. This suggests that eye gaze can be used
to convey whom the robot is addressing or which button
the robot intends to press. In [28], vocal cues were found
to improve the impression of the robot while entering and
exiting the elevator. In unclear situations, like when humans
are trying to exit the elevator while the robot wants to enter,
voice cues could similarly be used to convey the robot’s
intent to let the humans exit first.

C. Coordination and Task Planning

State-of-the-art elevator operation methods typically in-
volve three steps: the robot navigates to the control panel
or entrance, requests the elevator via button press or direct
communication, and keeps the door open while entering
([71, 1191, [10], [17], [5], [21]). Some approaches include
additional tasks like determining the elevator travel direction
[17] or confirming the robot is on the correct floor ([19],
[20]). Current works that consider human collaboration to
improve the robot’s reliability either depend on direct inter-
vention ([1], [2]) or require elevator modification to control
the elevator via an API [21]. We address the shortcomings of
both approaches by integrating human assistance into a fully
autonomous robot while maintaining the reliability benefits.
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System overview including the three main components behavior trees, memory and skills which are supported by auxiliary logic for human

selection and platform placement calculation. The memory is the single source of truth which gets the data from perception modules for elevator door
state, buttons and human tracking. Memory-based skills like button pressing, navigation and view selection are used to control the robot.

Compared to [2], our robot has all the skills required
to navigate the elevator autonomously. The authors in [2]
focus on human-assisted operation, where the robot always
requests help and proactively seeks humans to minimize the
waiting time. Their main contribution includes this help-
seeking strategy and a user study on who to ask for help.
We instead only rely on human communication when au-
tonomous operation fails due to unforeseen circumstances,
such as humans blocking access to buttons, blocking the
robot’s path through the doorway when entering, exiting the
elevator when the robot wants to enter, or preventing the
robot from exiting. Therefore, our approach does not need
to identify individual people, and the area of interest to our
approach only covers the direct proximity to the elevator, as
opposed to everything accessible to the robot on the current
floor.

A critical requirement is rapid reactivity to dynamic
human behavior. While recent works employ finite state
machine variants ([9], [6], [20], [7]), behavior trees offer
superior reactivity and better scalability [29], making them
more suitable for dynamic environment requirements.

III. APPROACH

The system architecture is shown in It builds upon
the memory-centered cognitive architecture in ArmarX [30]
and allows for easy integration of our elevator- and human-
interaction-specific modules. The high-level behavior coor-
dination using behavior trees enables rapid responses to
dynamic changes in the world state. It leverages memory
information to make decisions and coordinates the robot’s
actions through a memory-based skill framework. As shown
in[Fig. 2] elevator-specific perception data — including human
tracking, door state detection, and button detection with
pose estimation — is maintained in memory. The system
primarily utilizes skills for button pressing, navigation, and
gaze control, complemented by auxiliary logic for robot
placements and human selection for interaction.

A. Behavior Coordination Using Behavior Trees

Behavior trees are used to (i) reason about the current
state to reactively adapt the behavior and (ii) monitor the
autonomous execution to identify the necessity to ask for
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Fig. 3. Top-level behavior tree. All leaf nodes are implemented as sub-
trees. — indicates sequences, ? indicates selections. ¢@»: Sub-tree to call
elevator, @2>: Sub-tree to navigate inside and press button, @a»: Includes
autonomous strategy with navigation to button, @8> : Includes help-seeking
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help. Depending on the perceived environment and robot
state queried from the memory, the behavior tree’s execu-
tion switches between different autonomous help-requesting
strategies to achieve the next task.

One challenge is the abstraction of all necessary percep-
tion, processing, and controlling tasks into behaviors that
can be used in a behavior tree. We chose an approach where
each behavior that controls the robot keeps track of its own
progress in each tick and stays in a running state until it
finishes. Since most perception and processing tasks require
minimal runtime, they immediately return results that can be
used directly in behavior tree decisions.

Unlike previous work exploring diverse elevator interac-
tion approaches, we focus specifically on unmodified eleva-
tors controlled solely through button interfaces.

To enable robots to take the elevator autonomously, we
find the following relevant tasks: (i) Ensure the outside button
is pressed, (ii) wait for the elevator doors to open, (iii) move
into the elevator — including waiting for humans to exit the
elevator, (iv) ensure the button for the destination floor is
pressed and (v) move out of the elevator.

shows the high-level logic that the robot fol-
lows. Compared to the sequential execution of the before-
mentioned tasks, we enhance the robot’s flexibility via a
selector node between sub-trees 1 and 2 to switch between
tasks [(D)] - This allows the robot to skip pressing the
outside button when doors are already open and retry if doors
close unexpectedly during entry.

Similar to [1], our robot only asks humans for help in



Fig. 4. LiDAR-based door state detection with the robot (blue circle) and
humans (black circles) in front of the door and inside the doorway. The
three processing steps allow for an accurate door state detection, provided
measurements near the door center remain unoccluded. (D: Ensure symme-
try since both doors are coupled, @: Replace unknown cells surrounded by
free cells, ®: Remove occupied cells that are separated from the sides by
a free cell. Green cells indicate free (obstacles only behind the doorway),
orange cells indicate unknown (obstacle in front of the doorway), and red
cells indicate occupied (obstacles detected in the doorway).

case it cannot achieve its goal autonomously. However, the
additional ability to control the elevator by pressing buttons
allows our robot to require less human interaction. The
only cases where additional interaction abilities are needed
are when (i) humans block the affordance space for button
pressing, (ii) humans block the doorway by a) standing inside
the elevator but too close to the doorway, b) entering or
c¢) exiting the elevator, (iii) the robot (temporarily) cannot
press the button or (iv) the robot needs to let people exit the
elevator first to avoid mutual blocking.

Most tasks in can be achieved by an autonomous
and a help-requesting strategy. The autonomous strategy
is preferred in all cases to minimize unnecessary human
interaction, only switching to the help-requesting strategy in
cases of failure. For navigation, this means that the robot
first attempts to navigate to its goal autonomously. If this
fails because humans block all possible paths to the door, the
robot approaches them to signal its intent to pass, and if they
still don’t move, verbally requests them to clear the pathway.
For button pressing, the robot first attempts to navigate to the
button autonomously. When humans stand too close to the
button, it requests the nearest human to the button to either
move aside or press the button.

B. Key Modules for Elevator Use

Key modules for autonomous execution include button
affordance extraction, button push action generation, and
base placements determination for those actions.
Perception: The robot’s perception module needs to detect
(i) buttons to extract push affordances and press the buttons,
(i1) whether the elevator door is open or closed, and (iii) hu-
mans to avoid collisions and let them exit the elevator. The
robot uses an articulated elevator model with approximate
button positions to position itself and visually localize the
buttons. We use OCR-RCNN [18] to extract button bounding
boxes from the RGB image and extract the button label
from the cropped image. The button pose is then estimated
by calculating the normal vector to the button plane after
estimating the button plane from the cropped point cloud,
similar to [7].

Unlike other door state detection approaches, our method
accounts for humans walking through the doorway. We

Fig. 5.
and execution of best hypothesis (right). Red hand poses are rejected (e. g.,
no IK-solution), good hand poses in green.

Hypothesis generation for push affordance using finger TCP (left)

extend the approach from [5] by deploying additional virtual
boxes inside the doorway, introducing a third occupation
state “unknown” for occluded boxes to the already existing
“occupied” and “free” states, and applying post-processing to
the occupation data. Since our elevator doors close symmetri-
cally from both sides, we assume that both doors open to the
same degree simultaneously. This allows us to infer the state
of occluded boxes on one side by checking the corresponding
boxes on the other side. Additionally, occupied and occluded
boxes that are not connected to the side cannot belong to the
door and are therefore treated as free boxes in the opening
degree calculation, enabling accurate detection even when
humans occupy the doorway. illustrates the processing.

After estimating human poses, we track them by clustering
the LiDAR points and associating clusters with the previous
human position estimate if the size matches and the distance
is small enough. The human’s velocity vector is then calcu-
lated from its temporally smoothed position. Exiting humans
are detected when their velocity vector direction opposes the
robot’s movement direction during elevator entry attempt.
Button pressing: Given a detected button, we generate
multiple action candidates and select the best one. Each
candidate defines a press pose consisting of hand shape and
the index finger tip position (Tool Center Point, TCP) located
slightly behind the button center. As depicted in each
pose is characterized by (i) the rotation angle around the
button surface normal and (ii) the hand pitch angle.

The pitch angle prevents inward finger bending that would

break contact, while the rotation angle is optimized based
on the robot’s base position relative to the button and button
height.
Determine affordance spaces: The goal is to identify
optimal base poses for action execution. Target actions
include (i) perceiving and pressing elevator buttons (both
the outside and inside), (ii) positioning within or in front of
the elevator, and (iii) approaching humans to ask for help.
Determining action feasibility, i.e., whether required spaces
are available or blocked by humans, is crucial for high-level
behavior planning. To address these requirements, we employ
a costmap-based approach, which extends our previous work
described in [4]. The objective is to find the robot placement
that minimizes the total cost c:

c=cp+cCmt+cptcs (1)

Similar to [4], the total cost comprises (i) navigation
costs ¢, representing travel distance and obstacle proximity,



Fig. 6. Left to right: Manipulation costs, navigation costs, social costs and
combined costs. The combined costs only leave a very small patch for the
robot to the left of the human. Colorscheme: Viridis (increasing costs from
violet to blue, green, yellow).

(i) manipulation costs c¢,, based on inverse reachability
maps to ensure kinematic feasibility and high end-effector
manipulability. Additionally, we introduce (iii) a placement
cost ¢, that restricts placements to ensure adequate button
visibility, and (iv) a social cost ¢, that enforces socially
compliant placement (see [Fig. 6).

As the robot operates in close proximity to humans, its
motion should be human-like. Therefore, we modify the
generation of the reachability maps by only sampling the
robot’s joint configurations that lie within the human joint
limits [31], [32]. Central to social compliance are proxemics
for humans H. Following, we employ a symmetric Gaussian
function when human velocity estimation is not available:

lpn —plP

2
2 O prox

Cprox (p) = max | exp 2

heH
Within the personal space (||[prn — P|| < dpers), We in-
validate the costmap to ensure human comfort [23]. The
social cost term ¢, is task-dependent and is determined
as follows: (i) Button pressing: ¢, = cpox With ma-
nipulation costs derived from inverse reachability maps
for both execution and pre-pose. (ii) Elevator positioning:
Cs = <center +Cclear button +Cpmx, where Cv = wj¢; are Weighted
costs and Ceeneer favors central positioning inside the elevator
while Ccjear buton prevents the robot from blocking button
access. (iii) Human approaching: ¢s = Cprox + Ginteract» Where
Cinteract TNAINtains an appropriate interaction distance to the
human and favors alignment along the button-human axis.
Human-aware navigation: For each navigation target, we
plan a global path and employ the Timed Elastic Bands [15]
local planner to react to dynamic changes such as moving
humans. Preliminary tests showed that recalculating the
robot placement at every behavior tree cycle to respond to
moving humans caused oscillations during human approach
due to small shifts in their detected position. Therefore,
we recalculate the robot placement only when the current
navigation goal becomes occupied.

IV. EVALUATION

We evaluate our approach against several baselines in
simulation and real-world tasks and assess its performance
using the humanoid robot ARMAR-7.

A. Baselines

1) Naive baseline — No asking for help: Human interaction
is not incorporated into the behavior tree level. Humans
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Fig. 7. State machine describing the behavior of a human who enters the
elevator (left), exits the elevator (right), and presses buttons if asked by the
robot (middle) used in our simulation environment. The initial state (Idle)
is marked with a thicker outline.

i

Fig. 8. Sampling areas for simulated humans shown on the elevator model
(white) from above. (D Goal for exiting humans, @ standing humans in
front of the elevator, @ in front of the button panel, @ waiting directly in
front of the elevator, and (3 inside the elevator.

are only considered to find robot base placements and
not for, e.g.,, asking them to make space or letting
them exit the elevator first. The robot only tries the
autonomous strategies for each task.

2) Veloso etal.— No manipulation: Similar to the work of
Veloso etal. [1], the robot does not operate the elevator
by pressing buttons and instead relies on humans for
doing that. This results in the robot having different
navigation goals as it can, e.g., stand anywhere in the
elevator and ask humans to press the button, instead of
having to stand directly in front of the button.

B. Evaluation Environments

Simulation environment: To compare our approach against
the baselines in different elevator situations, we use a kine-
matic simulation. The elevator door is simulated to open
after one of the buttons is pressed and to close delayed
after the last time someone was in the doorway. The door
only closes after the robot goes through the door, allowing
us to measure the time it needs to stay open based on the
robot’s entering speed. For the simulated human movement,
we use “optimal reciprocal collision avoidance” [33], and
for the general behavior of the humans, we employ a state-
based structure for each human’s goal. These goals include
entering the elevator, exiting the elevator, staying at the
current location, and both entering and exiting. shows
the modeled behavior for the latter.

To randomize each experiment, we sample the human
positions for each human and state. The sampling is done
within certain areas with a meaning associated with them
(e.g., inside the elevator, in front of the elevator, directly in
front of the door, and in front of the outside button) as shown



Experiment Time Across Scenarios and Strategies

90 9 Strategy

H Naive
80 — [ Our Approach
E Veloso et al.
70 é o

Time (s)

60 — i% *
50 —
T
S2

S1

e .

ST
Scenario

Fig. 9. Execution time in simulation for each approach on each scenario.
The Veloso etal. baseline is much faster in some scenarios because we
expect humans to be faster in moving to the button and pressing it.

Fig. 10. The real elevator (left) and the simulation counterpart (right).

in Different states in the human’s state machines
have different locations associated with them, which are
all sampled from one of the areas. We supply a generator
for experiment descriptions with sampled human positions
through our paper Webpageﬂ When the robot asks humans
to make space or press a button, we assume cooperative
behavior, whenever possible (humans cannot move through
closed doors). For all scenarios, the robot’s initial pose is
sampled from a line similar to area (D. Each experiment
was conducted 20 times.

Real robot environment: We evaluate our approach with
the humanoid household robot ARMAR-7. The evaluation
environment includes the space in front of an elevator and the
elevator itself (see [Fig. 10). The elevator is around 3m long
and 1.6 m wide with a door width of 1.3 m. A model of the
elevator is available to the robot, including the approximate
locations of elevator buttons and annotated regions (inside
the elevator, doorway, area outside the elevator where the
robot can wait).

C. Evaluation Scenarios

Scenario S1 — No humans: This scenario shows how each
approach works without any human help.

Experimental Setup: There are no humans in the scene, and
the door is initially closed without any pressed buttons.
Results — Simulation: In simulation, both the naive base-
line and our approach achieve near-perfect success. Both
approaches result in the same behavior in this scenario and
need around 65 s as shown in As expected, the Veloso
etal. baseline never succeeds in this scenario.

Results — Real Robot: While we needed to hold the doors
open for the robot, it was still able to do everything else,

Uhttps://sw.pages.h2t.iar.kit.edu/robot-asks-humans-for-help/site/

including detecting and pressing the buttons and navigating
to all necessary places (see video for details).

Scenario S2 — Human blocking the outside buttons: This
scenario shows how each approach handles blocked access
to the buttons.

Experimental Setup: There is one human standing in area Q)
blocking access to the outside button panel. The door is
initially closed, and no buttons are pressed.

Results — Simulation: Our experiments show that the naive
baseline does not work in this scenario, while the other
two approaches have a high success rate over 90 %. The
Veloso etal. baseline is about 15 s faster than our approach,
because it asks the human to press the button, which it can
do without even needing to first move towards the button,
as it already is standing there. Our approach requests the
human to move aside so the robot can press the button, which
requires additional time for both human repositioning and
button pressing, resulting in a total time of about 70s.
Results — Real Robot: We tested this scenario in two
configurations: a human standing directly in front of the
button and standing approximately 1m to the side. When
the human blocked direct button access, the robot success-
fully approached and requested space in most trials. After
the human complied, the robot acknowledged with “thank
you,” approached the button, and resumed pressing. When
the human stood to the side, the robot navigated to the
opposite side, enabling safe button operation without human
interaction.

Scenario S3 — Human providing help in front of elevator:
The goal of this scenario is to see how the robot behaves
when humans are close to the elevator, but not directly
blocking access to the doorway or buttons.

Experimental Setup: One human is standing in area @
without intending to take the elevator. Initially, the door is
closed and no buttons are pressed.

Results — Simulation: All approaches achieve high success
rates. The Veloso etal. baseline is about 5s faster, because
we assume that humans are much faster than the robot in
pressing the buttons.

Results — Real Robot: For our approach, the robot’s actions
are identical to S1.

Scenario S4 — Human waiting for elevator: The goal of
this scenario is to demonstrate how the approaches respond
when the doors open without pressing the buttons and to
measure the time savings from bypassing button pressing.
Experimental Setup: One person is standing in area @ in
front of the elevator door. The door is closed, but the button
is already pressed.

Results — Simulation: ~ All approaches work well in this
case. The Veloso etal. baseline is a bit slower at around
55s compared to 50s for the other approaches.

Results — Real Robot: Since the robot’s vision currently
cannot determine if the button is already pressed, the robot
always moved to the left side of the button and occasionally
initiated pressing. While navigating to the button or press-
ing it, the robot noticed that the door opened and started
navigating into the elevator, interrupting its previous actions.



After that, it positioned itself at an appropriate location inside
the elevator while avoiding collisions with the human or
the elevator. When the human was standing in the back,
the robot moved to the inside button panel and pressed the
button. When the human was standing at the button panel,
the robot instead moved to the back of the elevator and asked
the human to press the button. This occasionally caused
oscillatory robot movements between positions, resulting in
human tracking failures.

Scenario S5 — Human leaving elevator: This scenario
shows how the approaches react to humans leaving the
elevator and how important it is to wait for them.
Experimental Setup: One human is standing in area 3 and
moves to area () as soon as the elevator door opens. The
door is closed, but the button is already pressed.

Results — Simulation: All approaches showed a high success
rate except for the naive baseline. As expected, all three
approaches were fast (less than 50s). Unexpectedly, all
approaches also took almost the same time. This means that
— in this scenario — the time for pressing the inside button
and asking the human to press the button was similar.
Results — Real Robot: We expected that the robot asks for
humans to exit the elevator and positions itself in front of
the door. Here, the robot stopped after the humans tried to
exit, but it sometimes missed the voice cue and was a bit
late in going back in front of the elevator for waiting.
Scenario S6 — Human as co-rider: This scenario shows
how well each approach works if other humans are already
inside the elevator — especially regarding the entering.
Experimental Setup: One human is standing in area 3) and
stays in this area for the entire experiment. Initially, the door
is closed and the button is not pressed.

Results — Simulation: Our simulation only shows very good
results for our approach and a success rate around 30% for
the naive baseline. This is because the robot is not able to
get into the elevator when the human is standing too close
to the doorway, if it does not ask the human to make more
space so that the robot can enter.

Results — Real Robot: Similar results to S4.

Scenario S7 — Combined: The goal is to show how the
approaches handle more crowded situations.

Experimental Setup: One human is in area & and moves
to area (D when the doors open. One human is in area @
and moves to area (3). Another human in area Q) is blocking
access to the buttons. The door is initially closed, and the
button is not pressed.

Results — Simulation: The results look very similar to S2,
with a lower success rate (especially for our approach) and
more time needed to run the experiment.

D. Summary and Discussion

As shown in our approach reliably achieved good
success rates in all simulated situations, whereas the base-
lines could not properly handle all of them. Our approach
improves upon the naive baseline, which has problems in S5
and S6 due to humans blocking access to buttons, humans
standing too close to the door, or not letting humans exit,

TABLE I
SUCCESS RATES IN SIMULATION (%), 20 EXPERIMENTS

Approach S1S2 S3 S4 S5 S6 S7  avg

Naive 95 0 90 100 15 35 00 47
Velosoetal. 0 90 95 85 100 0 85 65
Ours 9 95 100 100 100 100 55 91

leading to mutual blockage. Compared to the Veloso etal.
baseline, which has problems with S1 and S6 because no
humans are available that can be asked for help, our approach
did better as it does not depend on human help in this case.
We could also find valid robot base poses for navigating in
front of the button, inside, and in front of the elevator.

We found that asking humans to press a button when
they already stand in front of it (S2) is always faster in our
simulation than asking them to make space so that the robot
can press the button on its own, as shown by the results of
S2, S3, and S7 in This suggests that our approach
would be even faster if we opted for this strategy instead.
In the real experiments, we saw that the robot could reliably
position itself on the correct side of the button when humans
were standing close, allowing the robot to press the button
without colliding with the human.

Additionally, we measured the elevator entering time. Our
robot usually needed less than 6 s between the door opening
and the robot being inside the doors’ light barrier, with some
outliers being significantly slower. When the robot is too
slow, it is not able to get into the elevator, and the doors
close in front of it. However, collisions with the door can
also occur in case the robot is usually fast enough, e.g.,,
when its entering is hindered by humans. To allow for safe
interactions with humans and the elevator in open-ended
environments, the current premature safety measures need
to be extended. In real robot experiments, we discovered
that the button-pressing skill had a limited success rate. The
button detection and pose estimation failed in less than 20 %,
which can lead to the robot moving the fingers in the wrong
direction. The pressing itself worked in around half the cases,
but depended heavily on the calibration. Sometimes, the
robot also did not identify that it had already reached its
goal early enough, which eventually led to recalculations and
oscillations between multiple goals.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented a novel approach to com-
bine autonomous elevator navigation with asking humans for
help. Several experiments with varying complexity in simu-
lation and on the humanoid robot ARMAR-7 demonstrate
improved performance in diverse scenarios compared to
purely autonomous or exclusively help-seeking approaches.

We identified several limitations for real-world deployment
that require future investigation: To avoid collisions, we
manually held elevator doors open since our robot currently
lacks a strategy to safely enter the elevator. A potential
solution could be to extend an arm toward the elevator door
to keep it open during entry. If the door begins to close before
the arm reaches the doorway, the robot can quickly retract it



to prevent collisions. Another limitation is that unsuccessful
button-pressing attempts require human intervention since
the robot cannot currently verify button activation. Future
work will integrate button state detection to enable verifi-
cation of button activation. The work only considered sim-
plified scenarios with limited human presence and assumed
cooperative human behavior. Under these conditions, asking
humans for help proved faster than letting the robot press the
buttons on its own — especially when the human is already
standing near the control panel. However, comprehensive
user studies are required to assess the willingness of humans
to help the robot, cooperation levels, and the overall user
acceptance and satisfaction. Finally, extending the approach
to more complex environments, such as crowded elevators,
requires further research.
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