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Abstract— In this paper, we deal with imitation learning of arm
movements in humanoid robots. Hidden Markov Models (HMM)
are used to generalize movements demonstrated to a robot
multiple times. They are trained with the characteristic features
(key points) of each demonstration. Using the same HMM, key
points that are common to all demonstrations are identified; only
those are considered when reproducing a movement. We also
show how HMM can be used to detect temporal dependencies
between both arms in dual-arm tasks. We created a model of the
human upper body to simulate the reproduction of dual-arm
movements and generate natural-looking joint configurations
from tracked hand paths. Results are presented and discussed.

I. I NTRODUCTION

Humanoid robots are expected to exist and work together
with human beings in everyday environments some day. In
doing so they need to be able to interact and cooperate
with humans. Interaction is facilitated if the robot behaves
in a human-like way which implies that his movements look
natural. This is not only advantageous for tasks involving
direct physical cooperation between humans and robots; even
if a robot acts independently his movements should appear
familiar and predictable to us humans. In addition to that,
it is probably also necessary for a robot to have a human-
like appearance to be accepted by society. Given the dynamic
character of the environment in which humanoid robots are
expected to work, they need to have a high degree of flexibility.
They need to be able to adapt to changes in the environment
and to learn new tasks continuously, and they are expected to
carry out a huge variety of different tasks. This distinguishes
them from industrial robots which normally only need to
perform a small number of rather primitive tasks in a static
environment. It seems impossible to create a humanoid robot
with built-in knowledge of all possible states and actions.
Therefore, there has to be way of teaching the robot new tasks.

Teaching a robot can be done in a number of ways, for
example by means of a robot programming language or a
simulation-based graphical programming interface. Another
method is “teaching by guiding”, where the instructor operates
a robot manipulator while its motion is recorded. The recorded
motions are then added to the robot’s action repertoire. Such
techniques are well-suited for industrial robots; however, in
the domain of humanoid robots, where robots are expected to
cooperate with unexperienced users, they suffer from several
drawbacks. They are lengthy, complex, inflexible, require

special programming skills or costly hardware [1]. That con-
tradicts the purpose of humanoid robots which is to make life
easier for us. It is essential that the control of such robotswill
not be too difficult and time-consuming.

An approach that addresses both issues (human-like motion
and easy teaching of new tasks) isImitation Learning: It
facilitates teaching a robot new tasks and at the same time
make the robot move like a human. Imitation learning is
basically the concept of having a robot observe a human
instructor performing a task and imitating it when needed.
Robot learning by imitation, also referred to asprogramming
by demonstration has been dealt with in the literature as a
promising way to teach humanoid robots and several imitation
learning systems and architectures based on the perception
and analysis of human demonstrations have been proposed
[2]–[7]. In most architectures, the imitation process proceeds
through three stages: perception/analysis, recognition and re-
production [8]. An overview of the basic ideas of imitation
learning in robots as well as humans is given by Schaal in [9].

In this paper we focus on a simple form of imitation: A
movement is demonstrated to a robot multiple times by a
human instructor, subsequently generalized (using the data
from all demonstrations) and finally reproduced by the robot
without trying to infer the goal of the movement. As described
in Section III, we have not yet reproduced movements on
a robot but instead simulated the reproduction stage using a
software model that we created for this purpose.

Our work was largely inspired by previous work of Calinon
and Billard. In [5] and [10], they describe an approach to
imitation learning that makes use of Hidden Markov Models
(HMM) [11] to learn and reproduce movements demonstrated
by a human instructor multiple times (while HMM have
become very popular for therecognition of gestures or speech,
they have not been widely used for thereproduction of
movements). After the hand path and joint angle trajectories
have been perceived, the data is reduced to a subset of
critical features in a preprocessing stage using certain criteria
(see [10]). Separate HMM (one for the hand path and one
for each joint angle trajectory) are trained with those “key
points”. The HMM are subsequently used to recognize further
demonstrations of the same movement as well as to imitate
the demonstrated task.



II. OUR APPROACH

We implemented a similar approach as in [10] for dual-arm
movements that also uses HMM to imitate movements shown
to a robot multiple times. In our method, however, the data is
preprocessed in a slightly different way, and, more importantly,
not all states of the resulting HMM are used to reproduce
movements. Instead, we try to identify characteristic features
that can be observed in all (or many) demonstrations and only
consider those when reproducing a movement. We also show
how those common features can be used to detect possible
temporal interdependencies between both arms in dual-arm
tasks. Moreover, we track the orientation of the hand and
not just its position, since the correct orientation is essential
for carrying out complex tasks. In contrast to [5], we do
not, however, try to determine which features of a movement
(hand path, joint angles etc.) are most relevant for the correct
imitation of a task.

We use three different HMM for each arm, one to encode the
position of the TCP (Tool Center Point, a reference point on
the hand), i.e. the hand path, with the Cartesian coordinates
being represented by three-dimensional output distributions,
one for the orientation of the TCP (described by three angles)
and another one for the joint angle trajectories where the
dimension of the output distributions is equal to the numberof
observed joint angles (in our case, 7; see Section III). Those
HMM are denoted byλp, λo andλj .

A. Preprocessing: Detection of characteristic features

A recorded movement is represented by a set of
time-discrete sequences: Per arm there is one sequence
Pd,1, Pd,2, . . . , Pd,l(d) that describes the positions of the TCP
over time, one sequenceOd,1, Od,2, . . . , Od,l(d) that describes
the orientations of the TCP, and seven more sequences
θ

j
d,1, θ

j
d,2, . . . , θ

j

d,l(d) that each specify the joint angle trajectory
of joint j (l(d) denotes the length of demonstrationd). We
omit the demonstration indexd whenever it is not needed
to distinguish between demonstrations.Pi and Oi are three-
dimensional vectors. As in [10], we detect characteristic fea-
tures of the perceived movement - key points - in a prepro-
cessing stage and only use those to train the HMM. In doing
so, we avoid having a high number of states and facilitate the
matching of (or between) multiple demonstrations (see II-C).
Those features are a subset of the aforementioned observation
sequences. Since we try to detect distinctive features, it should
still be possible to reconstruct the original movement well.

We detect key points separately for the position, orientation
and joint angles of each arm. We use different criteria than
[10] to identify key points, described as follows:

For joint angles, we use the following criterion: Letτd,m de-
note the time stamp of the m-th joint angle key point of demon-
strationd, i.e. its position in the sequenceθj

d,1, θ
j
d,2, . . . , θ

j

d,l(d).
Then θd,i = (θ1

d,i, . . . , θ
J
d,i), whereJ denotes the number of

joints, is the m-th key point of the joint angles (jKd,m, or just

Kd,m if the context is clear),τd,m = i, if and only if

∃j : θ̇
j
d,i = 0, i − τd,m−1 > ε1, |θ

j
d,i − θ

j
d,τd,m−1

| > ε2

∨ ∃j : |θj
d,i − θ

j
d,τd,m−1

| ≥ ε3, i − τd,m−1 > ε4,

|θj
d,n − θ

j
d,τd,m−1

| < ε3 ∀n ∈ [i, τd,m−1)

That means that whenever for anyj, θ
j
d,i reaches an extremum

(i.e. changes direction) or stops changing, sufficient time(ε1)
has passed since the creation of the previous key point and
the joint angle ati differs from the angle atτd,m−1 by at
leastε2, a key pointKd,l is created. The second part of the
condition ensures that when an angle that has stayed the same
for some amount of time (ε4) starts changing again, a key point
is created as well. Figure 1 shows three different candidates for
key points that given appropriate thresholds could all satisfy
the above criterion. Any point betweenθb and θc, however,
would not be a key point.
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Fig. 1. Potential key points (left) and key point criterion (right)

For the orientation angles of the TCP (key pointsoK) the
same criterion is used, but with possibly different threshold
values (ε5 − ε8).

For TCP positions, we use a slightly different criterion. A
point Pd,i is a key pointpKd,m (or justKd,m) in the sequence
of pointsPd,1, . . . , Pd,l(d) if and only if

∠( ~Pd,i − ~Pd,i−1, ~Pd,i − ~Pd,i+1) < 180◦ − ε9

∨ || ~Pd,i − ~Pd,i−1|| < ε10, i − τd,m−1 > ε11,

|| ~Pi − ~Pd,τd,m−1
|| > ε12

∨ || ~Pd,i − ~Pd,τd,m−1
|| ≥ ε13, i − τd,m−1 > ε14,

|| ~Pd,n − ~Pd,τd,m−1
|| < ε15 ∀n ∈ [τd,m−1, i) ,

whereτd,m denotes the time stamp of the m-th position key
point of demonstrationd.

So if the angle between the vector that goes fromPi to
its predecessorPi−1 and the vector that goes fromPi to
its successorPi+1 is less than180◦ − ε9 (see Fig. 1),Pi is
considered a key point. In practice you would wantε9 to be
fairly high so that only sharp corners in the hand path would be
detected as key points. Also, as for the joint angle trajectories,
if the position remains unchanged for some time or starts
changing again, a key point is created as well. Reasonable
values forε1, . . . ε15 can be determined experimentally.

In [10] hand path key points are created only when there
is a change in X, Y or Z direction. However, there can
be significant changes in direction in a 3D path that do
not necessarily result in a reversed direction of any single



coordinate. Our criterion for the hand path has the advantage
that such key points are also detected because it takes the angle
into account.

B. HMM structure

As mentioned before, we use multiple HMM for different
kinds of observations (joint angles, TCP position, TCP ori-
entation). Each HMM is trained with the key points of all
demonstrations using the Baum-Welch algorithm for multiple
observations ( [12]). Each training sequence consists of the
key points of the respective demonstration.

For a given observation sequence, the Viterbi algorithm
(see [11]) returns the optimal state sequence of an HMM
with respect to that observation sequence, i.e. the sequence
of states most likely to generate that observation sequence.
Therefore, if used on an HMM with the key points of one
of the demonstrations as the observation sequence, the Viterbi
algorithm would yield a sequence of states that could be said
to correspond (in a probabilistic way) to the key points of the
observed movements. Of course, the key point corresponding
to a state might not occur in all demonstrations; a state could
very well represent a key point of only one demonstration.

Since the states of the HMM roughly correspond to the
key points, it seems reasonable to set the number of states
equal to the number of key points. However, we use mul-
tiple demonstrations to train the various HMM and each
demonstration might have different key points; therefore,the
HMM should have as many states as there are distinct key
points in all demonstrations. We do not know in advance,
though, which of the key points of different demonstrations
are equivalent, so we have to use an estimate for the number
of states. In our experiments, we set the number of states to
maxd k(d) · 2, wherek(d) denotes the number of key points
in demonstrationd.

This is of course not a very satisfying solution and we are
still working on this problem. The standard HMM architecture
that we use does not appear to be perfectly suited for our
approach. What we would like to have is a model that had
a certain number of main states for important key points that
appear in most demonstrations and that allowed for inserting as
many states as necessary in between those main states for key
points that appear in only one or only a few demonstrations. It
should also allow for skipping states that might be key points
in most but not all demonstrations. Profile HMM, a special
kind of HMM which are commonly used in bioinformatics to
align DNA sequences, have those properties [13]. However,
they use discrete output variables and we have yet to determine
how such an architecture could be used with continuous
variables and in the context of our method.

The HMM we use are left-right models [11], i.e. there are
no state transitions between two statesSi and Sj if j <= i.
That is because we want the models to reflect the sequence of
key points over time and thus it should not be allowed to go
backwards in time.

We use continuous HMM, with the output distribution in
each state representing whatever is encoded in the HMM (for

example, the TCP position or the angle of a specific joint) at
a certain time given by the time stamp of the corresponding
key point(s) (if multiple key points correspond to a state we
compute the average of their time stamps and associate that
average time stamp with the state).

The output probability is modeled by the density function of
a multivariate Gaussian distribution. We do not use mixtures
of such density functions - this is crucial if we want to use
the HMM to reproduce a generalized movement because we
consider the means of those functions to be the generalized
positions, orientation angles and joint angles (as explained also
in the next two paragraphs); as such, they have to be scalar
values.

Before the training takes place, the HMM are initialized
as follows: The initial state probabilitiesπi are set to equal
values that sum to 1. They are not particularly important since
they get changed quickly by the Baum-Welch algorithm. We
set the initial transition probabilitiesaij in such a way that
a transition from a stateSi to a stateSj is most likely for
j = i+1 and less likely the higherj − i gets. For the sake of
simplicity and to make the models more robust, our covariance
matrices covij of the multivariate Gaussian density functions
are diagonal matrices, which means covij = 0 for i 6= j. The
variances (covii) are initialized with high values. The means
µi are all initially set to0 (unlike in [10] we do not initialize
them with the key point values because we do not know in
advance which state corresponds to which key point).

C. Common key points

As described earlier, the states of the Hidden Markov Mod-
els represent key points of the demonstrations. A key point
may, however, only occur in some of the demonstrations. Thus,
the question arises which states of the HMM should be used
for the reproduction. In [10], the reproduction of a movement
is triggered by another demonstration of the same movement.
The Viterbi algorithm is then used to determine which states
of the HMM match the key points of that demonstration most
closely; those states are then used for the reproduction.

In our approach, however, the reproduction of a movement
is not necessarily triggered by another demonstration of
that same movement. We use only those key points for
the reproduction of a movement that are common to all
(or almost all) demonstrations and call them “common key
points”. The reason for that is that a key point of asingle
demonstration is not necessarily a characteristic featureof
the movement, in which case it would be reasonable not to
consider it for the reproduction. But how do we know what
key point in one demonstration corresponds to some key
point in another demonstration? This is a classic matching
problem which could for instance be solved by DP matching.
However, we actually use our HMM to match key points
across demonstrations. We use only those states of the HMM
for the reproduction that represent key points which are
shared by all (or almost all) demonstrations.



Formal definition: Let D denote the number of demonstra-
tions. A common key point is defined as a 3-tuple:

Cj = ((ij,1, . . . , ij,D), Tj , νj) ,

where(ij,1, . . . , ij,D) denotes the indices of the corresponding
key points of the different demonstrations. TheD-tupel
Tj = (τ1,ij,1

, . . . , τD,ij,D
) contains the time stamps of

those key points, while then-tuple νj = (ν1
j , . . . , νn

j )
describes the values of the trajectory to be reproduced (i.e.
joint angles wheren=number of joints, Cartesian coordinates
where n=3 or orientation angles wheren=3 as well) at
that common key point. It should be noted that those
values are not equal to the values of any key points; they
are the means of the HMM’s output density function of the
state that corresponds to the key points(K1,ij,1

, . . . ,KD,ij,D
).

Detection of common key points:For each demonstration
we have a list of key points:Kd,1, . . . , Kd,k(d), where d

denotes the number of the demonstration, andk(d) stands
for the number of key points. By using the Viterbi algorithm
on the HMM for each such sequence of key points, we get
the sequences of states that correspond best to those key
points (more precisely, the sequences of states that would most
likely output the key points). LetSd,j denote the state that
corresponds to thej-th key point of thed-th demonstration.
Common key points can then be detected as follows:

K1,ij,1
,K2,ij,2

, . . . ,KD,ij,D
form a common key point

Cj = ((ij,1, . . . , ij,D), Tj , νj)

⇔ S1,ij,1
= S2,ij,2

= . . . = SD,ij,D

So only those key points of one demonstration that correspond
to a state which also corresponds to key points in all other
demonstrations are considered common key points. In figure
2 the bold circles are the optimal state sequence returned by
the Viterbi algorithm for the key points of each demonstration.
For example,S4 corresponds to the key pointsK1,4, K2,3

andK3,2. Clearly, onlyS1, S4 andS5 represent common key
points here.
In general, some of the demonstrations are likely to be
erroneous, so it seems reasonable to ease the above constraint

Demonstration 2

Demonstration 1

Demonstration 3

S1

S1

S1 S2 S3 S4 S5

S5S4S3S2

S2 S3 S4 S5

Fig. 2. Identifying common key points -S1, S4 andS5 are the only states
representing common key points

by saying that it suffices if the majority (say, 4/5) of the
demonstrations have a key point that corresponds to the same
state.

Generating a generalized movement with common key
points: We can reproduce a generalized movement that is basi-
cally the average of all demonstrations and - more importantly
- only uses the common key points of all demonstrations, as
follows: We consider only those states of the HMM that cor-
respond to common key points; we then take the means of the
output density functions (PDFs) of those states (in order) and
what we get is a sequence of positions, orientations and joint
angles that can be used to reproduce the movement. However,
two issues remain to be resolved before the movement can
be regenerated from the common key points. First, what time
stamps should be associated with each of those common key
points? One possibility is to simply take the average of the
time stampsTj of all the key points that constitute a common
key point. Second, the positions and orientations are of no
use by themselves if we want to reproduce a movement on a
robot or a software model of the human body; they have to be
transformed to joint angles. That can be done with an inverse
kinematics algorithm.

D. Reproduction

The detection of common key points is performed separately
for each of the six HMM. Thus, we get sequences of points
that are not necessarily in lockstep; they do not have to occur
simultaneously. We interpolate between common key points to
solve that problem. For example, for each common joint angle
key point, we interpolate between the common position and
orientation key points closest in time to determine the TCP
position and orientation at the same time. That way we obtain
a sequence of common key points of which each common
key point has values for TCP position, TCP orientation and
all joint angles of both arms.

Since the common key points only describe characteristic
features of the trajectories and not the whole trajectories,
we also have to interpolate between them to obtain actual
trajectories that can be used to imitate a movement. Both spline
and linear interpolation can be used for that purpose (we have
only implemented linear interpolation so far).

So eventually we obtain time-discrete sequences for the
TCP position and orientation as well as for all joint angle
trajectories that each describe the movement at every pointin
time (using a certain sampling rate). The sequences of TCP
positions and orientation angles are then transformed to joint
angles with an inverse kinematics algorithm, so that they can
be used for the reproduction.

The resulting joint angle sequencesθ̂
j
i are different from

the joint angle sequencesθj
i that are obtained directly from

the joint angle HMM. A weighting factorω ∈ [0, 1] is used to
determine the relative influence ofθ̂

j
i andθ

j
i on the joint angles

θ̃
j
i that are used to generate the final motion to be executed

by the robot:



θ̃
j
i = ω ∗ θ

j
i + (1 − ω) ∗ θ̂

j
i

This weighting factor can be set by the user. Since the
joints of the robot are not usually totally equivalent to the
joints of the human demonstrator, the human joints have to
be mapped to the robot’s joints. This can be done in different
ways: One can try to approximate the joint angle trajectories
of the demonstrated movement as closely as possible, making
the imitation look natural. That way the hand path might
not be reproduced very well, though. Alternatively, one can
try to imitate the hand path as accurately as possible using
joint angles determined by an inverse kinematics algorithm
which might deviate strongly from the joint angle trajectories
perceived in the demonstration. The former is achieved by
using a weighting factor ofω = 1 while for the latter one
would setω to 0.

The whole process from perception to reproduction is
depicted in figure 3. As in [10], the HMM can of course also
be used to recognize (classify) movements. That has not been
the focus of our work, though.

Fig. 3. Overview on the entire approach from perception to reproduction

E. Temporal coordination

When imitating dual-arm movements, often certain con-
straints have to be satisfied. Dual-arm movements can be un-
coordinated or coordinated. No matter what method is chosen
for the reproduction, information about coordination between
the two arms can be very useful. There are various kinds
of coordination; one way to classify two-arm coordination
is to distinguish between temporal and spatial coordination.

Spatial coordination means that the position and orientation of
one hand is at least partially determined by the position and
orientation of the other hand. As opposed to that, temporal
coordination means that one arm must accomplish a certain
subgoal as moving the hand to a specific position before
the other arm may continue executing its movement. When
imitating a two-arm movement, such dependencies should
be detected and reproduced properly. For example, if with
your left hand you pour water from a bottle into a glass
that you hold in your right hand, you have to move the
glass to its correct position before you can start pouring. It
would be helpful if one could find out whether an observed
temporal relation is just coincidence or whether it constitutes
a necessary coordination. Multiple demonstrations allow you
to determine the likelihood of some temporal relation beinga
true coordination.

The HMM approach in conjunction with the common key
points introduced in this Section can be used to detect temporal
relations between characteristic points of the left hand path and
the right hand path that are unlikely to be coincidental.

Let (τ1,ir,1
, . . . , τD,ir,D

) be the time stamps of the key
points that form a common key pointCr of the right arm’s
movement and(τ1,il,1

, . . . , τD,il,D
) be the time stamps of

someCl of the left arm. Then we can conclude that most
likely there exists temporal coordination between the point
Cr andCl if in all demonstrationsCr is reached beforeCl -
or the other way round, i.e., if:

∀k :
(

τk,ir,k
< τk,il,k

∨ τk,ir,k
> τk,il,k

)

It could also be possible that both arms must reach some
points at the same time. That is accounted for by the following
additional criterion for temporal coordination (δ is fixed and
should be chosen close to zero):

∀k : |τk,ir,k
− τk,il,k

| < δ

Once again, detecting those temporal relations only requires
knowledge about common key points which may be acquired
without HMM and may thus be implemented independently
from the rest of our approach.

III. H UMAN K INEMATICS MODEL

The goal of the methods described in this paper is to
eventually have robots imitate human arm movements. To
achieve this, we need to be able to perceive and analyze
demonstrations, transform them to a robot joint representation
and reproduce them. To begin with, we have so far only
simulate the reproduction on a kinematic model of the human
upper body with 18 degrees of freedom (Fig. 4), where each
arm is modeled by nine DOFs: two in the inner shoulder
joint (sternoclavicluar), three in the outer shoulder joint (gleno-
humeral), two at the elbow and two at the wrist ( [14]).

To make imitation look natural, joint angles must be pre-
served as well as possible. However, measuring the joint angles
of a human demonstration requires a complex tracking system
(for example a marker-based system) which is not very usable
in everyday life. So instead, we have incorporated two different
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Fig. 4. The kinematics model of both arms

methods for the acquisition of the required data: a method
based on a magnetic tracking system, and a purely vision-
based markerless human motion capture system.

Using an easy to set up magnetic tracking system (Fast-
trak, www.polhemus.com), the position and orientation of
both hands can be tracked. The joint angles can then be
reconstructed using an approach based on neurophsychological
studies. In [15] and [16], Soechting and Flanders have shown
that arm movements are planned in shoulder-centered spherical
coordinates and suggest a sensorimotor transformation model
that maps the Cartesian wrist position to a natural arm pos-
ture using a set of representation parameters, which are the
upperarm elevation, the forearm elevation, the upperarm yaw
and the forearm yaw, respectively.

In neurophysiology evidence exists that arm and hand
postures are independent of each other. This means that one
can find the forearm and upper arm posture to match the hand
position and then determine the joint angles for the wrist to
match the hand orientation. In [17] we proposed a new al-
gorithm which incorporates the physiological observationinto
a closed-form solution of the inverse kinematics problem to
generate natural looking arm postures. For the reconstruction
of the arm joint angles, we geometrically derived equationsfor
the arm joint anglesθ3, . . . , θ9 in a closed form. The remaining
two shoulder jointsθ1 andθ2 supported by the arm kinematics
model can be set manually by the user. For more details the
reader is referred to [18].

The approach described in section II is based on the tracked
hand path as well as the seven reconstructed joint angles.

Recently, we have also developed a purely image-based
markerless human motion capture system [19], [20]. The input
of the system are stereo color images of size320 × 240
captured at 25 Hz, with two calibrated Dragonfly cameras
built-in into the head of the humanoid robot ARMAR III.
The input images are preprocessed, generating output for the
gradient cue, the distance cue, and an optional region cue, as
described in [20]. Based on the output of the image processing
pipeline, a particle filter is used for tracking the movements
in configuration space. The overall likelihood function to

Fig. 5. Illustration of the performance of the markerless humanmotion
capture system. Left: projection of the estimated configuration into the left
camera image. Right: 3D visualization of the estimated configuration with an
articulated human model.

compute the a-posteriori probabilities is formulated as:

p(z|s) ∝ exp
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,

wheres is the configuration to be evaluated,z is a general
denotation for the current observations i.e. the current input
image pair, andci ∈ R

3 with i ∈ {1, 2, 3} denotes the
triangulated 3D position of the hands and the head. The
function di(s, c) is defined as:

di(s, c) :=

{

|fi(s) − c|2 : c 6= 0

0 : otherwise
,

where n := dim(s) is the number of DOF of the human
model. The transformationfi : Rn → R3 transforms then-
dimensional configuration of the human model into the 3D
position of the left hand, right hand or head respectively, using
the forward kinematics of the human model. Thegm with
m ∈ {1, 2, ...,Mg} denote the intensity values in the gradient
image (which is derived from the input imagesz) at theMg

pixel coordinates of the projected contour of the human model
for a given configurations. This process is performed for both
input images using the calibration parameters of each camera.
For each image pair of the input sequence the output of the
system is the estimation of the particle filter, given by the
weighted mean over all particles. A detailed description is
given in [20].

In contrast to the acquisition method based on the magnetic
tracking system, the joint angle valuesθ3, θ4, θ5, andθ6 are
calculateddirectly and therefore the position of the elbow does
not have to be approximated based on empirical studies but is
determined explicitly.

IV. EXPERIMENTS

We used the kinematic model described in the previous sec-
tion to conduct several experiments. We tested the preprocess-
ing, generalization and reproduction stages of our approach
with three different dual-arm movements:

• pick-and-place task: we picked up a box with both arms,
moved it to the right and put it down again

• pouring motion: we poured water from a bottle held by
the left hand into a glass that was held by the right hand



• unscrewing motion: we unscrewed the lid of a jar
(a complex motion that is different every time it is
demonstrated; this did not work too well with our
system)

The joint angles were obtained from the position of the
hand using the algorithm based on findings in [15] and [16]
as described in the previous Section. Our kinematic model was
clearly capable of computing natural looking joint angles that
way. For our experiments, we used the model to simulate the
imitation of movements. We were able to display the simulated
movement using a visualization of the human upper body
that we created with OpenInventor and combined with our
kinematics model. We implemented our own HMM for this
system and did not make use of existing HMM toolbox.

Each of the movements mentioned above was demonstrated
between five and ten times by the same person. Select training
samples as well as the reproduced (generalized) hand path
for the pick-and-place task are shown in Figure 6. It can be
seen how the generalized trajectory is interpolated linearly
between the common key points that were found using all
demonstrations.
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Fig. 6. Pick and place task: Training samples and the generalized trajectory
for ω = 0

Figure 7 shows only the reproduced trajectory of the left
hand, but for three differentω. As expected, if the reproduction
is based on joint angles and not only on the observed hand
path (ω = 1 or ω = 0.5), the hand path becomes somewhat
erratic. On the other hand, however, the reproduced movement
seems more realistic and less artificial in that case which can
be explained by the fact that more key points are created for
joint angle trajectories than for the hand path (a joint angle key
point is generated each timeany joint changes its direction).
If you used spline interpolation between key points insteadof
linear interpolation, you would probably obtain more realistic
looking trajectories forω = 0 as well.

In Figure 8, the original joint angle trajectory of joint
θ7 (left arm, see also Figure 4) of one randomly selected
demonstration (solid line) as well the generalized trajectory
of that joint for ω = 0 (dotted line) andω = 1 (dashed
line) are shown. Forω = 0 the spike at aboutt = 20s is
ignored because obviously no key point is detected in the hand
path at that point in time. The key points detected in one of
the demonstrations are shown in Figure 9 which seems to be
what one would expect (characteristic features, i.e. significant
changes in direction, have been detected).
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Figure 10 shows the key points detected in a training sample
of the pouring motion. One of the key points is not a common
key point, though, and will thus not be considered for the
imitation of the movement.

Table I shows the temporal relations that were identified
between the common key points of both arms. The numbers in
the precondition column specify for each arm which common
key point the other arm’s hand must reach before the motion
can be continued. Before the left hand is allowed to proceed
to the third common key point, the right hand has to reach its
second common key point, which is what one would expect.



CKP pre-condition CKP pre-condition
(right) (left) (left) (right)

1 1 1
2 1 2
3 3 2
4 3 4
5 6 5

6
7

TABLE I

TEMPORAL RELATIONS BETWEEN COMMON KEY POINTS OF THE ARMS

Of course, a few other relations that might not be critical for
the correct execution of the task were detected as well.

V. D ISCUSSION, CONCLUSIONS AND FUTURE WORK

We presented an HMM-based approach for imitation learn-
ing of arm movements in humanoid robots. HMM are used to
generalize movements demonstrated to a robot multiple times.
Common key points in all demonstrations are identified and
used for the reproduction of the movements. The results we
obtained using a software model specifically created for this
purpose show that our approach is an encouraging step in the
effort to teach a robot new tasks in a flexible and natural way.

We would like to mention once again the work of Calinon
and Billard in [5] and [10] due to the similarity to parts
of our work. However, while our work was clearly inspired
by their method, only the basic ideas are based on it. We
have introduced new aspects such as the detection of common
key points and identifying temporal coordination between two
arms and use a different preprocessing method. The kinematic
models presented in Section III are also part of the contribution
of this paper.

So far, we have only simulated generating generalized
trajectories, using a kinematic model of the human arms. A
natural next step would be the reproduction of movements on
the humanoid robot ARMAR-III. That would involve mapping
the joints of our kinematic model to those of the robot and
will be part of future work. Another aspect of our method that
should be improved is how the trajectories are encoded in the
HMM. As described in Section II, a generic HMM architecture
does not seem to be ideal for our approach.

Also, our system is not invariant to translations or rotations
yet, a highly desirable property for any imitation learning
system to be used in practice.

Furthermore, it seems essential for the accurate imitationof
tasks to take into account objects that are manipulated during
the demonstration. Not only do we need to make sure that
an imitated movement results in the same manipulation of an
object as the demonstrated movement, but considering objects
would also be a significant step towards recognizing the goal
of a task, which we have not attempted to do yet but which
is clearly an important aspect of imitation learning.
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