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Abstract— In this paper, we deal with imitation learning of arm  special programming skills or costly hardware [1]. That-con
movements in humanoid robots. Hidden Markov Models (HMM)  tradicts the purpose of humanoid robots which is to make life

are used to generalize movements demonstrated to a robot gagjer for us. It is essential that the control of such rofdits
multiple times. They are trained with the characteristic features - . .
not be too difficult and time-consuming.

(key points) of each demonstration. Using the same HMM, key
points that are common to all demonstrations are identified; only An approach that addresses both issues (human-like motion
those are considered when reproducing a movement. We a_Isoand easy teaching of new tasks) lisitation Learning: It
show how HMM can be used to detect temporal dependencies _ .. . .
between both arms in dual-arm tasks. We created a model of the facilitates teaching a r°t?°t new tasks a“‘?‘ a.t the same tlme
human upper body to simulate the reproduction of dual-arm Make the robot move like a human. Imitation learning is
movements and generate natural-looking joint configurations basically the concept of having a robot observe a human
from tracked hand paths. Results are presented and discussed. jnstructor performing a task and imitating it when needed.
| INTRODUGTION Robot Iearnin_g by imitation, also referrgd to m)gramming

by demonstration has been dealt with in the literature as a

Humanoid robots are expected to exist and work 10geth§imising way to teach humanoid robots and several imitatio

with human beings in everyday environments some day. yming systems and architectures based on the perception
doing so they need to be able to interact and cooperafty analysis of human demonstrations have been proposed
with humans. Interaction is facilitated if the robot behav 2]-[7]. In most architectures, the imitation process |
in a human-like way which implies that his movements lo;Iﬁrough three stages: perception/analysis, recognitizhra-

natural. This is not only advantageous for tasks involving.oqction [8]. An overview of the basic ideas of imitation
direct physical cooperation between humans and robots; eyg.

, ’ , arning in robots as well as humans is given by Schaal in [9].
if a robot acts independently his movements should appear ) ) o
familiar and predictable to us humans. In addition to that, N thiS paper we focus on a simple form of imitation: A
it is probably also necessary for a robot to have a humdRovement is demonstrated to a robot multiple times by a

like appearance to be accepted by society. Given the dynafitan instructor, subsequently generalized (using the dat

character of the environment in which humanoid robots afé@m all demonstrations) and finally reproduced by the robot

expected to work, they need to have a high degree of ﬂe)y-bi”ﬁ/vithout trying to infer the goal of the movement. As desctibe

They need to be able to adapt to changes in the environmi&hiSection lll, we have not yet reproduced movements on

and to learn new tasks continuously, and they are expectedt§°P0t but instead simulated the reproduction stage using a

carry out a huge variety of different tasks. This distingeis SOftware model that we created for this purpose.
them from industrial robots which normally only need to Our work was largely inspired by previous work of Calinon
perform a small number of rather primitive tasks in a stat@and Billard. In [5] and [10], they describe an approach to
environment. It seems impossible to create a humanoid roliitation learning that makes use of Hidden Markov Models
with built-in knowledge of all possible states and actiongHMM) [11] to learn and reproduce movements demonstrated
Therefore, there has to be way of teaching the robot new.taskg a human instructor multiple times (while HMM have
Teaching a robot can be done in a number of ways, foecome very popular for threcognition of gestures or speech,
example by means of a robot programming language ortteey have not been widely used for theproduction of
simulation-based graphical programming interface. Aaothmovements). After the hand path and joint angle trajecsorie
method is “teaching by guiding”, where the instructor opesa have been perceived, the data is reduced to a subset of
a robot manipulator while its motion is recorded. The reedrd critical features in a preprocessing stage using certaierier
motions are then added to the robot’s action repertoireh Susee [10]). Separate HMM (one for the hand path and one
techniques are well-suited for industrial robots; howewer for each joint angle trajectory) are trained with those “key
the domain of humanoid robots, where robots are expectedpmints”. The HMM are subsequently used to recognize further
cooperate with unexperienced users, they suffer from abvedlemonstrations of the same movement as well as to imitate
drawbacks. They are lengthy, complex, inflexible, requitthe demonstrated task.



II. OUR APPROACH K, if the context is clear)7q,,, = ¢, if and only if
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We implemented a similar approach as in [10] for dual-arm
movements that also uses HMM to imitate movements shown  3j : |9§,i - ef;m o
to a robot multiple times. In our method, however, the data is ’
preprocessed in a slightly different way, and, more imptlya
not all states of the resuling HMM are used to reproducghat means that whenever for ajyé’, . reaches an extremum
movements. Instead, we try to identify characteristicfe#® (j e changes direction) or stops changing, sufficient t{em
that can be observed in all (or many) demonstrations and Oylys passed since the creation of the previous key point and
consider those when reproducing a movement. We also sh@i joint angle ati differs from the angle aty,,_1 by at
how those common features can be used to detect possjalgste,, a key pointK,, is created. The second part of the
temporal interdependencies between both arms in dual-gBhdition ensures that when an angle that has stayed the same
tasks. Moreover, we track the orientation of the hand apgy some amount of time:() starts changing again, a key point
not just its position, since the correct orientation is B88€ s created as well. Figure 1 shows three different candidate
for carrying out complex tasks. In contrast to [5], we d@ey points that given appropriate thresholds could allsati

not, however, try to determine which features of a movemegie apove criterion. Any point betweeh and 6,, however
(hand path, joint angles etc.) are most relevant for theecorryouid not be a key point.

imitation of a task.

We use three different HMM for each arm, one to encode thé
position of the TCP (Tool Center Point, a reference point on
the hand), i.e. the hand path, with the Cartesian coordinate
being represented by three-dimensional output distobgti
one for the orientation of the TCP (described by three afgles oy O
and another one for the joint angle trajectories where th
dimension of the output distributions is equal to the nundfer - t X
observed joint angles (in our case, 7; see Section Ill). 10S [y 1 potential key points (left) and key point criteriaight)
HMM are denoted by\,, A\, and \;.
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For the orientation angles of the TCP (key poinfs) the
same criterion is used, but with possibly different thrégho
values €5 — eg).

A recorded movement is represented by a set ofFor TCP positions, we use a slightly different criterion. A
time-discrete sequences: Per arm there is one sequepe@t Py is a key pointpK, ., (or justKg,,,) in the sequence
Pu1,Pya, ..., Py that describes the positions of the TCRf points Py, ..., Py ) if and only if

A. Preprocessing: Detection of characteristic features

over time, one sequene®; 1,0q 2, - - -, 04,(q) that describes = - = - o

the orientations of the TCP, and seven more sequences 4(1}17,; — Faiv Fai = Paiv1) < 180° — €
9?171.,%2, el Ggu(d) that each specify the joint anglg trajectory v Hf:d,i - PdeH < €10, — Td;m—1 > €11,

of joint j (I(d) denotes the length of demonstratigh We I[P, — Piryo || > €12

omit the demonstration indeX whenever it is not needed
to distinguish between demonstratiord3. and O; are three- N o
dimensional vectors. As in [10], we detect characteristia- f [[Pa,n = Payrg || < €15 V0 € [Tam—1,17) ,
tures of the perceived movement - key points - in a preprga,
cessing stage and only use those to train the HMM. In doi int of demonstration.

so, we avoid having a high number of states and facilitate t €sg if the angle between the vector that goes frémto
matching of (or between) multiple demonstrations (see)ll-qtS predecesso,_; and the vector that goes from; to
Those features are a subset of the aforementioned observ: fls successor,, ; is less thanl80° — ¢, (see Fig. 1),P; is
sequences. Since we try to detect distinctive featurebpitlsl considered a key point. In practice you would waglttol be

still be possible to reconstruct the original movement well fairly high so that only sharp corners in the hand path woeld b
We detect key points separately for the position, orieotati yetected as key points. Also, as for the joint angle trajézso

and joint angles of each arm. We use different criteria thgnhe position remains unchanged for some time or starts

[10] to identify key points, described as follows: changing again, a key point is created as well. Reasonable
For joint angles, we use the following criterion: L&t,, de-  values forey, ... ;5 can be determined experimentally.

note the time stamp of the m-th joint angle key point of demon- |n [10] hand path key points are created only when there

strationd, i.e. its position in the sequenég ,, 6, ,....,0} ;- is a change in X, Y or Z direction. However, there can

Thenfq; = (6;,,--,0;,), where.J denotes the number of be significant changes in direction in a 3D path that do

joints, is the m-th key point of the joint anglesi(, ,,,, or just not necessarily result in a reversed direction of any single

\ HP;,Z _Pd,T(:m,lH Z 61372._7-03,m—1 > €14,

erety », denotes the time stamp of the m-th position key



coordinate. Our criterion for the hand path has the advantagxample, the TCP position or the angle of a specific joint) at
that such key points are also detected because it takesdhee an certain time given by the time stamp of the corresponding
into account. key point(s) (if multiple key points correspond to a state we

compute the average of their time stamps and associate that
B. HMM structure average time stamp with the state).

As mentioned before, we use multiple HMM for different The output probability is modeled by the density function of
kinds of observations (joint angles, TCP position, TCP org multivariate Gaussian distribution. We do not use mixdure
entation). Each HMM is trained with the key points of albf such density functions - this is crucial if we want to use
demonstrations using the Baum-Welch algorithm for muitipkhe HMM to reproduce a generalized movement because we
observations ( [12]). Each training sequence consists ®f thonsider the means of those functions to be the generalized
key points of the respective demonstration. positions, orientation angles and joint angles (as expthaiso

For a given observation sequence, the Viterbi algorithin the next two paragraphs); as such, they have to be scalar
(see [11]) returns the optimal state sequence of an HM{lues.
with respect to that observation sequence, i.e. the sequencBefore the training takes place, the HMM are initialized
of states most likely to generate that observation sequengg follows: The initial state probabilities; are set to equal
Therefore, if used on an HMM with the key points of ongajues that sum to 1. They are not particularly importantein
of the demonstrations as the observation sequence, th\Vitghey get changed quickly by the Baum-Welch algorithm. We
algorithm would yield a sequence of states that could be sajg the initial transition probabilities;; in such a way that
to correspond (in a probabilistic way) to the key points @& thy transition from a state; to a stateS; is most likely for
observed movements. Of course, the key pOint Correspondy"lg: i+1 and less ||ke|y the h|ghej_l gets_ For the sake of
to a state might not occur in all demonstrations; a statedcowimplicity and to make the models more robust, our covaganc
very well represent a key point of only one demonstration. matrices coy; of the multivariate Gaussian density functions

Since the states of the HMM roughly correspond to thgre diagonal matrices, which means gov 0 for i # j. The
key points, it seems reasonable to set the number of stajgfiances (coy) are initialized with high values. The means
equal to the number of key points. However, we use mul;; are all initially set to0 (unlike in [10] we do not initialize
tlple demonstrations to train the various HMM and eaCﬂhem with the key point values because we do not know in

demonstration mlght have different key pOintS; theref(blm'l‘, advance which state Corresponds to which key p0|nt)
HMM should have as many states as there are distinct key

points in all demonstrations. We do not know in advanc
though, which of the key points of different demonstrations’
are equivalent, so we have to use an estimate for the numbefAs described earlier, the states of the Hidden Markov Mod-
of states. In our experiments, we set the number of statesete represent key points of the demonstrations. A key point
maxy k(d) - 2, wherek(d) denotes the number of key pointsmay, however, only occur in some of the demonstrations. ,Thus
in demonstrationd. the question arises which states of the HMM should be used
This is of course not a very satisfying solution and we affer the reproduction. In [10], the reproduction of a movemen
still working on this problem. The standard HMM architeeturis triggered by another demonstration of the same movement.
that we use does not appear to be perfectly suited for oline Viterbi algorithm is then used to determine which states
approach. What we would like to have is a model that haf the HMM match the key points of that demonstration most
a certain number of main states for important key points thelbsely; those states are then used for the reproduction.
appear in most demonstrations and that allowed for inggetin ~ In our approach, however, the reproduction of a movement
many states as necessary in between those main states forikeyot necessarily triggered by another demonstration of
points that appear in only one or only a few demonstratians.that same movement. We use only those key points for
should also allow for skipping states that might be key mointhe reproduction of a movement that are common to all
in most but not all demonstrations. Profile HMM, a specigbr almost all) demonstrations and call them “common key
kind of HMM which are commonly used in bioinformatics topoints”. The reason for that is that a key point ofsiagle
align DNA sequences, have those properties [13]. Howeveemonstration is not necessarily a characteristic featdire
they use discrete output variables and we have yet to determithe movement, in which case it would be reasonable not to
how such an architecture could be used with continuogsnsider it for the reproduction. But how do we know what
variables and in the context of our method. key point in one demonstration corresponds to some key
The HMM we use are left-right models [11], i.e. there arpoint in another demonstration? This is a classic matching
no state transitions between two stafgsand S; if j <= 4. problem which could for instance be solved by DP matching.
That is because we want the models to reflect the sequencélofvever, we actually use our HMM to match key points
key points over time and thus it should not be allowed to gacross demonstrations. We use only those states of the HMM
backwards in time. for the reproduction that represent key points which are
We use continuous HMM, with the output distribution inshared by all (or almost all) demonstrations.
each state representing whatever is encoded in the HMM (for

Common key points



Formal definition: Let D denote the number of demonstraby saying that it suffices if the majority (say, 4/5) of the

tions. A common key point is defined as a 3-tuple: demonstrations have a key point that corresponds to the same
. . state.
Cj = (i1, +,15.0), Tj; )
where(i;1,...,i; p) denotes the indices of the correspondingenerating a generalized movement with common key

key points of the different demonstrations. THe-tupel points: We can reproduce a generalized movement that is basi-
T; = (T,,,, ---,TD,;») CoOntains the time stamps ofcally the average of all demonstrations and - more impdstant
those key points, while the:-tuple v; = (y]17 O only uses the common key points of all demonstrations, as
describes the values of the trajectory to be reproduced (ifellows: We consider only those states of the HMM that cor-
joint angles wherez=number of joints, Cartesian coordinategespond to common key points; we then take the means of the
where n=3 or orientation angles where=3 as well) at output density functions (PDFs) of those states (in orded) a
that common key point. It should be noted that those&hat we get is a sequence of positions, orientations and join
values are not equal to the values of any key points; thepgles that can be used to reproduce the movement. However,
are the means of the HMM’s output density function of thBvo issues remain to be resolved before the movement can
state that corresponds to the key poifhs ;, ,,..., Kp;, ,). De regenerated from the common key points. First, what time
stamps should be associated with each of those common key
Detection of common key points:For each demonstration points? One possibility is to simply take the average of the
we have a list of key pointsKy1, ..., Ky, whered time stampsl; of all the key points that constitute a common
denotes the number of the demonstration, afd) stands key point. Second, the positions and orientations are of no
for the number of key points. By using the Viterbi algorithmise by themselves if we want to reproduce a movement on a
on the HMM for each such sequence of key points, we geabot or a software model of the human body; they have to be
the sequences of states that correspond best to those tkapsformed to joint angles. That can be done with an inverse
points (more precisely, the sequences of states that woosdi mkinematics algorithm.
likely output the key points). Let, ; denote the state that
corresponds to thg-th key point of thed-th demonstration. D. Reproduction

Common key points can then be detected as follows: _ L
The detection of common key points is performed separately

Kii;,,Kai,,,---,Kp,, formacommon key point for each of the six HMM. Thus, we get sequences of points
Cj = ((ij1,--++15,0), Ty, v5) that are not necessarily in lockstep; they do not have toroccu

‘ N B ‘ simultaneously. We interpolate between common key points t
Aad Sl,ij,I = S2,i]’72 =...= SD,i]»7D

solve that problem. For example, for each common joint angle
So only those key points of one demonstration that correspdsey point, we interpolate between the common position and
to a state which also corresponds to key points in all otherientation key points closest in time to determine the TCP
demonstrations are considered common key points. In figyresition and orientation at the same time. That way we obtain
2 the bold circles are the optimal state sequence returnedéppequence of common key points of which each common
the Viterbi algorithm for the key points of each demonstnati key point has values for TCP position, TCP orientation and
For example,S, corresponds to the key points; 4, K>3 all joint angles of both arms.
and K3 ». Clearly, onlyS;, Sy and S5 represent common key Since the common key points only describe characteristic
points here. features of the trajectories and not the whole trajectpries
In general, some of the demonstrations are likely to hee also have to interpolate between them to obtain actual
erroneous, so it seems reasonable to ease the above aqunstiraijectories that can be used to imitate a movement. Bothespl
and linear interpolation can be used for that purpose (we hav
bemonstation 1 only implemented linear interpolation so far).
So eventually we obtain time-discrete sequences for the
TCP position and orientation as well as for all joint angle
trajectories that each describe the movement at every point
time (using a certain sampling rate). The sequences of TCP
positions and orientation angles are then transformeditd jo
angles with an inverse kinematics algorithm, so that they ca
be used for the reproduction.
The resulting joint angle sequencé$ are different from
the joint angle sequence® that are obtained directly from
the joint angle HMM. A weighting factow € [0, 1] is used to
determine the relative influence 6f andé’ on the joint angles
6! that are used to generate the final motion to be executed
by the robot:

Fig. 2. Identifying common key pointsS7, S4 and S5 are the only states
representing common key points



Spatial coordination means that the position and oriesriadf
0] =wx 0 +(1—w)x6 one hand is at least partially determined by the position and
. o ) orientation of the other hand. As opposed to that, temporal
This weighting factor can be set by the user. Since th@ordination means that one arm must accomplish a certain
joints of the robot are not usually totally equivalent to th%ubgoal as moving the hand to a specific position before
joints of the human demonstrator, the human joints have { other arm may continue executing its movement. When
be mapped to the robot’s joints. This can be done in diﬁeremﬁitaﬂng a two-arm movement, such dependencies should
ways: One can try to approximate the joint angle trajectorige detected and reproduced properly. For example, if with
of the demonstrated movement as closely as possible, mal%ﬁlr left hand you pour water from a bottle into a glass
the imitation look natural. That way the hand path mighfat you hold in your right hand, you have to move the
not be reproduced very well, though. Alternatively, one cafass to its correct position before you can start pouring. |
try to imitate the hand path as accurately as possible usigguid be helpful if one could find out whether an observed
joint angles determined by an inverse kinematics algorithﬂgmpora| relation is just coincidence or whether it congsi
which might deviate strongly from the joint angle traje@sr 5 pecessary coordination. Multiple demonstrations allou y
perceived in the demonstration. The former is achieved Ry getermine the likelihood of some temporal relation being
using a weighting factor ofv = 1 while for the latter one {rye coordination.
would setw to 0. The HMM approach in conjunction with the common key
The whole process from perception to reproduction isyints introduced in this Section can be used to detect teahpo
depicted in figure 3. As in [10], the HMM can of course als@g|ations between characteristic points of the left hartt pad
be used to recognize (classify) movements. That has not bggg right hand path that are unlikely to be coincidental.
the focus of our work, though. Let (714,,, ---» TD..,) be the time stamps of the key
points that form a common key poidt, of the right arm’s
movement and 7y, ,, ..., Tp,, ) be the time stamps of
some C; of the left arm. Then we can conclude that most
likely there exists temporal coordination between the poin
C, and(; if in all demonstrationg”,. is reached befor€); -
or the other way round, i.e., if:

vk (Tk;ir,k < Thyiy,, \ Thyire = Tkyil,k)

It could also be possible that both arms must reach some
points at the same time. That is accounted for by the follgwin
additional criterion for temporal coordination (s fixed and
should be chosen close to zero):

Vk : |Tk7i7‘,k - Tk7i1,k| <90

Once again, detecting those temporal relations only regquir
knowledge about common key points which may be acquired
without HMM and may thus be implemented independently
from the rest of our approach.

I1l. HUMAN KINEMATICS MODEL

The goal of the methods described in this paper is to
eventually have robots imitate human arm movements. To
achieve this, we need to be able to perceive and analyze
demonstrations, transform them to a robot joint representa

Fig. 3. Overview on the entire approach from perception waduction and reproduce them. To begin with, we have so far only
simulate the reproduction on a kinematic model of the human
upper body with 18 degrees of freedom (Fig. 4), where each
arm is modeled by nine DOFs: two in the inner shoulder

When imitating dual-arm movements, often certain coneint (sternoclavicluar), three in the outer shoulder {ggieno-
straints have to be satisfied. Dual-arm movements can be anomeral), two at the elbow and two at the wrist ( [14]).
coordinated or coordinated. No matter what method is choserifo make imitation look natural, joint angles must be pre-
for the reproduction, information about coordination betw served as well as possible. However, measuring the joideang
the two arms can be very useful. There are various kindéa human demonstration requires a complex tracking system
of coordination; one way to classify two-arm coordinatioiffor example a marker-based system) which is not very usable
is to distinguish between temporal and spatial coordinatioin everyday life. So instead, we have incorporated two ciffié

E. Temporal coordination



Fig. 5. lllustration of the performance of the markerless humastion
capture system. Left: projection of the estimated configonatnto the left
camera image. Right: 3D visualization of the estimated corditm with an
articulated human model.

Fig. 4. The kinematics model of both arms compute the a-posteriori probabilities is formulated as:

3 My
1{1 1 1
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methods for the acquisition of the required data: a methgéz|s) . eXp{ 2 (03 ; (8,00 + ag( M, mZ:lg )) }
based on a magnetic tracking system, and a purely vision-

based markerless human motion capture system. wheres is the configuration to be evaluatesljs a general
Using an easy to set up magnetic tracking system (Fagknotation for the current observations i.e. the curreptiin
trak, ww. pol henus. com), the position and orientation of image pair, ande; € R* with i € {1,2,3} denotes the

both hands can be tracked. The joint angles can then tangulated 3D position of the hands and the head. The
reconstructed using an approach based on neurophsyctallogunction di(s,c) is defined as:

studies. In [15] and [16], Soechting and Flanders have shown

i i fi(s) —¢cl* : c#0
that arm movements are planned in shoulder-centered spheri di(s,c) := 0 | otherwi ,
coordinates and suggest a sensorimotor transformatioreimod - orherwise
that maps the Cartesian wrist position to a natural arm poshere n := dim(s) is the number of DOF of the human

ture using a set of representation parameters, which are thedel. The transformatiorf; : R* — R? transforms then-
upperarm elevation, the forearm elevation, the upperamm yaimensional configuration of the human model into the 3D
and the forearm yaw, respectively. position of the left hand, right hand or head respectiveding

In neurophysiology evidence exists that arm and hanide forward kinematics of the human model. Thg with
postures are independent of each other. This means that ene {1,2,..., M,} denote the intensity values in the gradient
can find the forearm and upper arm posture to match the hanthge (which is derived from the input image} at the 1/,
position and then determine the joint angles for the wrist {sixel coordinates of the projected contour of the human rhode
match the hand orientation. In [17] we proposed a new &br a given configuratios. This process is performed for both
gorithm which incorporates the physiological observaiitio input images using the calibration parameters of each @amer
a closed-form solution of the inverse kinematics problem or each image pair of the input sequence the output of the
generate natural looking arm postures. For the recongiructsystem is the estimation of the particle filter, given by the
of the arm joint angles, we geometrically derived equations weighted mean over all particles. A detailed description is
the arm joint angle8s, . . ., § in a closed form. The remaining given in [20].
two shoulder joint®); andd, supported by the arm kinematics In contrast to the acquisition method based on the magnetic
model can be set manually by the user. For more details tinacking system, the joint angle valuésg, 04, 05, andfg are
reader is referred to [18]. calculateddirectly and therefore the position of the elbow does

The approach described in section Il is based on the trackest have to be approximated based on empirical studies but is
hand path as well as the seven reconstructed joint angles. determined explicitly.

Recently, we have also developed a purely image-based
markerless human motion capture system [19], [20]. Thetinpu
of the system are stereo color images of s x 240 We used the kinematic model described in the previous sec-
captured at 25 Hz, with two calibrated Dragonfly camerdi9n to conduct several experiments. We tested the pregsece
built-in into the head of the humanoid robot ARMAR IlI.ing, generalization and reproduction stages of our approac
The input images are preprocessed, generating output or With three different dual-arm movements:
gradient cue, the distance cue, and an optional region sue, a. pick-and-place task: we picked up a box with both arms,
described in [20]. Based on the output of the image procgssin  moved it to the right and put it down again
pipeline, a particle filter is used for tracking the movensent « pouring motion: we poured water from a bottle held by
in configuration space. The overall likelihood function to  the left hand into a glass that was held by the right hand

IV. EXPERIMENTS
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« unscrewing motion: we unscrewed the lid of a jar o
(a complex motion that is different every time it is Z(mm) B
demonstrated; this did not work too well with our 100
system) oo

-200

-300

The joint angles were obtained from the position of the
hand using the algorithm based on findings in [15] and [16] a5
as described in the previous Section. Our kinematic mods| wa
clearly capable of computing natural looking joint angleatt
way. For our experiments, we used the model to simulate th&ig. 7. Generalized trajectory of the left hand for differealues ofw
imitation of movements. We were able to display the simadlate

movement using a visualization of the human upper body 97 (rad)
that we created with Openinventor and combined with our S I — 7
kinematics model. We implemented our own HMM for this Eis .
system and did not make use of existing HMM toolbox. 3T :
Each of the movements mentioned above was demonstrated b Y IR :
between five and ten times by the same person. Select training 03 1
samples as well as the reproduced (generalized) hand path S~ ]
for the pick-and-place task are shown in Figure 6. It can be 25 0T 3 @ 50
seen how the generalized trajectory is interpolated ligear time

between th_e common key points that were found using aI‘:ig. 8. The generated joint angle trajectory for jofht of the left arm
demonstrations.

z(mm)

-
100
100
-100

-100

-200
-500 -300

-200
-300

fig. 6. Pick and place task: Training samples and the gemecthtrajectory Fig. 9. All detected key points in the pick-and-place demigmn
orw=20
=
Figure 7 shows only the reproduced trajectory of the left 2m)

hand, but for three different. As expected, if the reproduction
is based on joint angles and not only on the observed hand
path (v = 1 or w = 0.5), the hand path becomes somewhat
erratic. On the other hand, however, the reproduced movemen
seems more realistic and less artificial in that case which ca
be explained by the fact that more key points are created for
joint angle trajectories than for the hand path (a joint arkgly
point is generated each tinamy joint changes its direction).
If you used spline interpolation between key points instefid
linear interpolation, you would probably obtain more retidi
looking trajectories fow = 0 as well. Figure 10 shows the key points detected in a training sample
In Figure 8, the original joint angle trajectory of jointof the pouring motion. One of the key points is not a common
0, (left arm, see also Figure 4) of one randomly selectday point, though, and will thus not be considered for the
demonstration (solid line) as well the generalized trajgct imitation of the movement.
of that joint for w = 0 (dotted line) andw = 1 (dashed Table | shows the temporal relations that were identified
line) are shown. Forw = 0 the spike at about = 20s is between the common key points of both arms. The numbers in
ignored because obviously no key point is detected in the haihe precondition column specify for each arm which common
path at that point in time. The key points detected in one &&y point the other arm’s hand must reach before the motion
the demonstrations are shown in Figure 9 which seems to ¢@ be continued. Before the left hand is allowed to proceed
what one would expect (characteristic features, i.e. gmit to the third common key point, the right hand has to reach its
changes in direction, have been detected). second common key point, which is what one would expect.

Fig. 10. All detected key points in the pouring motion
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