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Abstract

In order for humanoid robots to enter human-centred environments, it is indispensable to equip them with manipulative, perceptive and
communicative skills necessary for real-time interaction with the environment and humans. The goal of our work is to provide reliable and highly
integrated humanoid platforms which on the one hand allow the implementation and tests of various research activities and on the other hand the
realization of service tasks in a household scenario. In this paper, we present a new humanoid robot currently being developed for applications
in human-centred environments. In addition, we present an integrated grasping and manipulation system consisting of a motion planner for the
generation of collision-free paths and a vision system for the recognition and localization of a subset of household objects as well as a grasp
analysis component which provides the most feasible grasp configurations for each object.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Our current research interest is the development of
humanoid robots which safely coexist with humans, inter-
actively communicate with humans and usefully manipulate
objects in built-for-human environments. In particular, we
address the integration of motor, perception and cognition com-
ponents such as multimodal human–humanoid interaction and
human–humanoid cooperation in order to be able to demon-
strate robot manipulation and grasping tasks in a kitchen en-
vironment as a prototypical human-centred one [11]. Recently,
considerable research work has been focused on the develop-
ment of humanoid biped robots [9,1,14,27,24,4]. However, in
order for humanoid robots to enter human-centred environ-
ments, it is indispensable to equip them with manipulative,
perceptive and communicative skills necessary for real-time
interaction with the environment and humans. The goal of our
work is to provide reliable and highly integrated humanoid plat-
forms which on the one hand allow the implementation and
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tests of various research and on the other hand the realization
of manipulation and grasping tasks in a household scenario.

The paper is organized as follows. In Section 2, we
describe the different components of the humanoid robot, its
kinematics and sensor systems. Section 3 describes the control
architecture including its hardware and software modules. The
motion planning algorithms for generating of collision-free
paths are described in Section 4. In Section 5, the developed
and implemented vision algorithms for object recognition and
localization are described. The grasp analysis system which
provides the most feasible grasp configurations for each object
is presented in Section 6.

2. The humanoid robot ARMAR-III

In designing our robot, we desire a humanoid that closely
mimics the sensory and sensory-motor capabilities of the
human. The robot should be able to deal with a household
environment and the wide variety of objects and activities
encountered in it. Therefore, the humanoid robot ARMAR-III
(see Fig. 1) has been designed under a comprehensive view so
that a wide range of tasks (and not only a particular task) can
be performed. The upper body of the robot has been designed
to be modular and lightweight while retaining similar size and
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Fig. 1. The humanoid robot ARMAR-III with an active head with foveated vision, two arms and two five-fingered hands and a holonomic mobile platform.

Table 1
Specification of ARMAR-III

Weight 135 kg (incl. 60 kg battery)

Height 175 cm

Speed 1 m/s

DOF Eyes 3 Common tilt and independent pan

Neck 4 Lower Pitch, Roll, Yaw, upper Pitch

Arms 2 × 7 3 DOF in each shoulder, 2 DOF in each elbow, and 2 in each wrist

Hands 2 × 8 Five-fingered hands with 2 DOF in each Thumb, 2 DOF in each Index and Middle, and 1 DOF in each Ring and Pinkie.

Toros 3 Pitch, Roll, Yaw

Platform 3 3 wheels arranged in angles of 120◦

Actuator DC motors + Harmonic Drives in the arms, neck, eyes, torso and platform. Fluidic actuators in the hand.

Sensors Eyes 2 Point Grey (www.ptgrey.com) Dragonfly cameras in each eye, six microphones and a 6D inertial sensor (http://www.xsens.com).

Arms Motor encoders, axis sensors in each joint, torque sensors in the first five joints and 6D force–torque sensor
(http://www.ati-ia.com) in the wrist.

Platform Motor encoders and 3 Laser-range finders (http://www.hokuyo-aut.jp).

Power supply Switchable 24 V Battery and 220 V external power supply.

Operating system Linux with the Real-Time Application Interface RTAI/LXRT-Linux.

Computers and
communication

Industrial PCs and PC/104 systems connected via Gigabit Ethernet and 10 DSP/FPGA control units (UCoM) which communicate
with the control PC via CAN bus.

User interface Graphical user interface (GUI) connected to the robot via wireless LAN and natural speech communication.

proportion as an average person. For the locomotion, we use
a mobile platform which allows for holonomic movability in
the application area. From the kinematics control point of view,
the robot consists of seven subsystems: head, left arm, right
arm, left hand, right hand, torso and a mobile platform. The
specification of the robot is given in Table 1. In the following
the subsystems of the robot are briefly described. For detailed
information the reader is referred to [4].

Head: The head has seven DOF and is equipped with two
eyes. The eyes have a common tilt and can pan independently.
Each eye is equipped with two digital colour cameras, one
with a wide-angle lens for peripheral vision and one with a
narrow-angle lens for foveal vision to allow simple visuo-motor
behaviours such as tracking and saccadic motions towards
salient regions, as well as more complex visual tasks such
as hand-eye coordination. The visual system is mounted on a
four DOF neck mechanism [2] (lower pitch, roll, yaw, upper

pitch). For the acoustic localization, the head is equipped with
a microphone array consisting of six microphones (two in the
ears, two in the front and two in back of the head). Furthermore,
an inertial sensor is installed in the head for stabilization control
of the camera images.

Upper body: The upper body of the robot provides 33 DOF:
14 DOF for the arms and three DOF for the torso. The arms
are designed in an anthropomorphic way: three DOF in the
shoulder, two DOF in the elbow and two DOF in the wrist.
Each arm is equipped with a five-fingered hand with eight DOF
(see [29]). In order to achieve a high degree of mobility and to
allow simple and direct cooperation with humans, the structure
(size, shape and kinematics) of the arms should has been
designed to be similar to that of the human arm. The goal of
performing manipulation tasks in human-centred environments
generates a number of requirements for the sensor system,
especially for that of the manipulation system. Each joint of
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Fig. 2. Hierarchical control architecture for coordinated task execution in humanoid robots: planning, coordination and execution level.

the arms is equipped with motor encoder, axis sensor and joint
torque sensor to allow position, velocity and torque control. In
the wrists 6D force/torque sensors are used for hybrid position
and force control. Four planar skin pads [15] are mounted to the
front and back of each shoulder, thus also serving as a protective
cover for the shoulder joints. Similarly, cylindrical skin pads are
mounted to the upper and lower arms respectively.

Mobile platform: There are several requirements for the
locomotion system of a humanoid robot: Mobility which is
necessary to extend the workspace of the robot and stability
which is most essential to insure humans safety. Therefore,
the locomotion of the robot is realized using wheel-based
holonomic platform, which allows for a high flexibility in our
kitchen application area. The holonomic locomotion is obtained
by using wheels with passive rolls at the circumference.
Such wheels are known as Mecanum wheels or Omniwheels.
In addition, a spring-damper combination is used to reduce
vibrations.

The sensor system of the platform consists of a combination
of three Laser-range-finders (Laser-scanner) and optical
encoders to localize the platform. The scanners are placed
at the bottom of the base plate 120◦ to each other. A scan

range of 240◦ per sensor allows complete observation of the
environment. The maximum scan distance is 4 m. A low scan
plane of 60 mm was chosen due to safety reasons to detect small
objects and foot tips. Optical encoders deliver a feedback about
the actual wheel speeds to the speed control, and serve as a
second input, together with the scanner data, to a Kalman–Filter
which estimates the position of the platform. The platform hosts
the power supply and the main part of the robot computer
system.

3. Robot control architecture

The control architecture is structured into the three following
levels: a task planning level, a synchronization and coordination
level and a sensor-motor level (see Fig. 2). A given task is
decomposed into several subtasks. These represent sequences
of actions the subsystems of the robot must carry out to
accomplish the task goal. The coordinated execution of
a task requires the scheduling of the subtasks and their
synchronization with logical conditions, external and internal
events [3]. Fig. 2 shows the block diagram of the control
architecture with three levels, global and active models and a
multimodal user interface.
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Fig. 3. The computer architecture: The used hardware is based on industrial standards and the developed Universal Controller Module (UCoM).

• The task planning level specifies the subtasks for the
multiple subsystems of the robot. This level represents the
highest level with functions of task representation and is
responsible for the scheduling of tasks and management
of resources and skills. It generates the subtasks for
the different subsystems of the robot autonomously or
interactively by a human operator. The generated subtasks
for the lower level contain the whole information necessary
for the task execution, e.g. parameters of objects to be
manipulated in the task or the 3D information about
the environment. According to the task description, the
subsystem’s controllers are selected here and activated to
achieve the given task goal.

• The task coordination level activates sequential/parallel
actions for the execution level in order to achieve the
given task goal. The subtasks are provided by the task
planning level. As it is the case on the planning level the
execution of the subtasks in an appropriate schedule can
be modified/reorganized by a teleoperator or user via an
interactive user interface.

• The task execution level is characterized by control theory
to execute specified sensory-motor control commands. This
level uses task specific local models of the environment and
objects. In the following we refer to those models as active
models:

• The active models (short-term memory) play a central role
in this architecture. They are first initialized by the global
models (long-term memory) and can be updated mainly
by the perception system. The novel idea of the active
models, as they are suggested here, is the ability for the
independent actualization and reorganization. An active
model consists of the internal knowledge representation,
interfaces, inputs and outputs for information extraction
and optionally active parts for actualization/reorganization
(update strategies, correlation with other active models or
global models, learning procedure, logical reasoning, etc.).

• The user interface provides in addition to graphical user
interfaces (GUIs) the possibility for interaction using natural
language. Telepresence techniques allow the operator to

supervise and teleoperate the robot and thus to solve
exceptions which can arise from various reasons.

Internal system events and execution errors are detected
from local sensor data. These events/errors are used as feedback
to the task coordination level in order to take appropriate
measures. For example, a new alternative execution plan can
be generated to react to internal events of the robot subsystems
or to environmental stimuli.

Computer architecture: The control architecture described in
Section 3 are realized using embedded Industrial PCs, PC/104
systems and DSP/FPGA modules, so called UCoM (Universal
Controller Module), which are responsible for the sensory-
motor control. The PCs are connected via switched Gigabit
Ethernet whereas the communication between the UCOMs and
the control PC is realized using four CAN buses to fulfil real-
time requirements of the task execution level. The connection
to a user interface PC is established by wireless LAN. An
overview over the structure of the computer architecture is
given in Fig. 3. The requirements of the task planning and task
coordination levels could be fulfilled with embedded Industrial
PCs and PC/104 systems. The requirements for the execution
level could not be met with off-the-shelf products. Therefore,
new control units (UCoM) consisting of a combination of a
DSP and an FPGA on one board have been developed. For more
details about the control boards can be found in [4].

Software environment: The computers are running under
Linux with the Real-Time Application Interface RTAI/LXRT-
Linux. For the implementation of the control architecture we
have used the framework MCA.1 It provides a standardized
module framework with unified interfaces. The modules can
be easily connected into groups to form more complex
functionality. These modules and groups can be executed
under Linux, RTAI/LXRT-Linux, Windows or Mac OS and
communicate beyond operating system borders. Moreover,
graphical debugging tools can be connected via TCP/IP to the

1 www.mca2.org.
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MCA processes, which visualize the connection structure of
the modules and groups. These tools provide access to the
interfaces at runtime and a graphical user interface with various
input and output entities.

4. Collision-free motion planning

A motion planner which can be used in a real-time
environment needs to accomplish several requirements. The
planner should be fast and the planned trajectories should be
adapted to a changing environment. Previous work that address
the problem of dynamic environments like [26] and [8] suffers
from several significant shortcomings and drawbacks. With
these approaches it is possible to realize a planner that is
able to react on dynamic obstacles, but they are not practical
for highly redundant robot systems like humanoid robots. To
deal with the complexity of motion planning problems we
rely on a multiresolutional planning system that is able to
task-dependently combine different planning algorithms with
varying detail levels of the robot. It is clear that a path planning
algorithm for a mobile platform can use a low resolution for
the hand models, e.g. by turning off the kinematic chain and
regarding the complete hand as one joint with a bounding
box. On the other hand, in the case of dexterous manipulation
and grasping tasks a higher resolution model of the hand is
necessary. In order to robustly execute the planned trajectories,
the visibility of the target objects is considered in the planning
phase. Therefore, the expected perception of a target object is
calculated by simulating the camera output and thus biasing
the RRT-based search toward regions where the robot will have
good visibility [19].

Guaranteeing collision-free paths: Since the high number
of degrees of freedom, our motion planning approaches
use sampling-based algorithms according to the Rapidly-
Exploring-Trees (RRTs) from LaValle and Kuffner [17,16]. In
all sampling-based approaches, the sampling resolution of the
configuration space (C-space) can be specified with a resolution
parameter. The choice of the resolution parameter affects the
quality of the result as well as the runtime of the algorithm.
If the resolution is too high, the runtime will be unnecessarily
long. On the other hand, with a low resolution, the planner
will run fast but might not consider some obstacles. Another
problem, that arises from sampling the C-space, is to guarantee
the collision-free status of a path between two configurations.
Regardless which sampling resolution is chosen, there is no
guarantee that the path between two neighbouring samples is
collision-free [26,32].

To overcome this problem Quinlan has introduced in [26] an
approach, which can be used to guarantee a collision-free path
between two C-space samples. Quinlan calculates bubbles of
free space around a configuration and therefore can guarantee a
collision-free path segment by overlapping these bubbles along
the segment. To retrieve the radius of the free bubbles, the
Quinlan method needs the minimum obstacle distance of the
robot in workspace. These calculations are time-consuming
and slow down the planning process, since a lot of distance
calculations are needed for path validation.

Using enlarged robot models: The long runtime of the free
bubble approach arises from the high number of workspace
distance calculations. With the enlarged model approach we
apply a method to guarantee a collision-free status of a path
without any distance computations. This results in a faster path
validation and thus in a speedup of the planning algorithm.
The enlarged models are constructed by slightly scaling up the
convex 3D models of the robot so that the minimum distance
between the surfaces of the original and the enlarged model
reaches a lower bounding dfreespace. Fig. 4 shows the original
collision model of the right arm and the transparent enlarged
models (dfreespace = 20 mm).

Planning with enlarged robot models: When using the
enlarged models for collision checking and the collision
checker reports a collision-free situation, a lower bound for
the obstacle distance of the original collision models can
be calculated. We can avoid the time-consuming distance
calculations by setting the obstacle distance to this lower bound.
Using the lower bound for the distance results in smaller free
bubble radii and thus in more sampling calculations along
a path segment. However, this overhead is compensated by
avoiding time-consuming distance calculations.

Lazy collision checking: In [28], a lazy collision checking
approach was presented, in which the collision checks for C-
space samples (milestones) and path-segments are decoupled.
We adapt the idea of lazy collision checking to speed
up the planning process and introduce a two-step planning
scheme [32]. In the first step the normal sampling-based RRT
algorithm searches a solution path in the C-space. This path
is known to be collision-free at the path points, but the path
segments between these points could result in a collision. In the
second validation step we use the enlarged model approach to
check the collision status of the path segments of the solution
path. If a path segment between two configurations ci and ci+1

fails during the collision test, we try to create a local detour
by starting a subplanner which searches a way around the C-
space obstacle (see Fig. 4). Thus we do not guarantee the
complete RRT to be collision-free on creation, instead we try to
give a collision-free guarantee of the sampling-based solution
afterward and reduce the costly guarantee checks to the path
segments.

Results: In Fig. 5 the planning setup is shown where the
planner has to find a trajectory for the right arm of ARMAR III.
The task of moving the arm with seven DOF from the left to
the right cupboard leads to situations where the robot has low
workspace clearance to operate. Therefore 6% of the solution
paths, generated by the purely sampling-based planner, result
in collisions in workspace. A planner using free bubbles to
guarantee the collision free execution of the solution increases
the average planning time from 3 to over 8 s. By using the
lazy collision check approach it is possible to find a guaranteed
collision-free solution in 2.5 s which is sufficient for real world
applications.
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Fig. 4. Motion planning using enlarged robot models. Simplified 3D model and enlargement of the right arm (left) and the validated collision path (right).

Fig. 5. The planning environment with the robot (left). Start and goal configuration of the arm with the solution paths (right).

5. Object recognition and localization

To allow the robot to perform the intended tasks in a
household environment, it is crucial for the robot to perceive
his environment visually. In particular, it must be able to
recognize the objects of interest and localize them with a high
enough accuracy for grasping. For the objects in the kitchen
environment, which we use for testing the robot’s skills, we
have developed two object recognition and localization systems
for two classes of objects: objects that can be segmented
globally, and objects exhibiting a sufficient amount of texture,
allowing the application of methods using local texture features.

Among the first class of objects are coloured plastic dishes,
which we chose to simplify the problem of segmentation, in
order to concentrate on complicated tasks such as the filling and
emptying of the dishwasher. Among the second class of objects
are textured objects such as tetrapacks, boxes with any kind of
food, or bottles, as can be found in any kitchen.

5.1. Recognition and localization based on shape

In the following, we give an outline of our approach
for shape-based object recognition and localization, in which
appearance-based methods, model-based methods and stereo
vision are combined. A 3D model of the object is used for
generating multiple views. A detailed description is given in [5].
Segmentation: For the proposed shape-based approach, the
objects have to be segmented. In the presented examples, this is

done by performing colour segmentation in HSV colour space
for coloured dishes. In order to use stereo vision, segmentation
is performed for the left and the right image. The properties
of the resulting blobs are represented by the bounding box, the
centroid of the region and the number of pixels being part of
the region. Using this information together with the epipolar
geometry, the correspondence problem can be solved efficiently
and effectively.

Region processing pipeline: Before a segmented region can
be used as input for appearance-based calculations it has to be
transformed into a normalized representation. For application
of Principle Component Analysis (PCA), the region has to be
normalized in size. This is done by resizing the region to a
squared window of 64 × 64 pixels with bilinear interpolation
while keeping the aspect ratio of the region. In the second
step, the gradient image is calculated for the normalized
window, which leads to a more robust matching procedure,
as shown in [5]. Finally, in order to achieve invariance to
constant multiplicative illumination changes, the signal energy
of each gradient image I is normalized (see [23,5]) to achieve
invariance to variations in the embodiment of the edges.

6D localization: Ideally, for appearance-based 6D localization
with respect to a rigid object model, for each object
training views would have to be acquired in the complete
six dimensional space i.e. varying orientation and position.
However, in practice it is not possible to solve the problem
in this six dimensional space directly within adequate time.

Please cite this article in press as: T. Asfour, et al., Toward humanoid manipulation in human-centred environments, Robotics and Autonomous Systems (2007),
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Fig. 6. Typical result of a scene analysis. Input image of the left camera (left) and 3D visualization of the recognition and localization result (right).

Therefore, we solve the problem by calculating the position and
the orientation independently in first place. A first estimate of
the position is calculated by triangulating the centroids of the
colour blobs. A first estimate of the orientation is retrieved from
the database for the matched view. Since the position influences
the view and the view influences the position of the centroids,
corrective calculations are performed afterwards. Details are
given in [5].

Convenient acquisition and real-time recognition: A suitable
hardware setup for the acquisition of the view set for an object
would consist of an accurate robot manipulator and a stereo
camera system. However, the hardware effort is quite high,
and the calibration of the kinematic chain between the head
and the manipulator has to be known for the generation of
accurate data. Therefore, we have used a 3D model of the
object to generate the views. By using an appearance-based
approach for a model-based object representation in the core of
the system, it is possible to recognize and localize the objects
in a given scene in real time—which is by far impossible with
a purely model-based method, as explained in [5]. To achieve
real-time performance, we use PCA to reduce dimensionality
from 64×64 = 4096 to 100. 3D models of rather simple shapes
can be generated manually. For more complicated objects we
use the interactive object modelling centre presented in [7]. In
Fig. 6, typical result of a scene analysis with the input images
and the 3D visualization of the recognition and localization are
shown.

5.2. Recognition and localization based on texture

In the following, we present our system for the recognition
and localization of textured objects, which builds on top of
the approach proposed in [18]. Details, in particular of our 6D
localization approach using stereo vision, are given in [6].

Feature calculation: Various texture-based 2D point features
have been proposed in the past. One has to distinguish between
the calculation of feature points and the calculation of the
feature descriptor. A feature point itself is determined by the
2D coordinates (u, v). Since different views of the same image
patch around a feature point vary, the image patches can not
be correlated directly. The task of the feature descriptor is to
achieve a sufficient degree of invariance with respect to the

potentially differing views. In general, such descriptors are
computed on the base of a local planar assumption.

We have tested three different features respectively
descriptors: Shi-Tomasi features and representing a patch by
a view set [22,33], the Maximally Stable Extremal Regions
(MSER) in combination with the Local Affine Frames (LAF) as
presented in [25], and the SIFT features [18]. Our experiences
with these features are described in [6].

The best results could be achieved with the SIFT features.
The SIFT descriptor is fully rotation invariant and invariant to
skew and depth to some degree. The feature information used
in the following is the position (u, v), the rotation angle ϕ and
a feature vector {x j } consisting of 128 floating point values.
These feature vectors are matched using a cross correlation. As
the SIFT features are gradient based, sharp input images with
high contrast lead to more features of high quality.

Object recognition: Given a set of n features {ui , vi , ϕi , {x j }i }

with i ∈ {1, . . . , n} and j ∈ {1, . . . , 128} that have been
calculated for an input image, the first task is to recognize which
objects are present in the scene. Simply counting the features
does not lead to a robust system since the number of wrong
matches increases with the number of objects. Therefore, it
is necessary to incorporate the feature positions with respect
to each other into the recognition process. The state-of-the-art
technique for this purpose is the general Hough transform. We
use a two dimensional Hough space with the parameters u, v;
the rotative information ϕ is used within the voting formula,
as described in [6]. After the voting procedure, instances of an
object in the scene are represented by maxima in the Hough
space.

2D localization: After having found an instance of an
object, the feature correspondences for this object are filtered
by considering only those ones that have voted for this
instance. For these correspondences (see Fig. 7), first, an affine
transformation is calculated with a least-squares method in an
iterative procedure. After the final iteration, a full homography
is calculated with the remaining correspondences to achieve
maximum accuracy. Using the homography instead of the affine
transformation throughout the whole iterative procedure does
not lead to a robust system, since the additional two degrees
of freedom make the least squares optimization too sensitive to
outliers.

Please cite this article in press as: T. Asfour, et al., Toward humanoid manipulation in human-centred environments, Robotics and Autonomous Systems (2007),
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Fig. 7. Correspondences between current view of the scene and training image. Only the valid features after the filtering process are shown. The blue box illustrates
the result of 2D localization. Input image (left) and training image (right). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Recognition and localization result for an exemplary scene. Input image (left) and 3D visualization of the result (right).

6D localization: The state-of-the-art technique for 6D localiza-
tion is to calculate the pose based on the correspondences be-
tween 3D model coordinates and image coordinates from one
camera image. This is usually done by using the POSIT algo-
rithm [10] or similar methods. The drawback is that the cor-
rectness of the calculated pose depends on the accuracy of the
2D correspondences only. In particular, the depth information
is very sensitive to small errors in the 2D coordinates of the
correspondences. The smaller the area is that the matched fea-
tures span in relation to the total area of the object, the greater
this error becomes. The inaccurate calculated homography for
the right object in Fig. 8 (left) illustrates this circumstance.
However, for a successful grasp, accurate depth information is
crucial. Therefore, our strategy is to make explicit use of the
calibrated stereo system in order to calculate depth information
with maximum accuracy. Our approach for cuboids consists of
the following steps:

• Determine highly textured points within the calculated 2D
contour of the object in the left camera image by calculating
Shi-Tomasi features [30] (which produces more suitable
features than SIFT for correlation in a standard stereo setup,
since scale invariance is not verified and not necessary).

• Determine correspondences with subpixel-accuracy in the
right camera image for the calculated points by using Zero
Mean Cross Correlation (ZNCC) in combination with the
epipolar geometry.

• Calculate a 3D point for each correspondence.

• Fit a 3D plane into the calculated 3D point cloud.
• Calculate the intersections of the four 3D lines through the

2D corners in the left camera image with the 3D plane.

The result of this algorithm are the 3D coordinates of the
four corners of the object’s front surface, given in the world
coordinate system. Occlusions are handled by performing the
fitting of the 3D plane with a RANSAC algorithm [12]. To offer
the same interface as for the subsystem presented in Section 5.1,
the 6D pose must be determined on the base of the calculated
3D corner points. For this purpose, a simple but yet accurate
3D model of a cuboid for the object is generated manually.
The pose of this model with respect to the static pose stored in
the file is determined by calculating the optimal transformation
between the calculated 3D corner points and the corresponding
3D corner points from the 3D model. This is done by using the
method proposed in [13].

6. Programming of grasping and manipulation tasks

The central idea of our approach for the programming and
execution of manipulation tasks is the existence of a database
with 3D models of all the objects encountered in the robot
workspace and a 3D model of the robot hand. This allows for an
extensive offline analysis of the different possibilities to grasp
an object, instead of focusing on fast online approaches. From
this central fact we have developed an integrated grasp planning
system, which incorporates a vision system for the localization
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Fig. 9. Functional description of the integrated grasp planning system.

and recognition of objects (Section 5), a path planner for
the generation of collision-free trajectories (Section 4) and an
offline grasp analyser that provides the most feasible grasp
configurations for each object. The results provided by these
modules are stored and used by the control system of the robot
for the execution of a grasp of a particular object. The functional
description of the grasp planning system is depicted in Fig. 9.
We emphasize that our approach describes a first step toward
a complete humanoid grasping and dexterous manipulation
system. The integrated grasp planning system, which has been
presented in [21], will be explained briefly in the following. The
system consists of the following parts:

• The global model database. It contains not only the CAD
models of all the objects, but also stores a set of feasible
grasps for each object. Moreover, this database is the
interface between the different modules of the system.

• The offline grasp analyser that uses a model of the object to
be grasped together with a model of the hand to compute a
set of stable grasps in a simulation environment. The results
of this analysis are stored in the grasp database and can be
used by the other modules.

• A online visual procedure to identify objects in stereo images
by matching the features of a pair of images with the 3D
prebuilt models of such objects. After recognizing the target
object it determines its location and pose. This information
is necessary to reach the object. This module is described in
Section 5.

• Once an object has been localized in the workspace of the
robot, a grasp type for this object is then selected from
the set of precomputed stable grasps. This is instanced to
a particular arm/hand configuration that takes into account
the particular pose and reachability conditions of the object.
This results in an approaching position and orientation. The
path planner generates collision-free trajectories to reach the
specified grasp position and orientation.

Offline grasp analysis: In most of the works devoted to grasp
synthesis, grasps are described as sets of contact points on
the object surface where forces/torques are exerted. However,
this representation of grasps suffer from several disadvantages
when considering the grasp execution in human-centred

Fig. 10. Schematics with the grasp descriptors.

environments. These problems arise from the inaccuracy and
uncertainty about the information of the object. Since we are
using models of the objects, this uncertainty comes mainly
from the location of the object. Usually, the contact-based grasp
description requires the system to be able to reach precisely the
contact points and exert precise forces. In our approach, grasps
are described in a qualitative and knowledge-based fashion.
Given an object, a grasp of that object will be described by the
following features (see Fig. 10):

• Grasp type: A qualitative description of the grasp to be
performed. The grasp type has practical consequences since
it determines the grasp execution control, i.e. the hand
preshape posture, the control strategy of the hand, which
fingers are used in the grasp, the way the hand approaches
the objects and how the contact information of the tactile
sensors is interpreted.

• Grasp starting point (GSP): For approaching the object, the
hand is positioned at a distant point near it.

• Approaching direction: Once the hand is positioned in the
GSP it approaches the object following this direction. The
approaching line is defined by the GSP and the approaching
direction.

• Hand orientation: the hand can rotate around the
approaching direction. The rotation angle is a relevant
parameter to define grasp configuration.
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Fig. 11. Hand preshapes for the five representative grasp types.

It is important to note that all directions are given
with respect to an object-centred coordinate system. The
real approach directions result from matching this relative
description with the localized object pose in the workspace
of the robot. An important aspect when considering an
anthropomorphic hand is how to relate the hand with respect to
the grasp starting point (GSP) and the approaching direction.
For this purpose we define the grasp centre point (GCP) of
the hand. It is a virtual point that has to be defined for every
hand and that is used as reference for the execution of a given
grasp (see Fig. 10). The GCP is aligned with the GSP of the
grasp. Then the hand is orientated and preshaped according to
the grasp descriptors and finally moves along the approaching
line.

A main advantage of this grasp representation is its
practical application. A grasp can be easily executed from the
information contained in its description, and is better suited
for the use with execution modules like arm path planning. In
addition, this representation is more robust to inaccuracies since
it only describes starting conditions and not final conditions like
a description based in contacts points.

We perform an extensive offline grasp analysis for each
object by testing a wide variety of hand preshapes and
approach directions. The analysis is carried out in a simulation
environment, where every tested grasp is evaluated according
to a quality criterion. The resulting best grasps for each object
are stored in order to be used during the online execution
on the robot. As grasping simulation environment we use
GraspIt! [20], which has convenient properties for our purposes
such as the inclusion of contact models and collision detection
algorithms, and the ability to import, use and define object and
robot models. Due to the mechanical limitations of the robot
hand, we have made a selection of the most representative
grasps that can be executed by the robot hand. Fig. 11 shows
the grasp patterns we have considered in our analysis. These are
three power grasps (hook, cylindrical and spherical) and two
precision grasps (pinch and tripod). A detailed description of
the grasp analysis in given in [21].

7. Conclusion

We have presented a new humanoid robot consisting of an
active head for foveated vision, two arms with five-fingered
hands, a torso and a holonomic platform. The robot represents
a highly integrated system suitable not only for research on
manipulation, sensory-motor coordination and human-robot
interaction, but also for real applications in human-centred
environments. We presented an integrated system for the
programming and execution of grasping and manipulation tasks
in humanoid robots. The system incorporates a vision system

for the recognition and localization of objects, a path planner for
the generation of collision-free trajectories and an offline grasp
analyser that provides the most feasible grasp configurations for
each object.

In the two German exhibitions CeBIT 2006 and Automatica
2006, we could present the currently available skills of
ARMAR-III. In addition to the robot’s abilities to perceive
its environment visually, we also showed how we can
communicate with the robot via natural speech. Among the
motor-skills we presented were the active tracking of objects
with the head, combining neck and eye movements according
to [31], basic arm reaching movements, early hand grasping
tasks and force-based control of the platform movements. All
skills were presented in an integrated demonstration.
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