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Abstract We present the development and evolution of the ARMAR humanoid
robots, which have been developed to perform grasping and manipulation tasks in
made-for-human environments, to learn actions and task knowledge from human
observation and sensorimotor experience and to interact with humans in a natural
way. We describe the mechatronics of the ARMAR robots, their grasping and learn-
ing capabilities and the underlying architecture.

1 Introduction

Humanoid robotics is an emerging and challenging research field, which has re-
ceived significant attention during the past years and will continue to play a central
role in robotics research and many applications of the 21st century. Regardless of
the application area, one of the common problems tackled in humanoid robotics is
the understanding of human-like information processing and the underlying mecha-
nisms of the human brain in dealing with the real world. Considerable progress has
been made in humanoid research resulting in a number of humanoid robots able to
move and perform well-designed tasks. Over the past decade in humanoid research,
an encouraging spectrum of science and technology has emerged that leads to the
development of highly advanced humanoid mechatronic systems endowed with rich
and complex sensorimotor capabilities. This includes WABOT-1, WABIAN-2 [52],
ASIMO [59], HRP-2[38], HRP-4C [40], HRP4 [39], KOBIAN [86], Twendy-
One [33], ARMAR [8], iCub [51], DB [11], CB [21], HUBO [46], Justin [83]
and TORO [53], NAO1, Toyota’s partner robot2, LOLA [47], REEM 3, DARwIn-
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OP4, Robonaut [2], PETMAN and ATLAS5, WALK-MAN [67], Valkyrie6, and
OceanOne [43] to name a few. Of major importance for advances of the field is with-
out doubt the availability of reproducible humanoid robot systems such as HRP-2,
NAO, iCub, HUBO and ATLAS which have been used in the last years as common
hardware and software platforms to support humanoids research. Ambitious goals
have been set for future humanoid robotics. They are expected to serve as compan-
ions and assistants for humans in daily life and as ultimate helpers in man-made
and natural disasters. In 2050, a team of humanoid robots soccer players shall win
against the winner of most recent World Cup 7. DARPA announced in 2012 the
next Grand Challenge in robotics: building robots which do things like humans in a
world made for humans 8. The research roadmap for humanoid robotics in the next
years could be structured around two major groups of disciplines: driving disciplines
which provide the ideas and motivation for research, and technological disciplines,
which provide the necessary enabling technologies.

One motivation for building robot systems with human-like body morphology,
i.e. humanoid robots, lies in the desire and need for versatile robot systems, which
– similar to humans – are able to act and interact in made-for-human environments,
to grasp and manipulate made-for-humans objects and tools. Another motivation is
the fact that robots with human-like behaviors will contribute to more intuitive and
fluent human-robot interaction as humans will better predict the robot’s action if the
robot behaves in a human-like way. From our perspective, the important research
directions and challenges toward complete humanoids robot systems are:

• Engineering high performance humanoid mechatronics with human like perfor-
mance regarding dexterity, speed, force capabilities, energy efficiency and com-
pliance.

• Strategies for the realization of versatile grasping and manipulation capabilities
in human-centered environments.

• Methods for learning motion primitives and task knowledge from human demon-
stration and sensorimotor experience to facilitate intuitive robot programming.

• Implementation of cognitive architectures which integrate perception, action,
planning, learning and interaction.

In the following we describe our progress in the area of humanoid robotics research
and development and present the ARMAR humanoid robot family and their capa-
bilities regarding grasping and manipulation, learning from human observation and
the underlying software architecture.

4 Robotis: http://www.robotis.com/xe/darwin_en
5 DARPA: https://en.wikipedia.org/wiki/DARPA_Robotics_Challenge
6 NASA: https://www.nasa.gov/feature/valkyrie
7 RoboCup:http://www.robocup.org/a_brief_history_of_robocup
8 DRC: https://en.wikipedia.org/wiki/DARPA_Robotics_Challenge
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2 The ARMAR robots

The ARMAR robots were developed within the Collaborative Research Center 588:
Humanoid Robots - Learning and Cooperating Multimodal Robots (SFB 588), a
large-scale research project funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) from 2001 until 2012 ([23]). All robots were real-
ized as humanoid robot systems with all the perceptual and computational compo-
nents which are needed to perform complex grasping, manipulation and learning
tasks in a kitchen environment without any external sensors and without any off-
board computing power.

Fig. 1: The humanoid robot ARMAR-I[6], ARMAR-II[7].

In 2000, the first humanoid robot in Karlsruhe was built and named ARMAR [6],
later ARMAR-I, which has 25 degrees of freedom (DoF) with two anthropomorphic
arms each having 7 DoF, a head with 3 DoF equipped with a stereo camera system,
two simple jaw grippers and a mobile wheel-driven platform with differential kine-
matics and a maximum velocity of about 1m/s. A torso with 4 DoF allows bending
forward/backward and sidewards as well as a yaw rotation of about 330◦. With a
prismatic joint in the torso it was possible to increase the total height of the robot
by 40cm. The weight of the robot was about 75kg including batteries. The goal was
to develop a humanoid robot, which is able to share its activity space with a human
partner. A kitchen environment was selected as an application area. In ARMAR-
I, position based control strategies, basic navigation using a 2D laser scanner and
early motion coordination strategies between the different sub-systems were imple-
mented. The control system of the robot was divided into the five subsystems head,
left arm, right arm, torso and mobile platform, whereas each subsystem had its own
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software and hardware controller module, which were implemented in the Modular
Controller Architecture (MCA) framework9.

In 2002, the second version of the ARMAR series, namely ARMAR-II, was
built [7, 24]. The kinematics in terms of body morphology and number of DoF was
similar to ARMAR-I. The major difference was the replacement of the jaw-grippers
with pneumatically driven five-finger fluid hands with 8 DoF each, which were origi-
nally developed as prosthesis hands [64, 65]. In addition, 6 DoF force/torque sensors
were integrated in the wrists to allow the implementation of force and position-based
control strategies. A three-level control architecture was developed to facilitate in-
tegration on conceptual and software integration. Within the architecture, a given
task is decomposed into several sub-tasks, representing the sequence of actions the
subsystems of the robot must perform to accomplish the task goal. The coordinated
execution of a task, the scheduling and synchronization of sub-tasks based on logi-
cal conditions, external and internal events was realized using petri nets as described
in [7].

Fig. 2: ARMAR-IIIa in the kitchen ([8, 10].

In 2006, the robot ARMAR-III was developed [8, 10], see Fig. 2. Based on the
experience gained in developing the first robots, a new design was realized with
improved mechatronics, sensor system and embedded control architecture with the
goal of performing tasks in a kitchen environment. The upper body has been de-
signed to be modular and light-weight while retaining similar size and proportion
as an average person. For the locomotion, a mobile platform was used to allow for
holonomic movability in the application area. Two years later, a second copy of the
robot, ARMAR-IIIb, was developed and featured minor improvements of the em-
bedded control architecture. Both robots have 43 DoF each. Each arm has 7 DoF and
is equipped with 8 DoF five-finger hand and 6 DoF force/torque sensor in the wrist.
Planar artificial skin pads [42] are mounted to the front and back of each shoul-
der and cylindrical artificial skin pads are mounted to the upper and lower arms.
The head has 7 DoF. The eyes have a common tilt and can pan independently and

9 www.mca2.org
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The Karlsruhe ARMAR Humanoid Robot Family 5

Fig. 3: The humanoid robot ARMAR-4 [9].

each eye is equipped with two digital color cameras, one with a wide-angle lens for
peripheral vision and one with a narrow-angle lens for foveal vision to allow sim-
ple visuo-motor behaviors [10]. The torso and the mobile base have 3 DoF each.
Similar to the previous versions, DC motors and harmonic drives were used in the
arms, head, torso and mobile base. Linux with the Real-Time Application Inter-
face RTAI/LXRT-Linux was used as operating system with MCA as software archi-
tecture. The computer architecture consists of industrial PCs and PC/104 systems
connected via Gigabit Ethernet and 10 DSP/FPGA control units (UCoM) which
communicate with the control PC via CAN bus. Details of the mechanical design
of the robot are described in [1]. The total weight of the robot is about 140kg with
about 70kg for two batteries. The software architecture of the robot is mainly im-
plemented in the MCA. Since 2013, new software modules are implemented within
the new software framework ArmarX10.

In 2012, the humanoid robot ARMAR-4 was developed, a biped humanoid robot
with 63 torque controlled DoF [9], see Fig. 3. The robot has 63 actuators, 214 sen-
sors, 76 microcontrollers for low-level control, 3 PCs for perception, high-level con-
trol and balancing, a weight of 70kg including batteries and total height of 170cm.
The head has 9 DoF and is equipped with two eyes and two cameras in each eye. The
eyes execute independent pan and tilt movements. The visual system is mounted
on a 5 DoF neck mechanism for lower and upper pitch, lower and upper roll and
yaw. The arms have been developed to increase dexterity in bimanual manipula-
tion tasks. Based on the human arm model developed in [3] and the manipulability

10 https://armarx.humanoids.kit.edu
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analysis [85] of the human arm kinematics, the inner shoulder joints (articulatio
sternoclavicularis) was implemented in addition to the standard 7 DoF in humanoid
arms. The design of the hand uses an improved version of the fluid actuators [29].
The hand has the size of a human hand and a weight of 450g. Each finger of the
hand has 2 DoF and the thumb can be moved in opposition, which results in 11 DoF
per hand. The hand sensor system consists of absolute joint position encoders and
air pressure sensors. The complete control electronics, sensors and valves have been
integrated in the hand. In designing the legs, the basic requirements were to have
a highly integrated design with advanced capabilities in terms of joint torques and
human-like walking styles. Each leg has 7 DoF: 3 DoF in the hip, 1 in the knee, 2 in
the ankle and 1 DoF at the toes. The structural parts are made of an aluminum alloy
and optimized using FEM-based CAE-optimization. Joints of the arms and legs are
realized by sensor-actuator units which integrate motor, harmonic drive, incremental
and absolute joint position measurements, torque and temperature. The underlying
software framework is ArmarX.

3 Grasping and Manipulation

One key research focus in the development of the ARMAR robots has always been
the realization of versatile grasping and manipulation capabilities. While the first
version ARMAR-I just had simple grippers, ARMAR-II was already equipped with
an anthropomorphic five-finger hand with fluidic actuators. Since then, five-fingered
hands were successfully used on all ARMAR robots. In combination with the an-
thropomorphic design of the arms, this design allowed performing dexterous single-
arm and bimanual grasping tasks in kitchen environments. From a conceptual point
of view we designed, implemented and evaluated a grasping pipeline which inte-
grates the required perceptual and planning components.

3.1 The ARMAR Grasping Pipeline

The ARMAR grasping pipeline integrates grasp and motion planning approaches
for single handed and bimanual tasks, and provides tools for intuitive programming
of grasping actions on objects as well as strategies for execution of planned actions
based on multi-sensory feedback, see Fig. 4. In the following, we describe several
key components of the pipeline. The pipeline consists of different modules which
are divided into offline and online modules. Offline components are used to pre-
compute and generate information that is required during online processing. This
involves the planning of feasible grasps based on prior object knowledge which is
stored in an object database [57, 76]. Manipulability and reachability metrics are
used to optimize the whole-body configuration and to support the online grasp se-
lection [73, 69]. The hand-eye calibration module is used to deal with perception
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Fig. 4: The ARMAR grasping pipeline.

and action uncertainty [68]. The online components cover the robot memory, per-
ception, planning, and execution components. The robot memory is used as a cen-
tral component to exchange information between the different parts of the software
architecture. This allows decoupling the perceptual processes from planning and ac-
tion execution which in particular eases the exchange of existing and the integration
of new components. The planning component is responsible for grasp selection [69],
inverse kinematics [70, 74], and planning of collision free motions [71]. The execu-
tion of grasping and manipulation motions is realized with a position-based visual
servoing approach [20], allowing to deal with inaccuracies and to adapt to chang-
ing environments in a reactive manner. In addition, visual collision detection [62]
is performed to generate corrective movements during grasp execution. The on-
line planning steps for an exemplary grasping task are depicted in Fig. 5. First, the
reachability inversion approach [72] is used to determine suitable robot positions

Fig. 5: Online planning of grasps based on precomputed manipulability information.
From the left tp the right: 1) The 3D scene representation and a 2D map of potential
robot positions for grasping. 2) Reachable grasps are colorized according to their
manipulability. 3) A collision-free grasping motion. 4) The target grasping pose.
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Fig. 6: Reachability and manipulability maps of ARMAR-III and ARMAR-4.

for grasping. Then, the most suitable grasp is selected based on the reachability and
manipulability information for the corresponding arm. The IK-problem is solved
when generating a collision-free whole-body target posture, which is used to plan a
collision-free grasping motion with sampling-based motion planning approaches.

To support grasp selection and inverse kinematics tasks, we developed explicit
representation of the robot’s workspace as described in [69]. The robot workspace
is represented by a 6D grid covering the positional and orientational parts of the
Cartesian space. Each grid cell contains quality information for reachability and
manipulability of a given kinematic chain of the robot. A visualization of this 6D
space of the right end-effector of ARMAR-III and ARMAR-4 is shown in Fig. 6.

Object Models, Visual Object Recognition and Localization

For object recognition, localization and grasping, we use object models consist-
ing of 3D geometric models, multi-view visual information and off-line generated
grasps. Daily kitchen objects were scanned and stored in the KIT object model
database [41] which is publicly accessible through a web interface11. The ARMAR
grasping pipeline utilizes this data in multiple ways. Beside visualization purposes,
the object models are used for grasp planning and collision detection. Additionally,
geometric and visual information is used for object recognition and localization. We
have developed two object recognition and localization systems for two classes of
objects: objects that can be segmented globally, and objects exhibiting a sufficient
amount of texture, allowing the application of methods using local texture features.
Among the first class of objects are colored plastic dishes and cups, where we com-
bine appearance-based methods, model-based methods and stereo vision for shape-
based object recognition and localization [15]. Among the second class of objects
are textured objects such as tetrapacks, boxes with any kind of food, or bottles, as

11 http://object-database.humanoids.kit.edu/

http://object-database.humanoids.kit.edu/
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Fig. 7: Object recognition of daily objects based on shape information and appear-
ance features.

can be found in any kitchen. For object recognition and localization of such objects,
we use a combination of the Harris corner detector and the SIFT descriptor [16].

Visually Guided Execution of Grasping Motions

To cope with the inaccuracies in perception, modeling and control, the execu-
tion of grasping motions is performed using a position-based visual servoing ap-
proach [77, 20]. By continuous visual observation of the current and the expected
position of the end effector w.r.t. the target object, the motion can be adapted to fol-
low the planned trajectory. An example of visually guided execution of single arm
grasping motions is shown in Fig. 8. The position-based visual servoing approach
has also been applied to loosely coupled bimanual tasks such as pouring juice and
tightly coupled bimanual tasks, such as manipulating a wok, see Fig. 8, as well as
for tasks involving physical interaction with the environment. In case of physical
interaction tasks such as opening the fridge, see Fig. 9, we combine visual and force
information to deal with uncertainties in perception and execution [82]. In addi-

Fig. 8: Visual servoing based execution of planned single arm tasks (top) and bi-
manual task (bottom).
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Fig. 9: Opening and closing the fridge and object hand-over from left hand to the
right hand.

tion, we developed a mechanism for gaze selection during bimanual manipulation
tasks, which accounts for accuracy requirements of the manipulation task by a new
saliency measure which allow for computing an optimized viewing angle for visual
servoing in bimanual grasping or re-grasping task [81].

Simultaneous Grasp and Motion Planning

As depicted in Fig. 4, grasping information is usually generated during an offline
step and the information is stored in a database. In addition to such offline ap-
proaches, which we used e.g. in [56], we developed an integrated approach to si-
multaneously plan feasible grasps and collision-free grasping motions [71]. The
GraspRRT planner combines the three main tasks needed for grasping an object:
building a feasible grasp, solving the inverse kinematics problem and searching for
a collision-free trajectory that moves the robot hand to the grasping pose. Therefore,
RRT-based algorithms are used to build a tree of reachable and collision-free con-
figurations. During RRT-generation, grasp hypotheses together with corresponding
approach movements are computed. The quality of reachable grasping poses is eval-
uated online via grasp wrench space analysis. In addition to single-handed grasping
motions, this approach is also capable of generating bimanual grasps together with
corresponding dual arm grasping motions, see Fig. 10.

Fig. 10: The GraspRRT approach for single-handed and bimanual tasks.
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Grasping Familiar Objects

The methods for object grasping and manipulation described above assume com-
plete knowledge about the objects. To relax these assumptions, we started working
on methods for grasping familiar objects, which exploit shape similarities of object
parts and transfer grasping knowledge to similar objects [76]. To this end, we group
similar objects to object categories and generate generalized grasping information
with high transferability rates, indicating that such grasps can be applied to similar
objects during online execution. We use a set of training models to generate grasping
information that can be successfully applied to all objects in a category. In addition,
objects are preprocessed in order to build a segmented mesh representation that al-
lows performing part-based grasp planning and semantic information is connected
to each segmented part. The approach allows grasping unknown objects if they be-
long to a trained object category and if the perception component is able to classify
them correctly. The concept is divided into a grasp planning phase and an online
phase in which grasping information is transferred to a novel object, see Fig. 11.
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Fig. 11: Part-based grasp planning is performed on multiple objects of an object
category. The resulting grasping information is evaluated according to the expected
transferability to novel objects. The grasping information is applied online to novel
objects which are segmented according to their RGB-D appearance.

In Fig. 12, a realistic use case with ARMAR-III is shown, where the robot is
supposed to grasp a novel but familiar object. This means that the object mesh has
not been used for generating the template grasps during offline grasp planning. Here,
we assume that the object category (hammer) as well as the environment is known.
Nevertheless, the actual shape of the object is not available but approximated based
on visual information from geometric primitives. With this approach we are also
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Fig. 12: A grasping task with a novel, but familiar object. The figure shows the
perceived point cloud, the matched shape primitives, the transferred grasp and the
xecution of the grasp on ARMAR-III.

able to identify and transfer task affordances as they are linked to the object parts.
This information is used to transfer the generalized grasping information.

3.2 Grasping and Manipulation of Unknown Objects

Grasping Unknown Objects

In addition to grasping known and familiar objects we developed methods for ac-
tive learning of objects by manipulation, which enables the discovery of objects in
visual scenes and the accumulation of information about them. By making use of
the robot’s manipulation capabilities, we introduce additional information that can
be utilized to reliably detect new, previously unknown objects and learn their visual
appearance and finally grasp them using reactive grasping with corrective move-
ments based on haptic feedback ([61, 60, 63]). In Fig. 13, ARMAR is in front of
complex, cluttered scene with previously unknown objects. To segment objects in
the scene, the robot generates object hypotheses based on the visual input following
some heuristics. These initial object hypotheses may correspond to actual objects,

Fig. 13: ARMAR-III pushing an object in a cluttered scene to segment it.
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but they may also cover only parts of an object or contain two or more different
objects. In order to verify and correct these hypotheses, the robot interacts with the
objects by pushing them to induce motion. This motion is then used as an additional
cue that helps to verify or discard the object hypotheses, to remove parts of them that
do not belong to the actual object and extend them to cover the object completely.
For details of the approach, the reader is referred to [61].

Manipulation in Unknown Environments

To enable humanoid robots to perform grasping and manipulation tasks in unknown
and/or dynamically changing environments, we investigated – inspired by the con-
cepts of affordances [31] and Object-Action Complexes (OACs), which was intro-
duced by the PACO-PLUS project 12 and described in [44] – methods for the defi-
nition of objects and the environment in terms of action and interaction possibilities
of the robot on them. In [18], affordance-based methods were applied in the context
of haptic exploration on unknown objects. In [35, 37], we generalized the approach
to loco-manipulation, i.e. tasks involving whole-body locomotion and manipula-
tion of a humanoid robot, and developed a framework for the perception, extraction
and validation of loco-manipulation affordances in unknown environments. Fig. 14
gives an overview over the perception and affordance extraction framework. RGB-D
point clouds are used as input and are segmented into geometric primitives. Affor-
dance hypotheses are associated with them, evaluated through affordance certainty
functions and validated through physical interaction.

Fig. 14: The perception and affordance system.

Affordance certainty functions are hierarchically defined over the space of end-
effector poses [34]. Higher-level affordances can be defined by combining lower-
level affordances with additional properties of the corresponding primitive or with
body-scaled properties of the perceiving agent. Fig. 15 shows visualizations of the
different steps of the perception and affordance extraction system. The affordance-

12 http://www.paco-plus.org
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Fig. 15: Segmentation of the scene (left) into geometric primitives (center) and vi-
sualization of the affordance certainty function (right).

based system is implemented in the ArmarX and was evaluated in multiple scenarios
on the humanoid robots ARMAR-III and ARMAR-4, as well as on WALK-MAN.
Fig. 16 shows an evaluation scenario in which ARMAR-III detects a turnable valve.
After detection, the inherently proposed end-effector poses are used for parameter-
izing a bimanual turning skill, which is then executed in order to turn the valve.
In [36], a pilot interface was added to the system to allow high-level control of
humanoid robots based on automatically proposed affordances and corresponding
OACs for action execution.

Fig. 16: Affordance-based bimanual valve turning.

4 Learning from Human Observation

To enhance the grasping and manipulation capabilities of humanoid robots in
human-centred environments, we investigated how humanoid robot can acquire
novel motor and task knowledge and adapt this knowledge to new situations by
learning from human observation and experience. Promising way to achieve this
goal are robot Programming by Demonstration (PbD) and imitation learning meth-
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ods by which a robot learns new skills through human guidance [45, 22, 19]. These
methods take inspiration from the way humans learn new skills by imitation to de-
velop methods by which new skills can be transmitted to a robot. Learning task
knowledge and control strategies for robots with high number of degrees of free-
dom which are deemed to interact in complex and variable environments, such as
households is faced with two key challenges: first, the complexity of the tasks to be
learned is such that pure trial and error learning would be too slow. PbD has proven
thus to be a good approach to speed up learning by reducing the search space, while
still allowing the robot to refine its model of the demonstration through exploration.
Second, there should be a continuum between learning and control, so that control,
strategies can adapt on the fly to drastic changes in the environment. In our research
we address the three main research questions: observation of human demonstrations,
generalization of the demonstration and reproduction of learned knowledge on the
robot. In the following we describe our work in these areas.

4.1 Observation of Human Actions

The observation of human demonstrations of grasping and manipulation actions
is accomplished by marker-less or marker-based human motion capture methods.
In order to enable our humanoid robots to observe humans with its onboard stereo
cameras, we developed various methods for the marker-less tracking of human body
parts. For the tracking of the human upper body based on stereo color images, we
presented in [13] a tracking algorithm which uses an adapted 3D model of the upper
body model with 14 DoF (6 DoF for the base transformation, 2 ·3 for the shoulders,
and 2 · 1 for the elbows), see Fig. 17. The model tracking is implemented using a
particle filter algorithm which uses two different cues, an edge and a distance cue, in
order to evaluate how well a given model configuration matches the current obser-
vations. Regarding the edge cue, observations are extracted from stereo images in
the form of an edge map. These are compared against a set of contour points which

Fig. 17: Left: Upper body model projected on the image plane. Middle: Visual-
ization of the 3D model used for upper body tracking using the method proposed
in [13]. Right: Fingertip positions tracked using the method proposed in [25].
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originate from the projection of the 3D model of the upper body onto the image
plane. In addition to the edge cues, a distance cue is defined based on a stereo-based
3D hand and head tracking. To increase the robustness, the method implements a
particle sampling in the vicinity of an inverse kinematics solution in order to fa-
cilitate the re-initialization of the procedure. With this system, we demonstrated an
online imitation of human actions on the humanoid robot ARMAR-IIIb with an
active vision system [14].

For the observation of human grasping actions, we presented in [25] a fingertip
tracking approach that determines the fingertip positions in the foveal camera views
based on circular image features. These features are tracked using a method which
combines particle filtering with a mean shift algorithm. To enhance the feature ex-
traction process, an edge map is generated by applying a multi-scale edge extraction
technique. Based on this map, circular image features are extracted and formed into
observations which are needed for the actual tracking algorithm. To increase the ro-
bustness of the algorithm, dynamical motion models are trained for the prediction
of the finger displacements. An example of the resulting tracked fingertip positions
is shown in Fig. 17.

However, marker-less motion capture methods are very limited regarding resolu-
tion, frame rate, and field of view, and are particularly sensitive to occlusions, which
is unfavorable for the observation of manipulation actions. For the acquisition of
accurate, high frequency motion data, we therefore employ a marker-based passive-
optical Vicon MX motion capture system. The technique which is used here is de-
scribed in [26, 50, 66] and relies on infrared cameras and artificial reflective mark-
ers. These markers are placed on 56 predefined anatomical landmarks of the human
subject according to defined reference marker set. By triangulation, the Cartesian
3D locations of the markers can be determined. In order to gain information on the
interaction of a human and the environment as well as the objects within, markers
have been placed on environmental elements such as stairs, doors, and handrails as
well as on objects which are subject to manipulation.

4.2 Unifying Representation of Human Motion

In order to enhance the comparability and facilitate the processing of human mo-
tion captured from distinct subjects with different approaches, a standardized in-
terface based on the Master Motor Map (MMM) framework has been established.
The MMM framework allows the unifying representation of human motion, which
thus normalizes the observed motion from individual body characteristics and min-
imizes the efforts required to transfer motion between different embodiments. The
MMM has been introduced in [12] and extended in [50, 66], and incorporates a
whole-body reference model of the human body with kinematic specifications for
104 DoF: 6 DoF cover the model pose and 52 DoF are distributed on arms, legs,
head, eyes and torso, which is shown in the left and middle of Fig. 18. The remain-
ing DoFs are used to model the hand (23 DoFs each), shown right in Fig. 18. Besides
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Fig. 18: The kinematics of the MMM reference model. Left side: Segment lengths
(given in 1

1000 of the total body height). Middle: Rotational joints, starting from the
root node at the pelvis mid-point (blue sphere). Right: MMM model of the human
hand with 23 DoF.

the kinematic specification of the reference model, the limb segments are enriched
with proper body segment properties, such as mass distribution, segment length,
and moment of inertia in order to compute whole-body dynamics. These anthropo-
morphic properties are defined and scaled according to linear equations which link
these properties to global parameters such as height and weight of the whole body.
Using the reference model of the human body, any motion capture data can be rep-
resented using the MMM, as long as an appropriate converter of input data to the
MMM representation has been implemented, and MMM data can be used for vari-
ous purposes, such as retargeting to a humanoid robot or action recognition. This is
depicted in Fig. 19. To map a captured motion to the MMM, virtual markers whose
arrangement correspond to the reference marker set are placed on the MMM model.
By solving an optimization problem in order to minimize the distances between the
virtual markers and the corresponding physical marker positions, joint angles for
the model are reconstructed from motion capture data. For more details, the reader
is referred to [50].

The captured raw motion data as well as post-processed motions in the MMM
format are stored in our KIT Whole-Body Human Motion Database13. This database
serves as a key element for a wide variety of research questions related e.g. to hu-
man motion analysis, imitation learning, action recognition, and motion generation
in robotics. In contrast to previous approaches, the motion data in our database does
not only considers motions of single human subjects, but is focused on the interac-

13 https://motion-database.humanoids.kit.edu

https://motion-database.humanoids.kit.edu
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Fig. 19: The Master Motor Map (MMM) framework [50]: The human motion cap-
ture process is decoupled from motion analysis and reproduction components by
providing a reference model of the human body and a unifying data format with
corresponding interfaces. This allows to unify a wide variety of input data sources
and to make motion capture data available in a transparent way.

tion between the human, objects, and the environment, which is crucial for the un-
derstanding of human actions, and for the reproduction of such tasks on ARMAR.
Fig. 20 shows an example for such a motion task. Additionally, motion data for the
interaction between several agents, both humans and robots, are available. Up to
now, our motion database comprises motion data of a total run length of 28 hours
captured from 146 different subjects (48% male, 17% female), and also includes
motion data from the well-known CMU Graphics Lab Motion Capture Database14.
For further details on the KIT Whole-Body Human Motion Database, the interested
reader is referred to [50, 49].

4.3 Segmentation of Demonstrations

Recordings of human demonstrations are usually a seamless stream of actions with-
out known meaning. In order to extract the meaning of demonstrations further pro-
cessing and analysis of human motion is necessary. To this end, we introduced sev-
eral algorithms and methods for the segmentation and labeling of motion data on
the semantic level based on contact relations between human subjects, objects, and
environment (see [80, 48]) up to the trajectory level by analyzing the position, ve-

14 http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Fig. 20: Preparing the dough: Snapshots and MMM reconstruction from motion
capture for a manipulation task with four environmental objects.

locity, and acceleration profiles in order to identify meaningful key points between
motion segments (see [78, 4, 87]).

In [80], we employ a hierarchical two-level segmentation approach to extract
manipulation actions from a human demonstration. On the first level, semantic seg-
ments are extracted based on object relation changes where contact/non-contact in-
formation is used to determine the borders of semantic segments. On the second
level, the resulting semantic segments are further analyzed and subdivided into more
granular segments. To achieve this, a method for assessing the characteristics of a
motion within a semantic segment based on the motion acceleration profile is used.
The motion is recursively divided by searching iteratively with a sliding window
for the best split to find new segments. For each position of the sliding window, the
trajectory left and right of the center of the window is evaluated. A score function
describes the motion characteristic of the trajectory segments by incorporating the
dynamics of the motion. A good segmentation point means that the difference be-
tween the score values of the left and right sub-segments is high, i.e. the difference
in motion dynamics is high. On the next recursion level, the segments left and right
of segmentation point are analyzed again until a minimum segment length is reached
or the difference between the score function values is under a given threshold. Based
on this sub-segmentation it is possible to find segments that differ in dynamics of
the motion but have no observable effects on the environment and thus to allow dis-
tinguishing different actions, such as shaking a bottle or tossing a bottle. In Fig. 21
on the left, the different processing steps from demonstration to segmentation are
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Converted Demonstration

Human Demonstration

No contact Cup in left hand No contact

Grasp Lift Pour Place Retreat

Hierarchical Segmentation

Fig. 21: Hierarchical segmentation of human demonstration based on contact rela-
tions and motion characteristics.

depicted. On the right a snapshot of a demonstration and the relation-graph at that
moment is shown.

4.4 Representation of Actions

A core element which is crucial for the ability to learn goal-directed actions from
observations is the representation of segmented actions, which are able to encode
relevant movement characteristics extracted from the observed demonstrations and
on the other hand allows generalization to different contexts. In [5], an approach
using Hidden Markov Models (HMM) has been proposed in order to learn dual-arm
tasks from multiple demonstrations. Based on characteristic key points which are
extracted from the demonstrated trajectory an HMM is trained to encode a demon-
stration. To infer a generalized representation of the demonstrated task a state se-
quence is determined based on common key points, respectively states which are
common to all trained HMMs. The represented task can be reproduced by inter-
polating between these states. To address the increasing kinematic complexity of
humanoid robots and the required goal-directedness in robot grasping and manip-
ulation, the concept of Dynamic Movement Primitives (DMP) was introduced in
[32], which became a popular and widely used movement representation. A DMP
incorporates linear dynamical systems, also referred to as transformation system,
which is perturbed by nonlinear force term in order to encode arbitrary complex
movements. A canonical system which drives the evolution of the system allows
the integration and synchronization of multiple transformation systems and, thus,
facilitates the encoding of movements even in higher dimensions. For discrete ac-
tions, the canonical system takes the form of a point attractor, which ensures that
the transformation system converges to the goal within a time duration specified by
a constant temporal parameter. This structure allows the parametrization of a DMP
with new target positions and makes this representation temporally scalable in order
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Fig. 22: ARMAR-IIIb performing pick-and-place actions using DMPs learnt from
human observation.

to adapt a learned action to a new context. In [55], the feasibility and the generaliza-
tion capabilities of DMPs regarding the learning, representation, and goal-directed
reproduction of discrete actions such as pick-and-place (see Fig. 22), pouring, slid-
ing (see Fig. 23), and pointing are shown.

Fig. 23: ARMAR-IIIb playing shell game by executing sliding actions learned from
human observation.
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Fig. 24: Two dimensional canonical system: One dimension represents the current
phase of the periodic motion while the other dimension corresponds to the distance
of the current state towards the periodic pattern.

To enable a DMP to represent a periodic action where the start and end points
of the corresponding trajectories are connected, the point attractor in the canonical
system has to be replaced with a limit-cycle attractor. The temporal scale is replaced
by a frequency parameter which can be used to control the periodic evolution of
the transformation systems. Experiments showing the capability to encode periodic
actions have been conducted in [30], where different table wiping actions DMPs
have been learned in an online manner. In [28], an extension of the DMP formulation
using a two dimensional canonical system is presented in order to achieve a common
representation of discrete and periodic actions within a single DMP (see Fig. 24).
This DMP formulation has been used on the ARMAR robots to encode periodic
wiping actions and their corresponding discrete transient behaviours.

4.5 Learning from experience

Learning from sensorimotor experience and interaction with the world is fundamen-
tal for continuous grounding, adaptation, refinement and augmentation of actions
learned from human demonstration. In this context, we introduced in the Xperience
project 15 and in [84] the concept of Structural Bootstrapping – an idea taken from
child language acquisition research - to define a generative mechanism that uses
existing robot experience together with new observations to supplement the robot’s
knowledge with missing information about, object-, action- as well as planning-
relevant entities. Thus, Structural Bootstrapping can be seen as a method of build-
ing generative models, leveraging existing experience to predict unexplored action
effects and to focus the hypothesis space for learning novel concepts. Following
this concept, an experience-based learning cycle for the wiping task was developed
to learn generative models describing the relation between object properties and ac-
tion parameters from sensorimotor experience and to use these models to predict the
consequences of actions using internal simulation [27]. The learning cycle is shown

15 www.xperience.org

www.xperience.org
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Fig. 25: The experience-based learning cycle for the wiping task.

in Fig. 25 and consists of four stages. The initial stage of this cycle is the exploration
stage. Given generalized representations of objects and actions, the robot explores
the scene in order to obtain instantiations of the object and the action. In the context
of wiping, an object representation is inferred by manipulating and observing the
object in hand, e.g. height and softness of a wiping tool are determined based on a
squeezing action. A motion primitive encoding a wiping action and the object rep-
resentation form the basis of an experiment which is conducted in the subsequent
stage to create data from which concrete experience can be generated. The robot
applies the wiping action and observes its effect on object, environment, and on it-
self, see Fig. 26. Experimental data is generated from these observations and used
to ground and adapt the representations. In the modeling stage, knowledge in the
form of internal models is extracted from experiential data. In subsequent iterations
of the learning cycle, these models can be used to determine the expected effect and
to constrain and control the exploration of the action parameter space within the re-
peated experiment based on novel perceived object representations. This allows the
goal-directed creation of training data which is needed for the re-grounding of the
representations and the revision of the internal models. Hence, this learning cycle
allows the continuous acquisition, validation, and refinement of internal knowledge
in long term association through exploration and predictive reasoning.

5 The ARMAR Architecture

A complex system like a humanoid robot imposes complex and versatile require-
ments on its control and cognitive architecture. With the requirements of a humanoid
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Fig. 26: ARMAR-IIIb wiping the table with a sponge.

robot in mind, the architecture shown in Fig. 27 has been implemented in the robot
software development environment ArmarX, see also [75] and[79]. The architec-
ture consists of three levels: the sensorimotor low-level, a memory system as the
mid-level, and the reasoning and planning high-level. The low-level incorporates a
hardware abstraction component and the ArmarX statecharts ([79]) for the execution
of sensorimotor skills. The statecharts combine sensorimotor data of the low-level
and processed data of the memory layer in a task-specific way to implement higher
level skills such as grasp, lift, open, wipe, etc. The mid-level consists mainly of the
memory structure MemoryX, which is a mediator between the low- and high-level
and is equipped with processing capabilities like object recognition, object detec-
tion, hand tracking, self-localization, etc. MemoryX itself consists of three different
types of memory: The prior knowledge, the long-term memory and the working
memory. The prior knowledge contains information that is given by the developer
like object classes with 3D models and e.g. pre-computed grasps or other offline
generated knowledge. In the long-term memory, the robot stores information about
common object places, object-action relations and associations, i.e. Object-Action
Complexes (OACs), which should remain persistent but might change over time due
to new experience. The third memory type is the working memory. In this volatile
memory, the robot stores all the information it knows about the current world state
like currently present objects and their position. The information stored in the Mem-
oryX is the basis for the execution of complex actions that require processed sensor
information and for the reasoning on the high-level of the architecture. At the high-
level, the symbolic reasoning is realized to enable natural communication with the
human for solving complex tasks. The three main components of the high-level are
the Language Understanding (LU) component, the Replacement component (RM)
and the Plan Execution Monitor component (PEM). The LU component transforms
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Fig. 27: The ARMAR robot architecture.

freely spoken text based on knowledge bases and the current memory content into
a machine understandable representation and produces for example goals for the
planning engine of the PEM (see [54]). The RM is a preliminary feasibility check
for a given task as it checks e.g. for availability of all objects and their locations
required for the task execution. In case of missing objects, it suggests objects and
location replacements based on several replacement strategies. Upon success of the
RM, the PEM is employed to find a symbolic plan for the current task. Once a plan
is found, it executes and monitors the symbolic actions based on the OAC library
of the long-term memory. The OAC library serves as a mediator between the PEM
on the high-level and statecharts of the low-level. The PEM receives the available
actions for solving a given task from the OAC library. To this end, the OAC library
provides the action parameters as well as the required preconditions for execution
and the expected effects. These effects are used by the PEM for the planning as well
as for verifying the results of an action after execution. Each OAC in the library
is also equipped with a link to the executing statechart, which is triggered by the
PEM. The statechart in turn can read and store execution statistics in the OAC li-
brary to improve the performance over time. After fulfilling the task or encountering
an unsolvable problem, the robot returns to an idle state and awaits new commands.
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6 Conclusions and Future Plans

We introduced the ARMAR humanoid robot family, which has been developed in
Karlsruhe, Germany. The robots have been developed with a special focus on the re-
alization of daily tasks in human-centered environments. Since 2008, the ARMAR-
III robot is able to perform complex tasks in a kitchen environment including vision-
based grasping and manipulation of daily objects, opening/closing doors, loading
the dishwasher, learning from human observation and interacting with humans us-
ing natural speech natural interaction and dialog management16. We described the
mechatronics of the different robot generations and gave an overview over our re-
search in the area of humanoid grasping and manipulation, learning from human
observation and experience as well as the implementation of complete cognitive
software architecture.

The development of the ARMAR humanoid robot family will continue in the
directions of engineering high performance 24/7 humanoids able to predict, act in
open-ended environments and learn from humans and own experience. Currently,
we are working on wearable humanoids, a whole body exoskeleton for augmen-
tation of human performance. A first prototype of the lower limb exoskeleton, the
KIT-EXO-1 as part of ARMAR-5 is presented in [17] and shown in Fig. 28. With
ARMAR-6, we are developing a humanoid robot which should provide assistance
to maintenance technician in warehouse environments in a pro-active manner. The
robot will be a second pair of hands that can assist the technician when he/she is in

Fig. 28: Left: The KIT-EXO-1 as part of the wearable humanoid robot ARMAR-5.
Right: The dual arm system of ARMAR-6.

16 The demo in this video was given on February 3, 2008 for the evaluation panel of the humanoid
robotic project (SFB 588) in Karlsruhe and more than 2200 times since this time. See https:
//www.youtube.com/watch?v=SHMSyYLRQPM

https://www.youtube.com/watch?v=SHMSyYLRQPM
https://www.youtube.com/watch?v=SHMSyYLRQPM
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need of help. The dual-arm system of teh robot is described in [58] and shown in
Fig. 28.

Acknowledgements The research leading to the development of the ARMAR humanoid robots
has received funding from the the German Research Foundation (DFG: Deutsche Forschungsge-
meinschaft) within the German Humanoid Research project SFB 588 and the European Union
within the the EU Cognitive Systems and Robotic projects PACO-PLUS, Xperience, GRASP,
WALK-MAN and KoroiBot as well as from the Karlsruhe Institute of Technology. We would
like to thank all members of the H2T lab and all students who contributed to this research in its
different phases.

References

1. Albers, A., Ottnad, J., Sander, C.: Development of a new wrist for the next generation of
the humanoid robot ARMAR. In: IEEE/RAS International Conference on Humanoid Robots
(Humanoids), pp. 46–53 (2008)

2. Ambrose, R.O., Aldridge, H., Askew, R.S., Burridge, R.R., Bluethmann, W., Diftler, M.,
Lovchik, C., Magruder, D., Rehnmark, F.: Robonaut: NASA’s space humanoid. Intelligent
Systems and their Applications, IEEE 15(4), 57–63 (2000). DOI 10.1109/5254.867913

3. Asfour, T.: Sensormotorische Koordination für die Handlungsausführung eines humanoiden
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