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Abstract Building robotic systems requires a seamless integration of mechanics,
electronics, embedded systems and software. The chapter provides insights into the
robotronics, the robot mechatronics, for the design of integrated humanoid robot
systems developed to perform tasks in real world environments. Selected use-case
are used as examples for mechatronics design and control.

1 Introduction

Mechatronics unites many different fields of science and engineering in an inter-
disciplinary way [44], including electrical engineering, computer science, mechan-
ical engineering and information technology. The term itself is a hybrid term, taken
from mechanics, electronics and computer science and originated in Yaskawa, Japan
in 1971 [11]. It extends mechanical systems with sensors and microcomputers to
build components of intelligent systems. This includes design of actuators, embed-
ded control, design and integration of sensor and communication [11]. Robot sys-
tems such as humanoid robots as shown in Fig. 1 feature complex mechatronics and
require close cooperation of many engineering and scientific disciplines to design
and build such systems. Among others, mechanical design specialists need to de-
sign body parts such as arms, hands, legs and heads and optimize the components
to increase strength and decrease weight. In addition, electronic design specialists
develop custom-designed and embedded electronic circuits for sensor data process-
ing and control, which must be integrated in a very limited space. Further, special-
ized low-level software requires expertise in embedded programming to develop
programs that run directly on custom electronic devices and connect different com-
ponents through appropriate communication protocols. Finally, high-level control
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Fig. 1: Robotronics of humanoid robots and components. a) ARMAR-I, b)
ARMAR-II, c) ARMAR-IIIa, d) ARMAR-IIIb, e) ARMAR-4 [4], f) ARMAR-
6 [5], g) ARMAR-DE, h) ARMAR-7 arm, i) TUAT/Karlsruhe Hand [18],
j) Female KIT Hand, k) Male KIT Hand, l) Sensor-actuator-controller units.
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and communication design skills are required to robot software architectures that
integrate symbolic planning and reasoning and sensorimotor control.

As such the mechatronics of robots, the robotronics, provide the embodiment
for physical, embodied intelligence. This chapter starts with a short description of
methodologies of mechatronic design and continues with several examples, taken
from our research on humanoid robots at the Institute for Anthropomatics and
Robotics in Karlsruhe Institute of Technology.

2 Design Approach

The large design space of mechatronic systems has led to emergence of many system
design methods. A design method can help the engineers from different disciplines
to facilitate smooth collaboration in the development of the mechantronic systems.
Many such methods emerged at the end of the 20th century, like the waterfall model
[7], the spiral model [9], and the V-model [17]. The V-model presents a general flow
for the product development process, which starts with the identification of user’s
requirements and their decomposition into software and hardware. It continues with
the fulfillment of functionality, the system integration of components and concludes
with testing and user validation. The VDI guideline 2206 is a functional modeling
methodology based on the V-model [22], which was developed and standardized
by the VDI committee, the German engineers association. This standard provides
guidance for managing the complexity of mechatronic systems.

It was developed in 2004 and builds on the good practices of previous software-
based guides and represents the logical relationships of facts and interactions that
form the foundation for the successful development and deployment of complex
technical systems. The guide divides the design of mechatronic systems into four
main phases, namely ”System Design”, ”Domain Specific Design”, ”System Inte-
gration”, and ”Performance Check”. The development process starts with the defi-
nition of requirements. Figure 2 shows our research areas at H2T, which guide the
design of our humanoid robot development.

The design of our humanoid robots is driven by the requirements related to the
abilities of perception, grasping and manipulating objects as well as to skills from
humans and experience. We take inspiration from the anatomy and motion behav-
ior of the human body and deign integrated components, subsystems and complete
humanoid robot systems. We consider continuous integration and testing crucial to
expose design flaws and weaknesses, to improve the systems performance, and to
make use of gained new knowledge for the design of new robot generations. Once
the requirements are identified, the ”System Design” defines a cross-discipline so-
lution concept for the system. In this phase, the overall function of the system is
divided into sub-functions. Several guiding tools or design principles are employed
here to define clean interfaces between software and hardware components, to im-
prove their robustness and ease the final system integration, see Fig. 3.
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An important aspect in our design approach is modularity, where the mecha-
tronic system is decomposed into modules to reduce the complexity of the robot
and to make developed components reusable. Such modularity also allows easier
fault identification, since the underlined modules may be isolated and tested out-
side of the system. A good example are the sensor-actuator-controller units (SAC
units), which are used for the design of the arms of ARMAR-6. These units inte-
grate the whole mechanical drive train with sensors and electronics for control and
communication [42]. These SAC units can be scaled to three different power levels,
but they retain a similar sub-assembly structure. Careful design and calculations are
necessary to ensure the performance of the SAC unit function, especially the critical
functions, like emergency shut down. The development is supported by modeling
and analysis of system characteristics with the help of models and computer-aided
tools for simulation. The custom electronics circuits connect power electronics, con-

Fig. 2: Co-development of requirements, knowledge and real prototypes in the de-
sign of ARMAR robots.

Fig. 3: Common design principles in development of ARMAR robots.
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trol and communication lines into a compact PCB design to minimize the number of
electronic conduits and increase their robustness. These PCB circuits have a custom
shape that fits into the actuation unit resulting in a highly integrated system. The
SAC units are placed throughout the robot and connected to the power and com-
munication electrical conduits. The number of electrical conduits is minimized and
clustered together so that only one power and one communication line connects the
neighboring SAC units. The design of modular components also includes design of
specialized interfaces, both on the software level and hardware level. A good ex-
ample are the special quick-change adapters that allow quick replacement of robot
hands to increase the robot’s versatility. The adapter ensures a rigid connection be-
tween the hand and the arm, and connects the power and communication signal
lines. The adapter also allows easy isolation of the component and testing.

The described domain specific phases are flanked by the ”Modelling and analy-
sis” of the system characteristics with the aid of models and computer-aided tools
for simulation [58]. Computer Aided X (CAx) applications are used to support the
product development process, generating data that is typically stored in a Mechan-
ical Product Data Management (M-PDM) system, while electrical and electronic
designers use Electrical/Electronic Engineering Solutions (EESs) to create data that
is stored in Electrical PDM (E-PDM). Software designers use development solutions
to create source code, which is managed through Software Configuration Manage-
ment (SCM) or the Concurrent Versioning System (CVS). To reach the final prod-
uct, each phase of product definition should be tested in system integration and
concluded with system validation. In the specific case, the robot components are
assembled together, and the joint design of software and hardware ensures that in-
formation about the status of components is readily available at all times. More
information on system integration and validation is given through specific examples
presented throughout the chapter.

3 Hardware Design

In order to describe the development of the hardware of mechatronic systems in
detail, selected subsystems from our humanoid robots are presented in the follow-
ing: Humanoid arms, heads and hands. After a general introduction to the design of
these robot systems, the humanoid robots of the ARMAR family (Fig. 1) are used
as examples to describe how such systems can be implemented.

3.1 Humanoid Arm Design

In contrast to industrial robot arms, humanoid robot arms are designed to be used for
a wide variety of tasks, often in cooperation with humans. This results in higher de-
mands on the robots kinematic structure as well as on the sensor setup, which must
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also ensure the safety of humans. This section describes a possible development
procedure using the ARMAR robots as an example: After defining the workspace,
the appropriate actuators and sensors are selected. Then the mechanical arm struc-
ture is described. Finally, the development of a human-like wrist follows, which is
particularly challenging.

3.1.1 Workspace Consideration

Joint Configuration: The most important function of a robot arm used to physi-
cally manipulate its environment is to bring an end-effector into a desired pose in
the workspace. A pose describes position and orientation in R3. To bring the end-
effector into an arbitrary pose in the workspace, at least 6 degrees of freedom (DoF)
are required, 3 of which are for the position and 3 for the orientation. Since industrial
robots are typically used for the same task all the time, they can be designed with 6
or fewer number of DoF. However, in order to use humanoid robots for a wide vari-
ety of mobile manipulation tasks similar to humans, they are often designed with 7
or more DoF. Such redundant robot arms fulfill additional constraints given by the
task such as collision avoidance or the generation of human-like movements.

ARMAR-III therefore has arms with 7 DoF each. Each arm consists of one spher-
ical joint (3 DoF) in the shoulder and one in the wrist, and a rotational joint in
between to allow flexion/extension of the elbow. This results in a large workspace
that allows the execution of versatile manipulation tasks in a kitchen environments.
To further increase the workspace, the arms of ARMAR-4 and ARMAR-6 each
have an additional inner shoulder joint, resulting in 8 DoF arms. The advantage of
these additional joints was investigated early in the design phase through simula-
tions of reachability and manipulability [51]. Thus, with ARMAR-6, the bimanual
workspace increases from 1.8 m3 to 4.9 m3 due to an additional inner shoulder joint
on the left and right side.

When defining a joint configuration, kinematic singularities should also be
avoided. It is possible to avoid singularities by adding displacements, for exam-
ple between the upper arm axis and the extension/flexion joint of the elbow. In
ARMAR-6, the elbow joint was moved forward by 55 mm for this purpose. In ad-
dition to avoiding singularities, this also increases the maximum angle for elbow
flexion rotation.

Arm Proportions: Apart from the joint configuration and the joint limits, the
lengths of the individual segments of the kinematic chain influence the working
space. The first step should be to determine the required reach of the arm. It will
ultimately determine how strong the first drives have to be and how heavy the entire
arm will be. While the arms of ARMAR-III and ARMAR-4 have human propor-
tions, the proportions of ARMAR-6 are much larger. To ensure that the robot is able
to manipulate objects at a height of 2.3 m and at the same time pick up objects from
the ground, an arm with a length of about 1000 mm from the center of the shoul-
der to the Tool Center Point (TCP) was developed. The Tool Center Point of the
arms is located in the middle of the palm. With an inner shoulder joint, it even has



Robotronics – Robot Mechatronics 7

a reach of 1300 mm. In combination with a prismatic joint in the torso that can be
moved by 400 mm, the robot is thus able to fulfill both conditions. The arm length
of ARMAR-6 significantly exceeds the arm length of ARMAR-4, which measures
610 mm from shoulder to TCP and 810 mm including the inner shoulder joint. The
segment lengths of the upper arm and forearm and the distance between the wrist
and TCP for ARMAR-6 are based on data at the 95th percentile male. They are
scaled up by a factor of 1.3.

3.1.2 Electromechanical Key Components

Actuation and Power Transmission: Apart from the kinematics and the resulting
workspace, the maximum payload is one of the most important requirements for
a robot arm. Based on this minimum load specification, the estimated masses and
inertia of the arm segments, and the desired angular accelerations, the necessary
torques in the individual joints can be calculated. Since motors with the desired
joint torque are usually too large and heavy, they are usually translated by gear
mechanisms. A wide variety of gears can be used in robot arms. Planetary gears
and harmonic drive gears can usually be attached directly to the motor. The motor
axis corresponds to the output axis of the gear unit. Other gear mechanisms such
as spur gears, worm gears, belt drives, wire rope drives, linear drives and parallel
kinematics allow the motor axis not to correspond to the joint axis. The motor can
then be spatially separated from the arm joint. This principle has been used several
times in the ARMAR-III arms.

The power transmission in the shoulder joints of ARMAR-III (Fig.4) is realized
by a combination of belt drives and worm gears. The elbow is cable-driven and
equipped with a complex cable roll mechanism for the transmission of mechanical
energy to the following joint. The elbow motor is located in the torso of the robot.
Both gear mechanisms allow the motors to be placed more proximal, i. e., closer to
the body. This makes the arms significantly lighter. In addition, the arm proportions
are not dependent on the size of the motors.

In contrast to ARMAR-III, the arms of ARMAR-4 and ARMAR-6 use slim
brushless direct current motors (BLDC motors) and harmonic drive gears. This
makes it possible to accommodate the entire drive train in the joint axis, which
was used consistently in both robots up to the forearm. By concentrating most elec-
tromechatronic components in the joints, the structure between the joints as well as
the cabling can be significantly simplified. This can ultimately lead to better robust-
ness.

Sensors: Besides actuators, sensors are also required to control the robot arm.
Position encoders are required as standard. In addition to an incremental or hall
encoder on the motor shaft, modern robot arms also have an absolute encoder on
the output of the gear unit. While incremental encoders only measure the relative
rotation of the motor to its initial position in the form of ticks, the absolute encoder
can determine the current joint position at any time.
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Fig. 4: Shoulder (left) and elbow (right) of ARMAR-III [1]

For robots used for physical human-robot interaction, torque control is critical
to ensure humans safety. To achieve this, torque sensing is needed. Torque can be
measured in a variety of ways. A very accurate sensor is obtained by applying shafts
or spoke wheels with strain gauges. Alternatively, it is also possible to determine the
torque using two high-precision absolute encoders, placed placed at the beginning
and end of the output shaft. The difference between the two measured angles cor-
responds to the twist of the shaft, from which the torque can be calculated. Finally,
the motor current can also be used to roughly determine the approximate torque.
Since sensor data on forces and torques are particularly helpful when gripping ob-
jects, force-torque sensors in the wrists of robots are often used in addition to torque
sensors in the joints. ARMAR-III, ARMAR-4 and ARMAR-6 all have a 6D force-
torque sensor in the wrist, which allows forces and torques to be measured in all
spatial directions and orientations. Other sensors frequently used in robotic arms are
temperature sensors, which are used to monitor the heat in the arm and to initiate
measures at critical threshold values to protect heat-sensitive components. Further-
more, temperature measurements can be used to compensate for temperature drift
of other sensors. In robot arms, all conceivable other sensors can be accommodated.
Another example are inertial measurement units (IMU), which combine several in-
ertial sensors such as accelerometers and angular rate sensors. But also cameras,
distance sensors and pressure sensors are an option.

3.1.3 Sensor-Actuator-Controller Units

As shown by the arm of ARMAR-III (Fig.4), actuators, sensors and motor con-
trollers were often placed separately and scattered throughout the robot arm. While
this has the advantage of utilizing every space in the arm, it makes design, assembly
and maintenance extremely complex. The many distributed interfaces make it dif-
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Fig. 5: Sensor-actuator unit of ARMAR-4 integrating motor, gearbox, incremental
and absolute position sensors, torque and temperature sensors [4]

ficult to build a robust system, especially with regard to cabling. Furthermore, this
rarely allows arm designs to be quickly reusable.

As a result, sensor-actuator units (SA unit) that integrate the drive train and sen-
sors in one compact module with a well-defined interfaces have become increasingly
popular in recent years. Other names for such modules are drive unit or joint unit.
Fig. 5 shows a sensor-actuator unit as used in the ARMAR-4 arm and leg joints.
They integrate a high performance BLDC motor, a high-ratio harmonic drive gear,
an incremental encoder, an absolute encode, a torque sensor and temperature sen-
sors. However, the motor controllers are placed outside the units, so there are several
cables to be routed between the SA unit and the motor controller.
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Therefore, the joint units for the arms of ARMAR-6 go even further. They inte-
grate all important mechatronic components for actuation and control of individual
joints into one module, the Sensor-actuator-controller units (SAC units), which is
shown in Fig. 6. In addition to the drive train and the sensors of the ARMAR-4
joint units, they also contain a motor controller as well as electronics for control and
communication via EtherCAT, a high-speed Ethernet-based fieldbus system that al-
lows for periodically sampling of all sensors at 1kHz. Other additional components
include an IMU on the sensor PCB of the SAC unit and a slip ring at its center.
Slip rings are cable connections that can be rotated infinitely by sliding contacts
consisting of gold rings and brushes. Slip rings allow all joints with SAC units to
be rotated continuously without breaking the cables. Therefore, the upper or lower
arm of ARMAR-6 can also be rotated infinitely and have no joint angle limits. In
addition, slip rings make the cabling much more robust.

Slip Ring

Electronic Requirements
(Cables)

Mechanical Requirements
defines

Space

Sensor

Network

Power Supply

Emergency Stop

Fixation

define

influence

Fig. 7: Dependencies between different mechatronic parts of a SAC unit with the
slip ring as an example [42].

The slip ring is a good example of the fact that in the development of highly in-
tegrated mechatronic components, electrical and mechanical design cannot be done
separately. As shown in Fig. 7, electronic requirements define which slip rings are
to be considered. How many cables are needed? How much current flows through
the cables? Do shielded data cables have to be used? Based on these cabling re-
quirements the size of the slip ring is different. Hence, the construction space and
the fixation of the slip ring influence mechanical parts. The slip ring is of course
only one component of the SAC unit. Since there are also many other dependencies
between the mechanical and electronic components, it is rather a network of de-
pendencies. In order to nevertheless create a robust, highly integrated mechatronic
system, care was taken early to consider the electronics in the CAD design and vice
versa. All cables with their bending radii were modeled in CAD and it was checked
at an early stage whether there was sufficient space for the electronic components
on the PCB.

In parallel to the CAD design, the electronic setup of the SAC units was de-
veloped (Fig. 8). In total, there are 6 circuit boards in the SAC unit, 5 of which
were self-designed to improve the integration of the electronics through an optimal
form factor. The connection between two SAC units electronically consists of only
3 cable connections: Supply voltage, a network line for EtherCAT and optionally
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Fig. 8: Electronic setup of a SAC unit: PCB and cabling overview [42].

an emergency line. Multiple SAC units can be easily daisy chained together. This
focus on a minimum of well-defined interfaces was also realized mechanically: In
addition to two screw flanges, the units can also be mounted by a clam ring connec-
tion. To meet the different, installation space, torque and speed requirements of the
individual arm joints, SAC units were developed in 3 sizes providing a maximum
torque of 64 Nm (wrist), 123 Nm (elbow) and 176 Nm (shoulder). With these units,
each arm of ARMAR-6 has a payload of 11 kg at long range.

3.1.4 Arm Structure

The next step is to design the arm structure. There exist two basic concepts for arm
structures: Frame construction and exoskeleton design (Fig. 9). In a frame construc-
tion, very simple flat parts or profiles are screwed together (Fig. 9, left). They are
easy to manufacture and therefore low-cost. Many parts can be reused in the sense
of a modular system and changes can be made quickly. Thus, additional sensors and
other components can also be easily attached later. To cover and protect cables and
electronics, additional cover parts can be attached to the frame structure.

In contrast, exoskeleton designs use complex shell parts that serve both as load
bearing structure and as covering parts. This makes the parts difficult to manufac-
ture and expensive, but in addition to saving on covering parts, this offers several
advantages. Overall, there is more freedom in the design, which makes the structure
close to the joint units less bulky and simplifies higher joint limits. Furthermore,
the use of a hollow structure and the resulting moment of inertia is optimal for the
different load cases, which a robot arm has to withstand. Hence, lightweight design
is supported. And finally, such design makes assembly and maintenance easier and
lead to increased robustness, in particular with respect to cabling. For the dual arm
systems of ARMAR-6 and ARMAR-7 in Fig. 9, the exoskeleton design is realized
consequently thanks to the modularity of the SAC units. However, using complex
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power transmission mechanisms as they are used in ARMAR-III would not allow
such implementation.

3.2 Humanoid Hand Design

The human hand is a complex and versatile system that allows us to intuitively grasp
and manipulate a wide range of objects with different shapes and functionalities.
From a kinematic point of view, the hand is a very complex system with 27 bones,
29 muscles and 21 DoF. Such complex kinematics endows our hands with versatility
and dexterity in both powerful actions as well a fine-granular manipulation tasks.
When building humanoid robotic hands however, the kinematic complexity poses
great challenges for mechatronic integration and control. The actuation of the many
degrees of freedom of humanoid hands requires high integration and smart actuator
design within the tight space constraints of the human palm. In addition, the closing
motion of the individual fingers and joints requires a well coordinated control to
accomplish a stable grasp tailored to the object’s shape and the desired manipulation
goal.

Findings from neuroscience indicate that humans do not control every joint of the
hand individually. Instead, correlations can be seen within the hand’s DoF. These
correlations can be partially explained by the mechanical structure of the forearm
muscles, which are connected to several joints by the hand’s tendons [35], and are
partially caused by correlated muscle activation originated in the human brain [2].
Thereby, the posture of the human hand can be described by a significantly lower
number of parameters - the hand synergies. Overall, more than 80 % of the informa-

Fig. 9: Arm designs of humanoid robots: In contrast to the arm of ARMAR-4 [4]
(left) that uses a frame construction, the arms of ARMAR-6 (middle) and ARMAR-
7 (right) use an exoskeleton design.
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tion transmitted by the joint angle configuration of a grasp posture can be described
by two to three synergies [45].

An implementation of the hand synergies in hardware allows to accommodate
both the high control complexity as well as the restricted integration space. The
concept of underactuation reduces the number of degrees of actuation (DoA) by
driving several DoF with a single motor. Thereby, an underactuation mechanism
allows the implementation of hand synergies into the mechatronics of a humanoid
robotic hand. In the following, a wide range of hand actuation strategies will be
discussed including hydraulic actuators, underactuation based on electric motors as
well as entirely soft kinematic structures. In addition, multimodal sensing and on-
board computation for hand control will be focused.

3.2.1 Actuation Principles and Mechanisms

Most robotic hands are driven by electric motors or fluid actuators. In the following,
both technologies are presented and it is explained how their power is converted
and transmitted to actuate the various hand joints. Furthermore, softness in hands is
discussed in more detail, through which grasping objects can be enhanced.

Fluid Hands: Originating in biomimetics, flexible fluidic actuators (FFAs) pro-
vide a suitable operating principle for compliant actuation. They are also often re-
ferred to as artificial (fluidic) muscles and provide a high power-to-weight ratio.
The operating principle is based on the transmission of potential energy from the
pressurized fluid within a flexible shell into mechanical force. While pneumatic ac-
tuators already come with inherent compliance due to the compressibility of gases,
hydraulic actuators achieve compliance only with additionally integrated compli-
ant structures [21]. In humanoid hands, the compliance of FFAs allows for adaptive
grasping of several different objects [56].

In FFAs, torque can be directly generated from compression without the need for
additional transmission elements. However, to be able to control the direction of the
generate torque, as well as increase its magnitude and the range of motion, a guiding
structure is required. This guiding element is essential for overall performance of the
actuation [21]. In fluid driven hands the (mechanical) guiding structure generally
comes with anthropomorphic features. Existing prototypes consist of a palm frame
with attached artificial fingers. Single mechanical phalanges connected by artificial
actuated soft joints form the fingers [56, 31].

Miniaturized hydraulic systems have been developed to be included into the palm
of a humanoid hand without the need for external components except a power sup-
ply. Such a system generally consists of a hydraulic pump, a fluid reservoir, electric
valves and an electronic unit which can be integrated into the palm of the hand.
Choosing a suitable pump is mainly based on the size limitations. Gear pumps of-
fer a feasible compromise regarding size, weight, efficiency and complexity. The
FFAs, reinforced flexible bellows attached via solid fittings to the lever of the joint,
are integrated directly into the joints. To ensure a stable grasp, a correct choice of
hydraulic valves is significant. As the valves control the fluid supply of the FFAs,
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Fig. 10: The ARMAR-III pneumatic hand and its achievable grasp patterns [20]

only a complete closures and thus interruption of the fluid supply allow for specific
positioning of the fingers during grasping. The modular structure of all components
allows for independent actuation and positioning of the joints within the fingers [31].

Figure 11 shows an exemplary five-fingered pneumatic hand. It is a hybrid con-
cept combining an anthropomorphic humanoid hand with a robotic gripper. While
the rigid structure displays a more robotic appearance, the soft, inflatable joints in
palm and fingers give it a humanoid look. To ensure precise grasping, a symmetric
arrangement of all components was chosen. Mechanical joints are enhanced by rein-
forced flexible bellows such that a torque is applied by inflation. The compliant and
lightweight system requires only an air supply and five wired cables for operation.
Its modular design integrates all necessary parts into the hand, therefore no space is
required proximal to the wrist and it can be attached to any robotic arm [20].

The compliant nature of pneumatic and hydraulic actuation, as well as the flexi-
bility in actuator placement and pressure transmission facilitate the implementation
of adaptive underactuation inspired by synergistic human grasping behavior. By the
arrangement of fluidic chambers, actuation force can be distributed within several
DoA. Communicating vessels connected to a single actuator can drive several fin-
gers of a hand and automatically provide a balance in pressure and actuation force
independent of the individual finger postures [48]. Further, pneumatically driven
artificial muscles [47] allow for bio-inspired, human-like hand design. A robotic
hand, that mimics human muscle actuation allows the direct transfer of human mo-
tion demonstrations into the robot control and provides insights on the biological
functionality of the human hand [37].

Overall, fluidic hand actuation provides an alternative to electrically driven mo-
tors, that is more flexible in power transmission and actuator placement. The com-
pressibility of the actuation fluid allows a humanoid hand to adapt to object shape
and environmental constraints when complemented with compliant joint mecha-
nisms or soft finger structures. By these means, grasp control can be simplified
especially in highly restricted spaces. In such scenarios, the mechanical adaptation
of fluid hands can directly cope with environmental constraints without the need to
address them specifically in grasp control.



Robotronics – Robot Mechatronics 15

Fig. 11: Underactuation mechanism driving all five fingers of the hand with a single
motor [19] (left) and the tendon routing of the male KIT Prosthetic Hand imple-
menting the underactuation mechanism to drive the four fingers (adapted from [54])
(right)

Tendon-driven Hands: Inspired by the musculotendon system of the human
hand, tendon-transmission of actuation forces is commonly used in humanoid
robotic hands. The tendon’s tractability allows for flexible force transmission from
distantly placed actuation motors, usually positioned in the palm or the lower arm.
However, tendons only transmit traction forces, thereby limiting the transmitted ac-
tuation to a single direction and two tendons or one stiff bar are required for the
full actuation of one DoF [25, 26]. In the case of humanoid hands, high forces
are required only in finger flexion to grasp objects, while finger extension merely
needs to support the fingers own weight. Therefore, a widely-used strategy com-
bines a tendon-driven actuation for finger flexion with springs locally integrated
into the hand’s joints to drive the finger’s extension [16]. A hand with such a design
is thereby actively closed, since the actuation of the finger flexion needs to counter-
act the extension force of the springs in the joints. Similar to the human model, the
succeeding joints of one finger are commonly actuated together by a single tendon.

This coupled force transmission results in an underactuation of the robotic finger
[34]. The flexible coupling by a tendon-transmission additionally allows the differ-
ent finger joints within the kinematic chain to adopt different angles influenced by
external forces applied to the finger phalanges. This adaptive underactuation causes
a mechanical adaptation of the finger to the shape of a surface it closes onto. Simi-
larly, adaptive underactuation can be applied to actuate two or more fingers by the
same motor while still allowing their individual adaptation to an object’s shape. This
can be done either by routing a single tendon through several fingers [12] or with
the use of an underactuation mechanism distributing the motor torque onto several
finger tendons [19, 10, 8].

Figure 11 shows an underactuation mechanism based on a rigid bar transmission
[19, 18]. An electrical motor is attached to rod J and the actuation force is distributed
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equally to the thumb and the fingers respectively by the rocker H. The subsequent
rockers G, E and F further divide the force equally between the rods A, that are
actuating the finger flexion. All rockers, except for the transmission rocker D, are
freely floating. While the hand is unobstructed, the entire mechanism is therefore
pulled towards the motor, causing all fingers to close equally. If one finger is blocked
by the object, the respective rocker tilts and the other finger continue closing.

A tendon-driven implementation of an adaptive underactuation mechanism is
used into the KIT Prosthetic Hand [54]. The tendon routing throughout the mecha-
nism as well as the entire hand is presented in Fig. 12. The hand is driven by two mo-
tors actuating the thumb and the fingers respectively. The thumb’s tendon is directly
attached to one motor and guided over two deflection pulleys in the thumb metacar-
pophalangeal and interphalangeal joints until it is attached within the fingertip. The
second motor drives a tendon routed over the central pulley of the rocker within the
underactuation mechanism and fixed at the housing thereafter. The rocker is sliding
freely within the mechanism box and the motor tendon pulls the entire rocker bar
down towards the palm, thereby distributing the motor torque to all four fingers.
Two tendons connect index and middle finger as well as ring and little finger re-
spectively. These tendons are routed over the deflection pulleys on either side of the
mechanisms rocker. If one finger is blocked, the tendon rotates around the rocker
pulley, allowing the other finger to continue closing. If both fingers connected by
one tendon are blocked, the rocker tilts and thereby enables further motion of the
other two fingers.

Along the fingers, the actuating tendon is routed over deflection pulleys in each
joint and fixed at the fingertip, similar to the thumb. The flexion of the finger
metacarpophalangeal and proximal interphalangeal joints is driven by this tendon,
while the distal interphalangeal joint is fixed at an angle of 20°. Torsion springs in
both joints provide a passive extension of the fingers. By varying the spring preten-
sion for both joints, the correlation between the joint closing speed can be adjusted
within the adaptive underactuation realized by the tendon. The difference in joint
spring pretension thereby allows to mimic the human finger closing trajectory with
a single DoA and a tendon transmission.

The underactuation mechanism has been adapted to actuate a different number
of DoF as shown in [29]. By replacing the main rocker with a slider, a mechanism
configuration to drive three fingers can be designed as shown in Fig. 12. Two fingers
are still actuated by a single tendon, which is attached to both fingertips and routed
over a pulley within the mechanism slider. This slider connects the finger tendon
pulley with another pulley entangled by the actuating tendon from the motor. The
third finger is directly actuated by the motor tendon. The combination of fixed and
freely floating pulleys of this mechanism, which is similar to a gun tackle, ensures
an equal force distribution between the uneven number of actuated fingers.

The KIT hands are applied both on humanoid robots and for prosthetics. They
include a scalable finger design taking into account standardized components as
well as electrical boards that can only be scaled stepwise. By these means, hands
can be customized in different sizes corresponding to human hands for assistive
robots or prostheses as well as larger than the human model for robots performing
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Fig. 12: Underactuation mechanism for three fingers actuated by one tendon
(adapted from [29]) (left) and KIT Hand for the humanoid robot ARMAR-6 [3]
(right)

taxing industrial work. The hands are able to grasp a wide range of objects found
in daily household and workshop tasks, with more than 80 % grasp success rate. A
cylindrical grasp force of more than 20 N allows the hands to lift and handle also
heavy objects [54].

Soft Hands: Inclusion of soft elements into robots has become a very active
research topic in the last two decades [41]. Soft surfaces, actuators and structures
improve both safety and compliance of robots since collisions with the environment
do not result in immediate damage. Especially for robotic hands this is desirable as
these are specifically build to interact with the environment. Yet, the design of soft
hands presents additional challenges since both state estimation as well as dexterous
control are more difficult to archive for soft and deformable joints or fingers [13].
Since the structure of the fingers is soft, they do not only allow actuation in one
direction, but bend and twist in multiple, potentially undesired directions. This can
be mitigated by including rigid elements such as springs into the internal structure
of the finger that limit deformation in undesired directions. Additionally sensors
can be embedded into the fingers that are able to sense such deformation so that a
suitable control mechanism can compensate for such movements.

The amount of softness introduced into robotic grippers varies greatly among
different hands based on requirements and applications. In some applications soft
materials are used on just a single joint to in order to increase compliance of con-
tacts and increase mechanical robustness in case of collision [38]. In others the
whole hand structure is exclusively constructed from soft material to exploit the
compliance and adaptivity of the soft material to ease control [15].

In the following, we present an example, namely the design of the KIT Sensorized
Soft Hand [53] and KIT Finger-Vision Soft Hand [29, 27], which illustrates the in-
troduction of soft elements into the fingers of humanoid robotic hands. The hands
are shown in Fig. 13.
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Fig. 13: The KIT Sensorized Soft Hand and KIT Finger-Vision Soft Hand [55]

Both hands share the same palm, including three motors. One motor drives the
thumb, one the Index finger and the third motor drives the remaining fingers through
an adaptive underactuation mechanism. The palm also houses an hybrid embedded
system based on a combination of a microcontroller and a FPGA. Different fingers
can be attached to the hand using a fixed interface, improving modularity of the
design. The fingers for both hands share a similar mechanical design but differ in
the included sensors. While the KIT Finger-Vision Soft Hand features a camera at
the tip of each finger, the KIT Sensorized Soft Hand includes a multimodal haptic
sensor system.

Fig. 14: The mechanical structure of the soft fingers. The silicone is cut after the
proximal phalanx to expose the leaf spring and bones, the distal bone is also cut to
expose electronics that can be embedded in the fingertip.

The fingers are constructed from 3D-printed bones for the proximal, intermediate
and distal phalanx connected by a metal leaf spring, as can be seen in Fig. 14. The
finger is actuated by a tendon in flexion direction by a tendon and passively by the
leaf spring in extension direction. While the bones completely prohibit bending of
the finger at the phalanges, the finger can bend at the areas between the bones. Due
to the leaf spring, the fingers bend preferably in the flexion/extension direction while
being substantially more stiff in all other directions. The leaf spring has a thickness
of 90 µm and forms the neutral phase during bending of the joints. electrical cables,
connecting sensors in the finger tip to electronics in the palm can be directly taped
onto the leaf spring. This way the cables will mainly be subjected to a bending
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motion with a defined bending radius and do not elongate during bending. Flat
flex cables (FFCs) are especially well suited for this application. After the internal
structure is assembled, the finger is inserted into a mold for casting. For casting, a
two component silicone with a Shore A hardness of 13 is used.

3.2.2 Sensors and Embedded System

Very important for successful and reliable grasping and manipulation is the sen-
sory information that can include tactile as well as visual information. The obtained
information is required to provide feedback during the grasping process. Depend-
ing on the task, very high resolution tactile feedback in combination with visual
feedback might be required, imagine the task of putting a thread through a sewing
needle. In simpler tasks such as grasping of objects or manipulation, sensory in-
formation can be only necessary for detecting success and failure. While humans
are not equipped with in-hand visual perception, in robotics visual feedback can be
helpful for vision based control such as visual servoeing, where in hand vision can
provide an un-occluded and better perspective onto the target object.

In the human body, sensory information is transmitted via the spinal cord towards
the brain where decision are made, however typically in robotics data is acquired
locally and due to the principal of modularity can also be processed locally in hand,
allowing a well defined and simple communication interface to the hand.

Tactile Perception: Humans possess a sophisticated haptic perception system,
enabling complex interaction with the environment. Likewise, haptic perception is a
key enabling factor for dexterous grasping and manipulation in robotic hands. Yet,
the robust integration of a rich sensor system into the confined space of robotic
hands and fingers presents a unique mechatronic challenge [46]. The sensors need
physical contact with the environment, making them especially prone to mechanical
failure of the sensor structure or electrical connections. Additionally, the sensors
need to be distributed throughout the mechanical structure of the hands since each
part that is potentially in contact with the environment should ideally be innervated
with sensors. This leads to a large number of required sensors and electrical signals
that need to be routed through the mechanical structure of the hand.

Research on tactile sensors and their integration into robotic hands has gained a
lot of traction in the last decade. Different sensor technologies have been explored
to realize tactile sensors, including optical and visual, resistive, capacitive sensing,
strain gauges, magnetic flux, vibrations, MEMS and the piezo-resistive/-electric ef-
fect [30, 39]. To illustrate the implementation of such a system into the fingers of a
robotic hand, we will continue the example of the soft fingers of the KIT Sensorized
Soft Hand.

The main idea behind the sensor system inside the soft fingers is to use readily
available digital sensors and fabrication techniques to reduce fabrication effort and
ensure reproducible results. Digital sensors offer the additional advantage that the
analog signal of the sensing element is directly digitized inside the sensor and that
the sensor usually offers a digital bus interface used for readout, minimizing wiring.
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This follows the paradigm of encapsulation and modularity, allows for scalability of
the design and offers the high robustness inherent to industrial sensing devices. The
sensor system is multi-modal, including both dedicated normal force and separate
shear force sensors, a proximity sensor, an accelerometer and custom joint encoders.
All sensors are mounted on two PCBs, both connected to a central processing system
in the palm through FFCs. An overview of the system is depicted in Fig. 15.

Fig. 15: Overview of the sensor system of the soft finger. The normal force sensor
and joint angle encoder on the intermediate phalanx are duplicated the other side
[53].

The shear force sensors are based on digital three-axis Hall effect sensors. To
fabricate a shear force sensor, a magnet is placed in soft material above the sensor.
When a force is exerted on the soft material, the magnet is displaced in relation to
the sensor which causes a change in the measurement of magnetic flux measured by
the sensor [33]. Co-planar movement of the magnet relative to the sensor represents
a shear force while orthogonal movement represents the normal force component.
While these sensors are able to measure shear forces well, they are not as sensitive
to normal forces. Therefore, a second tactile sensing modality for normal forces is
included in the sensing system.

The normal force sensors are based on digital miniature MEMS barometers.
These sensors are cast into silicone which then acts as a transducer for the pres-
sure applied to the surface of the finger onto the sensing element [50]. Depending
on the hardness and thickness of the soft material, the sensitivity and sensing range
can be adjusted. These sensors are able to detect weights as small as 0.5 g placed on
the sensor and are hence well suited to detect initial contact between the fingers and
the environment.

An infrared proximity sensor is located at the base of the fingertip to detect ob-
jects in close proximity. This allows sensing objects a few centimeters before they
come in contact with the fingers and can for example be used in human-robot han-
dover scenarios or to detect if the hand is close enough to an object to start grasping.
Such proximity sensors can also be utilized as additional normal force sensors by
measuring the deformation of the soft material above the sensor [57, 40]. Addition-
ally, an accelerometer is placed on the back of the sensor PCB of the distal phalanx
to detect sudden acceleration spikes. This can be utilized to detect collisions of the
fingers with the environment or in an object placing task to detect contact between
object and a supporting surface.
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The soft joints of the fingers make joint angle measurement especially challeng-
ing as there is no fixed center of rotation and the joint is able to deflect in all three
directions of space. While the leaf spring mostly eliminates bending of the joint
to the sides, it allows for a considerable amount of twist in the joints. To measure
movement in multiple axes, a strong magnet is placed at the joint on the proximal
and distal phalanx. On the PCB of the intermediate phalanx, two 3D Hall effect
sensors are placed opposite to these magnets. Each combination of joint flexion and
twist causes a unique but nonlinear sensor reading that can then be either fitted to
an analytical model or alternatively can be calibrated.

In-Hand Vision: In addition to tactile perception, cameras offer an efficient and
cheap way of obtaining scene information for grasping and manipulation tasks.
Compared to tactile perception, cameras can provide pre-contact information. Cam-
eras can be either installed in a static position in the working setup of the robot,
mounted at the robot base or placed in head position. Integrating the camera in the
end-effector or artificial hand of a robot comes with the advantage that the view of
the contact point between end-effector and scene is visible well in the center of the
camera frame. Further, if the hand is regarded as a tool, the tool-center-point is lo-
cated at a fixed position in the image frame. This configuration is referred to as eye-
in-hand visual servoeing and is used for a variety of manipulation tasks where an
exact placement of the end-effector is necessary. Depending on the purpose and ma-
nipulation strategy, the camera position inside the hand can either be chosen inside
the hand palm or inside one of the finger phalanges, as the the following example of
the KIT Prosthetic Hand and the KIT Finger-Vision Soft Hand demonstrate.

In-hand
camera

Fig. 16: KIT Prosthetic Hand (Version 2) with in-hand camera in the palm. On the
right, the SoC-based embedded in-hand controller board is shown.

When artificial hands are used as prosthetic hands, the controlling of the hand by
the user can be quite challenging, since commonly used surface EMG electrodes are
limited in resolution and can be unreliable in situations when electrodes are moved
or skin properties change. To address this issue, quite a number of researchers have
investigated the use of intelligent functions that are based on visual scene perception
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to implement semi autonomous control functions [24][23][14]. Visual perception
can include shape estimation of objects that are grasped or recognition of specific
objects to select from a predefined set of finger trajectories or forces.

The KIT Prosthetic Hand described in [54] is designed to comprehend the scene
and thereby suggest a suitable grasp-type to the user. Therefor it has a 1.3 megapixel
camera included in the palmar hand side that is used for object recognition. The
camera is connected to the hand internal controller, the user can initiate object
recognition via a command sent over the EMG interface. For the purpose of image
processing and especially image classification tasks, convolutional neural networks
are well suited, however they come with a quite high processing workload. Since
the hand internal computation resources are very limited due to space and power
constraints, special attention was given for a resource aware implementation of the
image processing algorithms of the KIT Prosthetic Hand [28]. Since the user ex-
pects a grasp suggestion and thereby network result after a certain amount of time,
real-time constraints can be derived: The maximum available time slot allows to
estimate the highest possible processing workload per network inference. To obtain
this value, the available processing time is multiplied with the throughput of the
system, meaning the number of operations that the system is capable to perform of
each second. To find a network architecture, that matches the available hardware
resources and allows the highest accuracy, different optimization techniques can
be used as for example genetic algorithms or Bayesian optimization. The proces-
sor (Arm Cortex M7) that is used in the first version of the KIT Prosthetic Hand
is capable of approximately 2 million multiply-accumulate operations in the given
timing budget that are mainly used for processing of convolutional networks. A best
suited network architecture was obtained using a genetic algorithm, the network can
recognize objects from 13 classed at an accuracy of 96.5%.

The very small size of the commercially available cameras allows to also inte-
grate cameras inside the fingertips of a humanoid hand. This allows to obtain pre-
touch information from the perspective of the expected contact point. This allows to
detect objects, whether they are in reach of the hand, this information can be used
in reactive grasping such as handover tasks, grasping of dynamic objects and also
precision grasps. The KIT Finger-Vision Soft Hand implements the concept of in-
finger vision. Here, each finger includes a miniature camera as shown in Fig. 13.
To detect objects that are visible in the camera image, a binary segmentation algo-
rithm is implemented. The segmentation algorithm is realize using a convolutional
neural network in an encoder-decoder architecture. The output of the network is a
pixel-wise semantic segmentation of all camera images. In a set of experiments the
applicability of the concept to a set of typical grasping tasks is shown.

Embedded System: The request for modular and encapsulated hand design
comes with the need for a hand embedded controller. The controller is required
to fulfill 4 different functions that include reading of sensor values, controlling ac-
tuators, processing data and providing an interface to other control units.

To allow processing of data as well as providing interfaces a data processing unit
is an essential part of the controller, here the design choice that has to be made
is the selection of suitable type of processing system. Commonly used processing
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architectures are microcontrollers, application processors, field programmable gate
arrays (FPGAs) and System on a chip modules, that can combine logic circuitry and
processors. While microcontrollers mostly are used without an operating system
and execute relatively simple control algorithms in combination with specialized
peripheral modules like times/counters and dedicated interfaces, application pro-
cessors depend on external memory and an operating system. FPGAs come with
the advantage of completely customizable configuration of logic circuits, that allow
specialized and parallel interfaces and data processing algorithms. SoCs (system on
a chip) can combine processors with reconfigurable logic or other types of hardware
accelerators allowing to implement highly efficiency data processing algorithms in
combination with complex control methods.

In Fig. 16 the right side image shows a SoC based hand controller for the
KIT Prosthetic Hand (50th percentile female). The controller is based on a Xilinx
Zynq SoC (XC7Z010) and additional external RAM (2Gb) and 32GB flash stor-
age. The SoC has the advantage of containing a dual core Application processor as
well an FPGA. This allows high flexibility for sensor interfaces, allows hardware-
accelerated processing of sensor data as well as procedural programming on the
processing system. However, the power consumption is comparably high compared
to a microcontroller based system. The board includes interfaces for camera, display
and relative encoders, as well as two brushed motor drivers. Especially in design of
artificial hands, miniaturization of the controller is important, since the mechanisms
and actuators already take up large parts of the- available space inside the hand.
Therefor, during the mechanical and electrical co-design placement of connectors,
routing of cables and heat dissipation must be coordinated carefully. An other im-
portant aspect is a robust and easily to assemble and disassemble design, so that in
case of any needed modification or mechanical/electrical failure, the system can be
accessed and repaired at a reasonable effort.

3.3 Humanoid Head Design

In order for humanoid robots to perceive and interact with their environment, their
perception capabilities are a crucial element. Thus, the perception system for such
robots should provide sensory information necessary to execute various visuomotor
tasks, such as detecting salient regions, and more complex sensorimotor tasks, such
as hand-eye coordination, gestures, etc. as well as audio information. For the head,
the appearance and the effect on the human observer is especially important, since
the face is the center of attention during interactions.

The previously mentioned design principles are also followed in humanoid head
design. This applies to modularity and encapsulation of the different components of
subsystems of the head. High and robust integration with electrical and mechanical
co-design are also very important.
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3.3.1 Requirements

The human neck consists of 7 cervical vertebrae which allow an almost continuous
bending of the neck in 3 directions The cervical spine can move in flexion (80-90)°,
extension 70° (pitch), lateral bending 20-45°(roll), and rotation 90° (yaw) in both
directions [49]. This movement is complex since pure rotational movement cannot
accurately reproduce it and thus it has to be to be approximated for a robot head that
should mimic human neck movements. The peak rotation speed in healthy human
is 348 ± 92°/s [43] where the main problem in reaching this speed in robots is ac-
celeration and thus the torque-to-inertia ratio while human muscles have negligible
intern inertia. In addition, human eyes allow movements around two major axis in
order to be able support gaze control and gaze control.

3.3.2 Kinematics

The kinematics of the human neck can be approximated in a robot by 2 articulation
points with 2 DoF each. Various parallel kinematic mechanisms [36] for neck mo-
tion are possible, but rarely chosen for humanoid robots. The two 2 DoF of the eyes
for direction and gaze stabilization can be realized directly or compensated by cam-
era characteristics like image stabilization. The ability to mimic fast human head
movements depends largely on the ratio of head inertia to available drive torque,
since acceleration and deceleration phases account for most of the movement.

The kinematic comparison of the robot heads of ARMAR-III, ARMAR-4 and
ARMAR-6 show that the first two have a focus on humanoid design and kinematics
while the latter is focused on a simple kinematics and the use of certain camera
systems. The kinematics of the ARMAR-III head with seven DoF arranged as lower
pitch (1), roll (2), yaw (3), upper pitch (4) is shown in Fig. 17a. The complete head
with eyes tilt, right eye pan and left eye pan can be seen in 17b. ARMAR-IV has
a 9 DOF head with independent eye pan and tilt, a five DOF neck mechanism with
lower and upper pitch, lower and upper roll and a yaw joint 17c. In ARMAR-6 and
ARMAR-DE a reduced kinematics setup with only pitch and yaw joints was chosen.
The order of the joints is pitch-yaw in ARMAR-6 and yaw-pitch in ARMAR-DE
(Fig. 17d).

3.3.3 Sensors and Actuation

Accurate position sensing is important for visual perception and hand-eye coordi-
nation. The obtained values from the absolute encoders are also used for joint angle
control for angular velocity control relative encoders can provide additional feed-
back in the control loop. Additionally to the actuation of the neck, the cameras can
be actuated similarly to the human movable eyes. This enlarges the field of view.
ARMAR-III and ARMAR-IV has four digital color cameras each for wide and nar-
row angle. ARMAR-IV has four cameras and six microphones. The head is also
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Fig. 17: The neck design of ARMAR-III [1] (a), the head of ARMAR-III [6] with
seven DoF (b), the head design of ARMAR-4 [4] (c) and the head of ARMAR-DE
(d)

equipped with microphones an an IMU that is used for gaze stabilization and ocu-
lomotor control

For actuation speed the possible acceleration is important. This is specified by
actuation torques and inertia, where geared motors with typically used high trans-
mission ratios have high internal inertia which is added to the heads inertia. Static
forces depend on mass and center of mass. The motors for joint actuation used in
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humanoid robots are generally either brushed (DC) or brushless (BLDC) direct cur-
rent motors. Brushed motors are generally thinner but longer since space for the
brushes is needed while BLDC motors are shorter with a larger diameter. The con-
trol electronics for BLDC motors is larger and has a minimum size and therefore
small motors. Since the torque of small electric motors fitting into the neck and head
volume is not sufficient, gearboxes with high transmission ratios are necessary. This
can be multi-stage planetary gear boxes or Harmonic Drives which have the advan-
tage of no backlash and where therefore chosen for all actuators in all robot heads.
While the joints in ARMAR-6 and ARMAR-DE heads are directly driven, some of
the higher number of joints in ARMAR-III and ARMAR-4 heads are driven by belts
with remote actuator position.

4 Software Design

Developing software to control complex humanoid robots is a challenging task, that
requires a sophisticated software design and architecture. Especially with multiple
robots such as ARMAR-III, ARMAR-6, ARMAR-DE, ARMAR-7, re-using func-
tionality is crucial. This can range from pre-processing sensor signals on embed-
ded devices up to autonomous abilities such as grasping an object or navigating
through a room. We developed ArmarX [52] as a unified software framework to ful-
fill these needs. ArmarX emerged over generations of ARMAR robots and is capa-
ble of seamlessly and concurrently integrating hardware and software. This allows
to maintain and extend existing robots by both its software and hardware as well
as its cognitive abilities allowing the integration of new robot components quickly.
ArmarX is publicly available under an open-source license1.

To address the problems of high complexity and transferability, a layered archi-
tecture with clear interfaces was designed. The architecture is depicted in Fig. 18
and consists of three layers. 1. The embedded devices for highly specialized func-
tionality, 2. the hardware abstraction layer, which provides integrating interfaces
and abstracts from several bus systems such as USB, Ethernet or EtherCAT, and
3. the high-level framework for control and orchestration of multiple robot compo-
nents which are transferable to other robots. Each of the layers has its individual
properties and requirements and will be described in the following sections. One
general paradigm that can be found across all layers is the realization of an event-
driven closed control cycle as shown in Fig. 19.

For example, on the level of embedded devices, there are highly integrated de-
vices with their own firmware-implemented controllers using available relative en-
coders. On the hardware abstraction layer, the SAC units are modeled using a vir-
tual device with two bus participants, namely one motor and one sensing device.
Virtual devices also support implementing controllers, using the sensor data of one
bus participant and passing control commands to another bus participant. Finally

1 https://gitlab.com/ArmarX

https://gitlab.com/ArmarX
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Fig. 18: The three layers of the ArmarX software architecture. Bottom layer: Em-
bedded devices, including custom ones, but also commercial sensors such as cam-
eras or laser scanners. Middle: Hardware abstraction layer, with unifying interfaces
for bus participants (virtual devices, left), cameras (image provider, middle), laser
scanners (right), etc. Top: High-level framework, with the unifying concept of a
robot (robot unit, right), and several exemplary high level components accessing
sensors and interacting with the robot unit. Note how several bus systems (e. g.,
Ethernet, USB, or EtherCAT) are abstracted from using the hardware abstraction
layer.

on the high-level layer, previously independent components are combined such that

Control data
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Sensor data

Sensor Actor Unit

Events
Observers

Fig. 19: Event-driven closed control cycle
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multi-modal sensor data can be fused to enable e. g., visual servoing or navigation
using the laser scanners.

4.1 Embedded Software Design

Embedded software is in most cases rather difficult to change or update once the
electronic system is integrated into the robot. The most important design aspects
for embedded software in a robot are therefore simplicity and reliability. Mostly the
amount of tasks required for an integrated system are clear. They have to commu-
nicate with integrated sensor chips such as temperature sensors, absolute or relative
encoders, internal measurement units (IMU) or torque sensors, be able to configure
them appropriately and periodically and read the current sensor values. Further-
more, they might have to control one or more motors by either directly forwarding
PWM values to the motor or by handling position, velocity or torque commands in
internal control loops. Finally they have to be able to report if an error happened
during the execution of any of their tasks. The last point ensures that failures in
robot components can be detected immediately and the robot can be kept in a safe
state.

The embedded systems do not only have to communicate with sensors or motors,
but need to propagate the read sensor values to a main computer and receive new
control commands. For complex robots such as humanoid robots (e. g., ARMAR-
6) this communication needs to be fast and reliable due to the vast amount of data
that needs to be transferred in every iteration: in ARMAR-6 there are 43 different
embedded devices with a total of approximately 3400 B of process data. With an
update rate of 1 kHz this results in a required bandwidth of at least 27.2 Mbit/s.
Although there are many fieldbus technologies used for different industrial require-
ments, most of them can not handle this amount of data in such short cycle times. A
appropriate fieldbus for this case is e. g., EtherCAT2, but for smaller robots with less
DoF and therefore less periodically data slower fieldbus systems like PROFIBUS3

or CAN4 might be sufficient. The low-level interaction on the physical layer and
data link layer of the OSI-Model5with these fieldbus systems should be handled by
either dedicated integrated chips or FPGA systems since the required calculations
might use a lot of processing power which is better used for performing the afore-
mentioned tasks of the embedded system.

2 https://www.ethercat.org/en/technology.html
3 https://new.siemens.com/global/en/products/automation/industrial-communication/profibus.html
4 https://www.iso.org/standard/63648.html
5 https://www.itu.int/rec/T-REC-X.225-199511-I/en

https://web.archive.org/web/20220225150127/https://www.ethercat.org/en/technology.html
https://web.archive.org/web/20220308020958/https://new.siemens.com/global/en/products/automation/industrial-communication/profibus.html
https://web.archive.org/web/20220329092151/https://www.iso.org/standard/63648.html
https://web.archive.org/web/20210201064044/https://www.itu.int/rec/T-REC-X.225-199511-I/en
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4.1.1 Best Practices for Reliable Embedded Software

In most cases the embedded systems are reasonable simple that there is no need
for a real-time operating system (RTOS) but instead the software can be written
as one single program which includes all necessary hardware abstractions for on-
chip peripherals like UART, SPI, I2C, DMA, timers, GPIO and the drivers for the
external peripheral systems like sensors or motors. This program will be executed
once the embedded system is powered on and keep running until it gets shutdown
by removing the power supply. So-called bare metal programs are today mostly
written in C, C++ or Rust but for smaller projects do not require real-time capa-
bilities (Micro)Python is getting more popular6. However for absolute control over
aspects like memory layout or RAM usage non-interpreted languages are usually ad-
vantageous. In the following we provide a few practices for developing embedded
software that is based around a single while-loop without a scheduler that handles
different threads:

• No dynamic memory allocations: Memory should not be allocated during the
run time of the program, but instead statically allocated. This has the benefit that
the amount of required RAM is known at compile time and therefore prevents
possible RAM overflow errors which are impossible to handle at run time.

• Cooperative multitasking: The simplest form of a scheduling system. Multiple
tasks (e. g., reading values from different sensors) run one after another in a
fixed order, but every task is divided into sub tasks, that take minimal execution
time. The execution of these sub tasks is handled by a worker function for each
task which selects the appropriate sub-task for the current situation. Since every
worker always only executes one sub-task, all tasks can run almost in parallel
and do not block each other. This principle can be refined by assigning less
important tasks a frequency based on the system clock which controls how of-
ten the worker does nothing and returns immediately. The programmer has full
control over the control flow of the system and does not rely on an underlying
scheduler which might introduce non-determinant behavior.

• Non blocking communication: Communication over I2C, SPI, UART or other
local bus systems should take up as little processing power as possible. It should
especially not block other subroutines from being executed, due to for example
waiting for a response from an external sensor. The most useful technique here
is the usage of DMA (Direct Memory Access) which handles together with
dedicated chip hardware the communication completely parallel to the main
CPU and only triggers a hardware interrupt once the requested communication
step has finished. The programmer can then for example set a certain flag that
the data has been successfully received which itself will be handled in the next
iteration of the cooperative multitasking loop. Alternatively one could design
the PCB itself in a way that more complex communication (e. g., EtherCAT or
CAN) gets handled by a specialized integrated chip and the micro controller

6 https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-
pros-cons-and-comparisons-of-popular-languages

https://web.archive.org/web/20220329162339/https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
https://web.archive.org/web/20220329162339/https://www.qt.io/embedded-development-talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-popular-languages
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only triggers this communication by sending the payload to the chip and gets
notified once the communication has finished. This practice goes hand in hand
wit cooperative multitasking.

• Error reporting: This point is valid for all kind of embedded software. Since the
program is running on a system without easy physical access (e. g., because the
micro-controller is embedded deep into a mechanical device), it is very difficult
to handle malfunctions if there is no way of reporting errors from the embedded
system to the main control system. Unlike programs running on a personal com-
puter there is no easy way to debug the system once it is assembled. Important
type of errors which are useful to be reported via status words or bit-wise error
fields include communication errors with integrated devices like sensors, for-
warded error bits from those devices, external signals (like STO) and whether
limits of for example temperature sensors are reached.

The design of embedded software depends heavily on the complexity of the under-
lying embedded system. Smaller robots can be controlled from one large embedded
microprocessor, which has the capabilities of running an operating system and can
be used and programmed like a small computer. But every robotic system with a
high number of DoF needs modular, specialized micro-controller-based embedded
systems with programs that need to be as simple and reliable as possible. Some
strategies to reach that goal were presented here.

4.2 ArmarX – Hardware Abstraction Layer

The hardware abstraction layer (HAL) is an essential part of the core functionalities
of ArmarX and is the foundation all higher components of ArmarX build upon. As
shown in Fig. 18, the HAL provides bus-agnostic interfaces for sensors and actors
available on the robot to the whole ArmarX ecosystem (potentially spanning across
multiple computers inside the robot).

We distinguish two cases for tethering new embedded devices. The simplest case
is connecting commercial embedded devices such as cameras or laser scanners via
general purpose interfaces (e. g., Ethernet, USB, ...). For these devices, generic soft-
ware interfaces are already available in ArmarX, e. g., for image providers (cam-
eras), or point cloud providers (laser scanners). The standard procedure, however,
is to daisy chain several (custom) embedded devices into a dedicated bus system, in
order to save space and to meet hard real-time constraints such as new control tar-
gets for actuators. When constructing a robot, we also replicate the physical bus in
software by writing device specific software libraries, which integrate embedded de-
vices such as actors or sensors. When starting operation, the physical bus is queried
for the bus participants, to find and instantiate the corresponding class describing
the state and functionality of each embedded device. These small software libraries
for each embedded device allow for a very modular design, as the functionality can
be shared between multiple generations of robots, as it is the case with ARMAR-6,
ARMAR-DE, and ARMAR-7. New embedded devices can easily be integrated. To
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build a new robot, we thus first start by bundling the libraries representing the used
embedded devices for a concrete robot.

Bus participant Virtual devices

Sens +  
Act1 + Act2

Sens1

Act1

Sens + Act

Sens + Act

Hub1

Act

Act

Act

Act

...

Sens + Act 1

Sens + Act 2

Head Yaw

Act 6

Act 7

Mecanum 
platform

Act 8

Act 9

Robot unit

Master

Sens 3

Act 4

Sensor-Actor
Unit (SAC)

Act

Head Pitch

Sens + Act 5 Hand

Fig. 20: Schematic of the bus layout in ARMAR-6. Shown is how physical compo-
nents are mapped to their software counterpart. Virtual devices group one or more
bus participants to implement higher-level functionalities. These are then instanti-
ated by the robot unit.

On a higher level of abstraction, we interpret groups of embedded devices on the
bus as virtual devices, which are represented in software by objects being assigned
to one or more embedded device with the ability to fully control the whole group
and thus provide high-level interfaces or high-level control for the remaining frame-
work. An example for this are the wheels of a mobile robotic platform, which are
participants of the bus system each on their own. For each wheel (a motor connected
to an embedded device on the bus), a software equivalent would be instantiated to
provide the low-level functionality in software, such as motor velocity control. On
a higher level of abstraction, the mobile platform as a whole is represented through
a virtual device in order to provide high-level control by coordinating the set of
embedded devices the virtual device was assigned to, e. g., to implement Cartesian
platform velocity control by controlling individual wheel velocities.
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To ensure safe operation of the robot, a continuous monitoring of the system
state stops the robot’s movement in case of failure. This can be due to software
issues e. g., if a crucial component enters a failure state (or crashes) or hardware
issues such as the robot being close to self-collision. The implemented state machine
is shown in Fig. 21. At startup, the robot enters safe stop mode in which the joint

hardware / software 
failure detected

ES enabled
Operational

no failure

ES disabled Safe stop

emergency stop (ES) enabled

Safe torque off

Fig. 21: State machine of the different operational modes. Operational: All control
modes are allowed. Safe stop: Joints are zero-velocity controlled, no other control
modes allowed. Safe torque off: Joint power supply interrupted, no control possible.

velocities of each joint are controlled to be zero. Entering operational mode requires
manual intervention of the operator in order to enable the robot to actuate its motors.
In case the robot itself detects a software or hardware failure, it returns to safe stop
mode. As it might only be a temporary failure, e. g., due to a connection loss to
a camera which can be re-established automatically, the robot might recover and
transition to operational mode again. In case of unforeseen or unmodeled failures,
the operator can also manually bring the robot into safe stop mode. In emergency
cases, it is also possible to use any of the hardware emergency stop buttons that
are either attached to the robot or connected wirelessly. These directly interrupt the
motor’s power supply, bringing the robot into safe torque off mode. After releasing
the hardware emergency stop buttons, the robot will transition into safe stop mode
again.

4.3 ArmarX – High-Level Framework

On the high-level layer, robot-specific modules need to be combined and made avail-
able in a robot-agnostic way. To do so, all virtual devices that are necessary for the
operation of the robot are instantiated by the robot unit. The robot unit also man-
ages the concrete bus as master. As virtual devices might differ between robots,
some functionality is exposed via hardware-abstracting sub-unit interfaces that are



Robotronics – Robot Mechatronics 33

common to all robots, e. g., a kinematic unit to control individual joints or a plat-
form unit to move the robot within its local coordinate frame. In addition, the robot
unit also manages the real-time controllers for complex task and joint-space control
of the whole kinematic chain. These multi-joint controllers are linked to a subset
of the kinematic chain. The robot unit ensures that only one controller is active
per joint. This allows realizing unimanual, bimanual or even whole-body control.
High-level components allow to integrate multi-modal sensor data to build a coher-
ent environment model e. g., by performing vision-based object localization and 6D
pose estimation. This enables the realization of complex skills such as vision-based
grasping, human-aware navigation and active perception, and many other complex
tasks.

4.3.1 Visualization and Introspection

For concurrent hardware and software integration, visualization and introspection
tools are essential. For this, the ArmarX GUI can be used to disclose the robot’s
state. As shown in Fig. 22, the GUI shows information about the robot such as the
current joint positions, velocities and torques. In addition, the GUI can be used to
control each joint individually. The robots internal state, its location in the envi-
ronment, as well as the robots model of the environment are visualized on the left
side.

Fig. 22: The ArmarX graphical user interface (GUI). On the left, the virtual scene
with ARMAR-6 is shown. The kinematic unit GUI on the right can be used to con-
trol all joints of the robot in either position, velocity or torque mode.
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5 Conclusions

The development of the mechatronics system for robots is a very complex and time-
consuming task. Expert knowledge from the various disciplines of mechatronics is
needed to design a robust, highly integrated, high-performance system. Thus, it is
important to find solutions to preserve such expert knowledge and made it avail-
able for future generation of robot designers. In addition to general guidelines, it
would be helpful to provide concrete solutions for the realization of mechatronics
components based on previous experience. This requires the formalization of the
design process on all levels. To support this process, we developed an ontology-
based expert system [32]. Based on user requirements such as spatial dimensions,
performance, cost, weight and sensor types, the system proposes concept solutions
for the design of mechatronic components. These concept solutions include all re-
quired purchased parts, their arrangement to each other and the resulting properties
of the overall system. The expert system draws on an ontological knowledge base
that preserves the design knowledge from previous developments.

Cross-References
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