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Fig. 1: Illustration of latent trajectories learned by the proposed GPHDM on the Lorentz H2
L and Poincaré H2

P models of the hyperbolic
manifold. The GPHDM preserves the hand grasp taxonomy [1] (right) and the temporal dynamics of the demonstrated hand motions.

Abstract— Human-like motion generation for robots often
draws inspiration from biomechanical studies, which often
categorize complex human motions into hierarchical taxonomies.
While these taxonomies provide rich structural information
about how movements relate to one another, this information is
frequently overlooked in motion generation models, leading to a
disconnect between the generated motions and their underlying
hierarchical structure. This paper introduces the Gaussian
Process Hyperbolic Dynamical Model (GPHDM), a novel
approach that learns latent representations preserving both the
hierarchical structure of motions and their temporal dynamics
to ensure physical consistency. Our model achieves this by
extending the dynamics prior of the Gaussian Process Dynamical
Model (GPDM) to the hyperbolic manifold and integrating it
with taxonomy-aware inductive biases. Building on this geometry-
and taxonomy-aware frameworks, we propose three novel
mechanisms for generating motions that are both taxonomically-
structured and physically-consistent: two probabilistic recursive
approaches and a method based on pullback-metric geodesics.
Experiments on generating realistic motion sequences on the
hand grasping taxonomy show that the proposed GPHDM
faithfully encodes the underlying taxonomy and temporal
dynamics, and generates novel physically-consistent trajectories.

I. INTRODUCTION
Designing robots with human-like capabilities is a long-

standing goal in robotics, often drawing inspiration from
biomechanics to achieve realistic and functional motions [2].
A critical aspect in this process is analyzing human move-
ments, for which researchers often structure complex actions
into hierarchical classifications known as taxonomies. These
taxonomies, which categorize hand postures [3], full-body
poses [4], and manipulation primitives [5], among others,
carry a rich hierarchical structure that reflects the relationships
among different movements. However, this crucial structural
information is frequently ignored in motion generation
literature. Recent works [6], [7] have shown that leveraging
this structural inductive bias into motion generation models
may alleviate the demand of training data, lead to human-like
movements, and ultimately generate new motions that comply
with the hierarchical structure of a given taxonomy.
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Early approaches to generating motions within these
taxonomies showed promise but did not directly leverage their
hierarchical nature. For example, Romero et al. [8] used a
Gaussian Process Latent Variable Model (GPLVM) [9], where
clusters corresponding to various grasp types of the GRASP
taxonomy [3] emerged naturally, despite that the taxonomy’s
structure was not an explicitly considered during training.
They identified the potential for generating new motions via
latent space interpolation as potential future work. Separately,
Mandery et al. [10] abstracted the motion generation problem
as a linguistic task, using probabilistic n-gram language
models to reproduce whole-body motions based on the types
of whole-body poses proposed in [4]. Discrete body poses
were represented by words and sequenced using sentences.
However, this discrete representation struggled to capture the
continuous nature of movement and overlooked the entire
hierarchical structure of the associated taxonomy.

To address this gap, recent work by Jaquier et al. [6]
introduced the Gaussian Process Hyperbolic Latent Variable
Model (GPHLVM), which explicitly accounts for the hierar-
chical structure of taxonomy data. Their key insight was to
leverage hyperbolic geometry [11], a natural fit for embedding
tree-like structures [12], [13], [14], to create a continuous
latent representation of the hierarchically-organized taxonomy
data. In the GPHLVM, high-dimensional observations (e.g.,
joint angles of a human body or hand) belonging to the same
taxonomy node were embedded closely together, forming
distinct clusters in the hyperbolic space. Crucially, they
demonstrated that hyperbolic geodesics between these clusters
correctly traversed intermediate clusters, mirroring the parent–
child relationships of the original taxonomy. These insights
confirmed that the GPHLVM could successfully learn a latent
space that preserves the hierarchical structure of complex
motion data. However, a significant limitation remains: While
the GPHLVM can generate novel motions by decoding
latent geodesics back to the high-dimensional joint space,
some of the resulting motions can be physically impractical.
This issue arises because the GPHLVM is trained on data
concentrated within the clusters (i.e., static poses) of the
taxonomy, leaving data-sparse regions in-between. In these
regions, the model lacks information about valid trajectories
and thus its predictions revert to non-informative mean, failing
to capture the underlying dynamics of target movements.
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This paper tackles this challenge. First, we propose the
Gaussian Process Hyperbolic Dynamical Model (GPHDM),
which learns latent representations that preserve not only
the hierarchical structure of motions but also their temporal
dynamics to ensure physical consistency (see Fig. 1). To
achieve this, we extend the dynamics model of the Gaussian
Process Dynamical Model (GPDM) [15] to the hyperbolic
manifold and integrate it into the taxonomy-aware framework
of GPHLVM. Second, we introduce three novel motion
generation mechanisms that are both taxonomically-structured
and physically-consistent, namely: two probabilistic recursive
approaches, and a pullback-metric geodesics method. We test
our approach on the hand grasping taxonomy [1], showing
that the proposed GPHDM successfully preserves both the hi-
erarchical structure and temporal dynamics of the data, while
allowing us to generate novel physically-consistent motions.

II. BACKGROUND
Riemannian geometry: A Riemannian manifold M is a

smooth manifold equipped with a Riemannian metric, i.e., a
smoothly-varying inner product gx : TxM×TxM→R over
tangent spaces TxM [16]. When considering coordinates,
the Riemannian metric is represented in matrix form as
⟨u,v⟩x = uTGxv with u,v ∈ TxM. This metric defines
the length of curves in M, leading to the definition of
geodesics, defined as locally length-minimizing curves. To
operate with Riemannian manifolds, one can leverage the
Euclidean tangent spaces and the geodesics. The exponential
map Expx(u) = y maps u ∈ TxM to a point y ∈ M, so
that y lies on a geodesic starting at x in the direction u, and
such that the geodesic distance dM(x,y) equals the length
of u given by ∥u∥x =

√
⟨u,v⟩x. The inverse operation

defines the logarithmic map Logx(y) = u. Finally, the
parallel transport Γx→y(u) = v moves a vector u ∈ TxM
to TyM while preserving the Riemannian inner product.

Optimizing functions f : M → R requires generaliz-
ing the definition of gradients. The Riemannian gradient
gradxf of f at x ∈ M is the unique tangent vector in
TxM satisfying Duf(x)=⟨gradxf,u⟩x, with Duf(x) the
directional derivative of f along u ∈ TxM [17, Chap. 3].
The Riemannian Jacobian JM of f : M → RD is composed
by the Riemannian gradients for each output dimension, i.e.,

JM = [gradxf1 . . . gradxfD]T. (1)

Hyperbolic Manifold: The hyperbolic manifold is the
only Riemannian manifold with constant negative curva-
ture [11]. It is often represented by either the Poincaré
model HD

P [18], using local coordinates within the unit
ball, or the Lorentz model HD

L [19], [13], using Carte-
sian coordinates to represent the surface embedded in
RD+1 (see Fig. 1-left). We mostly rely on the latter as
it is numerically more stable. The Lorentz model is de-
fined as HD

L = {x ∈ RD+1 | ⟨x,x⟩L = −1, x0 > 0}, where
⟨x,y⟩L = xTGLy is the Lorentzian inner product with
metric GL = diag(−1, 1, ..., 1). Under this model, the
Riemannian operations of relevance for this work are,

dHD
L
(x, z) = arccosh(−⟨x, z⟩L) , (2)

Expx(u) = cosh(∥u∥x)x+ sinh(∥u∥x)
u

∥u∥x
, (3)

Logx(z) = dHD
L
(x, z)

z + ⟨x,z⟩Lx√
⟨x, z⟩2L − 1

, (4)

Γx→z(u) = u+
⟨z,u⟩L

1− ⟨x, z⟩L
(x+ z) (5)

projx(w) = Pxw = (GL + xxT)w , (6)

where projx(w) projects w ∈ RD+1 to TxHD
L .

Hyperbolic wrapped Gaussian distribution: Working
with probabilistic models on Riemannian manifolds requires
probability distributions that account for their geometry. We
employ the Wrapped Gaussian distribution (WGD), which
maps a normal distribution from a Euclidean tangent space
onto a Riemannian manifold M. This wrapping is performed
by a diffeomorphism ψ, which is often the exponential map
Expµ(·), centered at the distribution’s mean µ and restricted
to a domain where it is injective. Specifically, a WGD is
defined as the pushforward measure ψ#(N ) of a Gaussian
distribution with density N . The wrapping operation induces
a wrapped density function through the change of variables,

NW = N ◦ ψ−1 · | det(∂ψ−1)|. (7)

Given the Lorentz model as the representation of a hyperbolic
manifold, the hyperbolic WGD corresponds to,

NHDx
L

= N (Logµ(x);0,Σ) ·

(
∥Logµ(x)∥µ

sinh(∥Logµ(x)∥µ)

)Dx−1

.

(8)
Gaussian Process Hyperbolic Latent Variable Model

(GPHLVM): A GPLVM defines a stochastic mapping from
latent variables X = [x1, . . . ,xN ]⊤, xn ∈RDx to observa-
tions Y = [y1, . . . ,yN ]⊤, yn ∈ RDy with Dx <Dy via a
non-linear transformation modeled by a Gaussian Process
(GP) [9]. A GPLVM defines a generative model

p(Y ;X,Θ) = N (Y ;0, k(X,X) + σ2
yI) , (9)

with prior xn ∼ N (0, I), where k : RDx × RDx → R is
the GP kernel function that measures the similarity between
pairs (xn,xm), and Θ denotes the model hyperparameters,
i.e., the kernel parameters and the noise variance σ2

y .
In the hyperbolic setting, the latent variables xn ∈ HDx

L lie
in a hyperbolic space, so the generative mapping is defined
via a GPHLVM [6]. Therefore, the kernel function in (9) is
replaced by a hyperbolic kernel kH

Dx
L : HDx

L × HDx

L → R.
Here, we employ hyperbolic kernels that build on the defini-
tion of the heat kernel on Riemannian manifolds [20], [21],
[6], which accurately capture the non-Euclidean geometry of
the hyperbolic space. Moreover, the latent variables follow
a hyperbolic wrapped Gaussian prior xn ∼ NHDx

L
(µ0, αI),

where µ0 = (1, 0, . . . , 0)T is the hyperbolic origin and α
controls the spread of the latent variables. The GPHLVM
latent variables and hyperparameters are inferred via MAP
or variational inference similar as in the Euclidean case [6].

Pullback metrics: An immersion f : X → Y from a latent
space X to a Riemannian manifold Y equipped with a



Riemannian metric gy induces a pullback metric gP
x on X

which, for x ∈ X and u,v ∈ TxX , is given by [16, Chap.2],

gP
x(u,v) = gf(x)

(
dfx(u), dfx(v)

)
. (10)

In coordinates, the pullback metric is given in matrix form by
GP

x = JX T
GyJ

X , where JX is the Riemannian Jacobian (1)
of f at x. Intuitively, gP

x evaluates on tangent vectors of
TxX by moving them to Tf(x)Y to compute their inner
product. For an immersion f : X → RDy with Euclidean
co-domain, i.e., Gy = I , the pullback metric is defined as
GP

x = JXT
JX , where JX equals the Euclidean Jacobian

J = [∂f1∂x . . .
∂fDy

∂x ]T ∈ RDy×Dx .

III. GAUSSIAN PROCESS HYPERBOLIC
DYNAMICAL MODEL

The standard GPLVM, introduced in Sec. II, does not
account for the temporal structure of the data. To address this,
the GPDM [15] extends the GPLVM by adding a dynamics
prior p(X) over the latent variables. This prior, derived under
a first-order Markov assumption, incentivizes the latent points
to form smooth trajectories. A GPDM often assumes a linear
model fA(xt) =

∑Nϕ

i=1 aiϕi(xt) = ATϕt for the dynamics.
However, we introduce an alternative formulation that models
only the offset required to transition from xt to xt+1 as,

fA(xt) = xt +

Nϕ∑
i=1

aiϕi(xt) = xt +ATϕt. (11)

This can be equivalently written as x̃t+1 := xt+1 − xt =
ATϕt + ϵt, with ϵt ∼ N (0,Σx). While this modification
may seem unnecessary in the Euclidean case, it provides a
clearer connection for comparing the classical GPDM with
our method, which places a hyperbolic dynamics prior on
the latent space of the GPHLVM, as explained shortly.

A. Hyperbolic Tangent Vectors in Local Coordinates

The operations introduced for the Lorentz model of the
hyperbolic manifold in Sec. II represent tangent vectors as
(Dx+1)-dimensional elements embedded in the ambient space.
However, the intrinsic dimension of the hyperbolic manifold
and its tangent space is Dx, which leads to degenerated covari-
ance matrices Σ ∈ TxHDx

L , e.g., in the hyperbolic WGD (8),
since the eigenvalue along the eigenvector orthogonal to
TxHDx

L is always 0. In this paper, we apply a local change
of coordinates to represent tangent vectors and covariances
intrinsically as Dx-dimensional elements, thus avoiding issues
related to degenerated covariances in the WGD akin to [22].

We first define a canonical set of Dx basis vectors
Vµ0 =

(
e2 . . . eD+1

)
=
(
0 IDx

)⊤ ∈ R(Dx+1)×Dx in
the tangent space Tµ0H

Dx

L at the origin µ0 ∈ HDx

L . A set of
basis vectors Vx at any point x ∈ HDx

L can then be obtained
by parallel transporting the canonical basis vectors as,

Vx =
(
Γµ0→x(e2) . . . Γµ0→x(eD+1)

)
. (12)

Note that Vx consists of orthonormal basis vectors on TxHDx

L ,
i.e., V ⊤

x GLVx=IDx and Px = VxV
⊤
x . We obtain tangent

space vectors u and matrices Σ ∈ TxHDx

L in local coordinates

using Vx as ũ = V ⊤
x GLp and Σ̃ = V T

x GLΣGLVx. Tan-
gent space elements in ambient space coordinates are obtained
via the inverse operations u = Vxũ and Σ = V T

x Σ̃Vx.

B. Hyperbolic Dynamics Prior

To derive the GPHDM, we first generalize the dynamics
prior of the GPDM to the hyperbolic manifold. To do so, we
define a first-order hyperbolic dynamics model by extending
the Markov assumption to the hyperbolic manifold as,

xt+1 = ExpfA(xt)
(VfA(xt)ϵ̃t) with ϵ̃t ∼ N (0, Σ̃x), (13)

where we define the noise ϵ̃t ∈ RDx in local coordinates and
transform it onto the tangent space TfA(xt)H

Dx

L via the basis-
vector matrix VfA(xt) ∈ R(Dx+1)×Dx . Similar to the GPDM
in (11), we define fA via Nϕ nonlinear basis functions as,

fA(xt) = Expxt
(Vxt

A⊤ϕt), (14)

where ϕt = ϕ(xt) =
[
ϕ1(xt) ... ϕNϕ

(xt)
]⊤ ∈ RNϕ is a

vector of basis functions and A∈RNϕ×Dx is a weight matrix.
Notice that we again perform a change of basis to obtain the
Lorentz representation VxtA

⊤ϕt ∈ TxtH
Dx

L from the vector
A⊤ϕt ∈ RDx represented in local coordinates. In the Eu-
clidean case, we recover the first-order Markov dynamics (11).

The first-order hyperbolic Markov dynamics (13) lead to
the following transition probability,

p(xt+1 | xt,A) = NHDx
L

(xt+1; fA(xt),Σxt
) (15)

= N (Logxt
(xt+1);VxtA

⊤ϕt,Σxt) rt

= N (x̃t+1;A
⊤ϕt, Σ̃x) rt, (16)

where the WGD NHDx
L

is defined as in (7) with a pushfor-
ward ψ = Expxt

(·), resulting into the change of volume

rt = |det ∂ψ−1| =
( ∥Logxt

(xt+1)∥xt

sinh(∥Logxt
(xt+1)∥xt )

)Dx−1

, and noise

covariance matrix Σxt
= Vxt

Σ̃xV
⊤
xt

∈ Txt
HDx

L ob-
tained from the common local covariance Σ̃x ∈ RDx×Dx .
Equation (16) represents the Gaussian distribution in local
coordinates with x̃t+1 = V ⊤

xt
GLLogxt

(xt+1) ∈ RDx .
We derive the hyperbolic dynamics prior p(X) by marginal-

izing out the parameters A, similar to the Euclidean case.
For a trajectory X of N latent variables x1, ...,xN ∈ HDx

L
the hyperbolic dynamics prior is given as,

p(X) =

∫
p(X | A) p(A) dA. (17)

Incorporating the Markov probability transition (16) leads to,

p(X) = p(x1)

∫ N−1∏
t=1

p(xt+1 | xt,A) p(A) dA

(16)
= p(x1)

∫ N−1∏
t=1

N (x̃t+1;A
⊤ϕt, Σ̃x) rt p(A) dA.

We leverage the properties of the Euclidean Gaussian distri-
butions to reduce the expression as follows,

p(X) = p(x1)

Dx∏
d=1

∫ N−1∏
t=1

p(x̃t+1,d;ϕ
⊤
t Ad, σ

2
x,d) rt p(Ad) dAd



= p(x1)

N−1∏
t=1

rt

Dx∏
d=1

N (X̃2:N,d;0,ΦΦ⊤ + σ2
x,dIN−1)

= p(x1)

N−1∏
t=1

rt

Dx∏
d=1

N (X̃2:N,d;0,KX,d + σ2
x,dIN−1)

= p(x1)

N−1∏
t=0

rt N (X̃2:N ;0,KX + Σ̃x),

where Ad is the d-th column of A, X̃2:N = [x̃2, . . . , x̃N ]⊤,
and KX = ΦΦ⊤ is the (N−1)Dx×(N−1)Dx kernel matrix
constructed from the (N − 1) basis functions associated to
x1, . . . ,xN−1. Also, we used p(Ad) = N (Ad;0, INϕ

) and
N−1∏
t=1

p(x̃t+1,d;ϕ
⊤
t Ad, σ

2
x,d) = N (X̃2:N,d;ΦAd, σ

2
x,dIN−1).

Finally, we obtain the hyperbolic dynamics prior as,

p(X) =NHDx
L

(x1;µ0,Vµ0V
⊤
µ0
) (18)

NHDx
L

(X2:N ;X1:N−1,VX(KX + Σ̃x)V
⊤
X ),

where p(x1) was set as an isotropic hyperbolic WGD, and
VX = blockdiag(Vx1

, ...,VxN−1
) ∈ R(N−1)(Dx+1)×(N−1)Dx .

The kernel kX , used as KX = kX(X1:N−1,X1:N−1)
in (18), is key for the hyperbolic dynamics prior as it provides
a notion of similarity between consecutive hyperbolic latent
variables. Therefore, we must employ hyperbolic kernels
that accurately capture the geometry of the hyperbolic space.
Here, we leverage the hyperbolic squared exponential (SE)
kernels kH

Dx
L [20], [21], [6], and define kX = IDx

⊗ kH
Dx
L

as a multivariate kernel with shared values across output
dimensions with ⊗ denoting the Kronecker product. The
hyperbolic SE kernels in dimensions 2 and 3 are defined as,

kH
2
L(x, z) =

σ2

C∞

∫ ∞

ρ

se−s2/(2κ2)

(cosh(s)− cosh(ρ))1/2
ds, (19)

kH
3
L(x, z) =

σ2

C∞

ρ

sinh ρ
e−ρ2/(2κ2), (20)

where ρ = dHDx
L

(x, z) is the geodesic distance between
x, z ∈ HDx

L , κ and σ2 are the kernel lengthscale and
variance, and C∞ is a normalizing constant. To the best of
our knowledge, no closed form expression for H2

L is known,
therefore we use the Monte-Carlo approximation introduced
in [6]. Notice that higher dimensional hyperbolic SE kernels
are expressed as derivatives of the kernels (19)-(20) [20].

C. The GPHDM

Our GPHDM extends the GPDM to hyperbolic spaces
by combining the GPHLVM with the hyperbolic dynamics
prior (18). A GPHDM defines a generative model from
low-dimensional latent variables X = [x1, . . . ,xN ]⊤, xt ∈
HDx

L to high-dimensional trajectories Y = [y1, . . . ,yN ]⊤,
yt ∈ RDy , and it is formally described as,

p(Y ;X,Θ) = N (Y ;0,KY +Σy) , (21)

p(X; Θ) = NHDx
L

(x1;µ0,Vµ0V
⊤
µ0
) (22)

NHDx
L

(X2:N ;X1:N−1,VX(KX + Σ̃x)V
⊤
X ),

where p(Y ;X,Θ) is the model likelihood, p(X; Θ) is the
hyperbolic dynamics prior (18) from Sec. III-B, and Θ denotes
the model hyperparameters, i.e., the parameters of the hyper-
bolic kernels kY and kX , and the noise variances Σy and Σ̃x.

As in the Euclidean case, training a GPHDM consists of
optimizing the latent variables xt ∈ HDx

L along with the
parameters Θ by maximizing the log posterior of the model,

X,Θ = argmax
X,Θ

β1 log p(Y ;X,Θ)+β2 log p(X; Θ), (23)

where β1, β2 balance the trade-off between the likelihood
and dynamic prior. Analogous to its Euclidean counterpart,
the hyperbolic dynamics prior encourages consecutive latent
points xt and xt+1, to be close in the hyperbolic latent space,
therefore promoting smooth latent trajectories. Optimizing
the GPHDM requires accounting for the hyperbolic geometry
of the latent variables. To this end, we employ Riemannian
optimization methods [17]. In this paper, we use Riemannian
Adam [23] implemented in Geoopt [24] to optimize (23).

Finally, back constraints, introduced for the GPLVM
in [25], define the latent variables as a function of the
observations via an encoder function xt,d = gd(Y ;wd) with
parameters {wd}Dx

d=1. This method facilitates the post-training
incorporation of new observations into the latent space while
preserving local similarities among the resulting embeddings.
To ensure that latent variables lie on the hyperbolic manifold,
we use a similar back-constraints mapping as in [6], namely,

xt = Expµ0
(x̌t) with x̌t,d =

N∑
m=1

wd,mk
RDy

(yt,ym).

In this case, the loss (23) is optimized for {wd}Dx

d=1 and Θ.

D. Incorporating Taxonomy Knowledge

Our GPHDM allows us to learn smooth hyperbolic la-
tent trajectories of high-dimensional motions. When these
observations are associated with a robotics taxonomy, the
latent variables must preserve the taxonomy’s graph structure.
This means the hyperbolic distance between pairs of latent
variables should match their corresponding graph distances.
We enforce this property by introducing the graph-distance
information as inductive bias during the GPHDM training.

As shown in [26], the GPLVM latent space can be modified
by adding priors of the form p(X) ∝ e−ϕ(X)/σ2

ϕ , where
ϕ(X) is a function to minimize. This is equivalent to
augmenting the GPLVM loss with a regularization term
−β3ϕ(X). As in [6], we augment the GPHDM loss with
such a regularizer aiming at preserving the distances of the
taxonomy graph. We define ϕ(X) as the stress loss,

ℓstress(X) =
∑
i<j

(
dG(ci, cj)− dHDx

L
(xi,xj)

)2
, (24)

where ci denotes the taxonomy node to which the observation
yi belongs, and dG, dHDx

L
are the taxonomy graph distance

and the geodesic distance on HDx

L , respectively. The stress
loss (24) aims at preserving all the taxonomy graph distances
in the latent space HDx

L . However, for trajectories that transi-
tion between taxonomy classes, the intermediate trajectory



points are not assigned to any taxonomy node. In such cases,
we adapt the computation by applying the stress loss (24)
only to the start and end points of each trajectory, which are
anchored to specific nodes. The hyperbolic dynamics prior
then ensures that intermediate trajectory points form a smooth
path between these points in the latent space HDx

L , thereby
preserving the taxonomy graph globally.

IV. DYNAMIC MOTION GENERATION
The generation of new high-dimensional motions via the

GPHDM requires the creation of novel latent trajectories X∗

in HDx

L . Here we introduce three strategies to accomplish
this on the hyperbolic manifold. First, we adapt the mean
prediction and conditional optimization for recursive trajectory
generation of the GPDM [15] to the hyperbolic setting. Then,
we propose a new approach that generates trajectories as
geodesics on the pullback metric of the learned model.

A. Recursive motion generation
In the Euclidean case, the mean prediction method con-

structs a latent trajectory sequentially. The prediction for the
next step x∗

t+1 is the mean of the conditional distribution at
the current step x∗

t . This is straightforward as the conditional
of the Gaussian distribution is also a Gaussian, making the
mean analytically available. However, this convenient property
does not hold for the hyperbolic WGD as the conditional
of a WGD is not necessarily a WGD [27]. Consequently,
its mean is analytically intractable. To overcome this, we
leverage a parallel from the Euclidean case: for a Gaussian
distribution, the mean and the Maximum Likelihood Estimate
(MLE) are equivalent. We therefore propose to find the MLE
of the hyperbolic conditional distribution to determine the
next step in the trajectory as follows,

x∗
t+1 = argmax

x∗
t+1

N (x̃∗
t+1; m̃

∗, Σ̃∗) rt, with (25)

x̃∗
t+1 = V ⊤

x∗
t
GLLogx∗

t
(x∗

t+1)

m̃∗ = L∗V ⊤
XGLLogX1:N−1

(X2:N ),

Σ̃∗ = kX(x∗
t ,x

∗
t )−L∗kX(X1:N−1,x

∗
t ),

L∗ = kX(x∗
t ,X1:N−1)(KX + Σ̃x)

−1,

and rt is the change of volume defined in Sec. III-B. We
solve the optimization problem in (25) using Riemannian
Adam [23]. For quick convergence, we initialize the problem
at x∗

t+1 = Expx∗
t
(Vx∗

t
m̃∗), which maximizes the Euclidean

Gaussian component of the objective (25). The final solution
x∗
t+1 is usually located in the vicinity of this initial point.
A key limitation of the mean prediction approach, analo-

gous to the Euclidean case, is its inability to specify a desired
goal point for the new latent trajectory. To address this, we
extend the conditional optimization approach of [15] to the
hyperbolic manifold. This method allows us to specify start,
goal, and intermediate points, from which it interpolates the
remaining trajectory segments according to learned dynamics
prior. This approach optimizes the full conditional distribution,
mirroring the objective defined for the Euclidean case,

X∗ =argmax
X∗

p(Y ∗ | X∗,Y ,X,Θ) p(X∗ | X,Θ) (26)

s.t. Y ∗ = kY (X∗,X)(KY +ΣY )−1Y .

The main difference is that the conditional dynamics prior
corresponds to its hyperbolic version, i.e.,

p(X∗;X) = N (X̃∗
2:M ; m̃∗, Σ̃∗)

M−1∏
t=1

rt, with (27)

X̃∗
2:M = V ⊤

X∗GLLogX∗
1:M−1

(X∗
2:M ),

m̃∗ = L∗V ⊤
XGLLogX1:N−1

(X2:N ),

Σ̃∗ = K∗
X −L∗kX(X1:N−1,X

∗
1:M−1), and

L∗ = kX(X∗
1:M−1,X1:N−1)(KX + Σ̃X)−1.

We solve the optimization problem (26) using Riemannian
Adam [23]. To speed up convergence, we initialize the
trajectory segments of X∗ as hyperbolic geodesics.

B. Pullback-metric geodesic motion generation

From a Riemannian perspective, motion generation can be
cast as geodesics computation [6]. However, geodesics derived
from the intrinsic metric of the hyperbolic manifold often
risk traversing regions of low data density, where the model’s
uncertainty is high [7]. To overcome this, we endow the
latent space with a pullback metric induced by the stochastic
mapping of the GP (see Sec.II). By computing pullback-metric
geodesics, we can generate paths confined to the learned data
manifold, ensuring that the resulting trajectories comply with
the data distribution. Formally, the immersion f represented
by the GP is stochastic, i.e., f induces a distribution over
its Jacobian J , which itself induces a distribution over the
pullback metric [28].

In the Euclidean case, Tosi et al. [28] assumed that the
probability over J follows a Gaussian distribution, and has
independent rows Jd ∈ RDx , each with its own mean but
shared covariance matrix. Thus, the Jacobian distribution is,

p(J) =

Dy∏
d=1

N (Jd | µJd
,ΣJ ) . (28)

The corresponding metric tensor follows a non-central Wishart
distribution [29], p(GP,R

x ) = WDx
(Dy,ΣJ ,E[J ]TE[J ]),

from which the expected metric tensor is computed as
E[GP,R

x ] = E[J ]TE[J ] + DyΣJ . In the hyperbolic case,
Augenstein et al. [7] follow a similar strategy. In this
context, our GPHDM is a stochastic mapping of the form
f : HDx

L → RDy (as the GPLHVM in [6]), whose Jacobian
is formed as in (1). In this case, the Jacobian distribution is,

p(JL) =

Dy∏
d=1

N (JL
d ;PxµJd

,PxΣJP
T
x ) . (29)

where Px is the projector operator defined in (6). As
GP,R

x , the metric tensor GP,L
x follows a non-central Wishart

distribution p(GP,L
x ) = WDx

(Dy,Σ
L
J ,E[JL]TE[JL]) with

ΣL
J =PxΣJP

T
x , leading to the expected metric [7],

E[GP,L
x∗ ] = Px∗(µT

JµJ +DyΣJ )P
T
x∗ . (30)

The pullback metric (30) allows us to compute geodesics
that reflect the geometry of both the intrinsic hyperbolic



(a) GPLVM (b) GPDM (c) GPHLVM (d) GPHDM

Fig. 2: Embeddings of hand grasps colored according to the grasp class of the last trajectory point with colors matching those of Fig. 1.
The top and bottom rows show 2- and 3-dimensional latent spaces, respectively.

space and the learned data distribution. These geodesics are
computed by minimizing the curve length or, equivalently,
the curve energy E with respect to the pullback metric. For a
geodesic discretized into a sequence of M points xi ∈ HDx

L ,
this problem reduces to minimizing,

E =

M−2∑
i=0

vT
i G

P,L
xi

vi , with vi = Logxi
(xi+1). (31)

Following [7], we regularize the objective (31) with
the spline energy Espline ≈

∑M−2
i=1 dHDx

L
(xi, x̄i)

2, where
x̄i = Expxi−1

( 12 Logxi−1
(xi+1)) represents the geodesic

midpoint between xi−1 and xi+1. This regularization term
prevents uneven spacing of the discrete points along the
geodesics. Finally, our geodesic optimization problem is,

min
x0,...,xM−1

E + λEspline, (32)

with λ balancing the regularization. As for the recursive
motion generation in Sec.IV-A, we employ Riemannian
Adam [23] to solve our geodesic optimization problem.

V. EXPERIMENTS

We test the proposed GPHDM and dynamic motion
generation strategies on data associated with a hand grasp
taxonomy [1] that organizes common grasp types [3] into a
tree structure based on their muscular and kinematic properties
(see Fig. 1). We use a dataset from the KIT whole-body
motion database [30] consisting of 38 motions of 19 common
grasp types obtained from recordings of humans grasping
different objects. For each motion, a subject (ID 2122 or
2123) reaches out from an initial resting pose to grasp an
object placed on a table. The dataset consists of trajectories
Y ∈ RN×24 representing the temporal evolution of the 24
degrees of freedom of the wrist and fingers. We preprocessed
the recorded data by: (1) Applying a low-pass filter to remove
high-frequency noise; (2) Trimming the start and end of each

trajectory to keep only the motion from the initial resting
pose to the grasp completion, that we define as the time
when the grasped object is first moved by the human; (3)
Subsampling the trajectories; and (4) Centering the data to
allow for the use of a zero mean function in the GPLVMs.
After preprocessing, each trajectory is composed of 30 to 40
data points for a total of N = 1321 data points.

A. Hyperbolic Embeddings of Taxonomy-structured Motions

We embed the trajectories associated to the aforementioned
grasp taxonomy into 2- and 3-dimensional hyperbolic and
Euclidean spaces using back-constrained GPHLVM, GPHDM,
GPLVM, and GPDM. We initialize the latent variables of
all models by minimizing the stress (24) of the start and
end points of each trajectory with respect to their associated
taxonomy nodes, using the hyperbolic and Euclidean distance
for the respective models. Then, we initialize the intermediate
points of each trajectory as equally spaced along the hyper-
bolic geodesic connecting the obtained start and end points.

Fig. 2 shows the obtained latent spaces. We observe that,
for all models, the hand’s initial resting pose is located near
the latent space origin, from where the embedded trajectories
progress outwards until the final grasp. Due to the stress prior,
final grasps are organized in the latent space according to the
taxonomy with grasps of each node grouped together in the
latent space. Importantly, the trajectories appear scattered in
the latent spaces of both GPLVM (Fig. 2a) and GPHLVM
(Fig. 2c). In contrast, the dynamics priors of the GPDM
(Fig. 2b) and GPHDM (Fig. 2d) effectively lead to smooth
trajectories between the resting pose and the final grasps.

A quantitative evaluation of the models is presented in
Table I. The stress reported in the first columns shows that
all hyperbolic models better capture the taxonomy structure
that their Euclidean counterparts. The difference is more
prominent in the 2-dimensional case, consistent with the
ability of hyperbolic geometry to embed tree-like structures in



TABLE I: Average stress, mean squared jerk (MSJ), and reconstruc-
tion mean squared error (MSE) per model and geometry.

Model Stress ↓ MSJ (×100) ↓ MSE (×100) ↓

GPLVM R2 0.21± 0.43 1.87± 6.15 0.50± 1.28
GPDM R2 0.18± 0.47 0.04± 0.04 2.11± 5.13

GPHLVM H2
L 0.09± 0.19 2.53± 10.30 1.26± 2.70

GPHDM H2
L 0.10± 0.26 0.03± 0.02 2.03± 4.40

GPLVM R3 0.14± 0.21 0.58± 2.06 0.29± 0.76
GPDM R3 0.11± 0.21 0.02± 0.04 0.31± 0.99

GPHLVM H3
L 0.09± 0.13 1.68± 7.47 0.32± 0.95

GPHDM H3
L 0.07± 0.10 0.02± 0.02 0.32± 1.04

low-dimensional spaces. In general, we observed similar stress
values between the GPHLVM and GPHDM. The second
column of Table I reports the mean squared jerk (MSJ),
which quantifies the smoothness of the latent trajectories.
The MSJ of a single trajectory is given by,

MSJ(x1, ...,xN ) =
1

N − 4

N∑
t=4

|∆2vt|2, with (33)

∆2vt = vt − 2vt−1 + vt−2 and vt = dM(xt,xt−1),

where dM is the hyperbolic or Euclidean distance depending
on the latent space geometry, vt is a discrete approximation
of the velocity, and ∆2 is the finite difference operator. We
observe a prominent MSJ reduction for the GPHDM and
GPDM compared to the GPHLVM and GPLVM, indicating
that both hyperbolic and Euclidean dynamics priors effectively
promote smooth trajectories. Moreover, the GPHDM achieves
the lowest MSJ among all models for both latent space dimen-
sionality. Finally, the last column of Table I reports the mean
squared error (MSE) of the decoded trajectories with respect
to the training data. All models achieve similar MSE with 3-
dimensional latent spaces leading to lower errors. In summary,
the GPHDM inherits the superior taxonomy preservation of
the GPHLVM, while simultaneously preserving the trajectory
dynamical structure akin to the GPDM.

B. Dynamic Motion Generation

We evaluate the three different approaches to generate novel
motions by decoding latent space trajectories. Fig. 3 shows
the hyperbolic geodesics interpolating from a lateral to a stick
grasp in the latent space of 2- and 3-dimensional GPHDMs,
akin to the approach proposed in [6], alongside one exemplary
dimension of the decoded hand motions. We observe that
the 2-dimensional geodesic does not follow the structure of
the training data and crosses the training trajectories, thus
resulting in jerky hand motions. Moreover, the 3-dimensional
geodesic predominantly passes through data-sparse regions,
resulting in high-uncertainty motion predictions that revert
to the non-informative mean. In both cases, the geodesics
result in physically impractical motions that fail to capture
the underlying dynamics of the training data.

Fig. 4-left displays a latent trajectory obtained via the
mean prediction approach introduced in Sec. IV-A. The latent
trajectory is initialized in the middle of a training trajectory
leading to a lateral grasp. We observe that the dynamics
prior induces an outward direction, resulting in motion

Fig. 3: Left: Embeddings of hand grasps and hyperbolic geodesics
( ) from a lateral ( ) to a stick ( ) grasp. Right: Representative
dimension of the probabilistic hand motion prediction for the
geodesics ( ) with mean and uncertainty, along with training
trajectories for the lateral (reversed) ( ) and stick ( ) grasps.
The top and bottom rows show 2- and 3-dimensional latent spaces.

Fig. 4: Latent trajectories ( ) obtained via recursive motion
generation in a 3-dimensional GPHDM (zoomed-in). Left: Mean
prediction towards a lateral grasp ( ). Right: Conditional prediction
from an index finger extension ( ) to a lateral ( ) grasp.

predictions that closely follow the training trajectory. However,
as previously discussed, the mean prediction approach does
not allow us to specify a desired goal point for the latent
trajectory. Fig. 4-right shows a latent trajectory obtained
via the conditional prediction approach of Sec. IV-A with
start and goal points set as an index finger extension and
a lateral grasp, respectively. In contrast to geodesics, the
obtained trajectory incorporates the hyperbolic dynamics prior
to transition between the two grasps. However, the conditional
predictions follow the Markov assumption embedded in
the hyperbolic dynamics prior, which induces a sense of
directionality in the latent trajectories, as illustrated in Fig. 5.
To avoid this issue, we trained the GPHDM of Fig. 4-right on
an augmented dataset by including reverse training motions,
i.e., motions from the final grasp onto the initial resting pose.
Importantly, the recursive motion generation strategies do not
prevent latent trajectories to traverse data-sparse regions, and
thus often lead to motion predictions reverting to the mean
and featuring high uncertainty.

Fig. 6 shows a latent trajectory obtained as a geodesic
with respect to the GPHDM’s pullback metric introduced in
Sec. IV-B. The corresponding hyperbolic geodesic (akin to
Fig. 3) is depicted as a reference. We observe that, in contrast
to the hyperbolic geodesic and conditionally-optimized latent
trajectories, the pullback geodesic closely adheres to the



Fig. 5: Illustration of the directionality induced by the GPDM’s
Markov prior on latent trajectories obtained via conditional predic-
tions. The outward transition (left) from an index finger extension
( ) to a lateral ( ) grasp follows a training trajectory, while the
reverse transition (right) avoids the training data.

Fig. 6: Top left: 3-dimensional embeddings of hand grasps via a
GPHDM with a hyperbolic ( ) and a pullback ( ) geodesic
from a ring ( ) to a spherical ( ) grasp. Top right: Representative
dimension of the probabilistic hand motion prediction with mean
and uncertainty along with training trajectories for the spherical
( ) and ring (reversed) ( ) grasps. Bottom: Generated hand
motions from the decoded geodesics.

data support. Thus, the pullback-metric geodesic results in
low-uncertainty motion predictions. As shown at the bottom
of Fig. 6, the decoded hyperbolic geodesic leads to hand
motions displaying large deviations from the start ring and
goal spherical grasps. In contrast, by capturing the underlying
motion dynamics and adhering to the training data, the
decoded pullback geodesic produces physically-plausible
motions with little deviation from the start and goal grasps.

VI. CONCLUSIONS

This paper proposed the GPHDM, a model that leverages
hyperbolic geometry, human-designed taxonomy structures,
and dynamics priors as inductive biases to learn latent
spaces that preserve the hierarchical structure and temporal
dynamics of human motions. We showed that these three
forms of inductive biases are essential to learn taxonomy-
aware dynamically-consistent latent spaces. Moreover, we
introduced three novel mechanisms for generating taxonomy-
aware and physically-consistent motions. Our results showed
that trajectories obtained as geodesics on the pullback metric
of the learned model produced low-uncertainty, physically-
consistent motions that capture hierarchical structure and
temporal dynamics of the motion data.
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