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Abstract— Folding garments reliably and efficiently is a
long standing challenge in robotic manipulation due to the
complex dynamics and high dimensional configuration space of
garments. An intuitive approach is to initially manipulate the
garment to a canonical smooth configuration before folding. In
this work, we develop SpeedFolding, a reliable and efficient
bimanual system, which given user-defined instructions as
folding lines, manipulates an initially crumpled garment to
(1) a smoothed and (2) a folded configuration. Our primary
contribution is a novel neural network architecture that is able
to predict pairs of gripper poses to parameterize a diverse set of
bimanual action primitives. After learning from 4300 human-
annotated and self-supervised actions, the robot is able to fold
garments from a random initial configuration in under 120 s
on average with a success rate of 93%. Real-world experiments
show that the system is able to generalize to unseen garments of
different color, shape, and stiffness. While prior work achieved
3-6 Folds Per Hour (FPH), SpeedFolding achieves 30-40 FPH.

See https://pantor.github.io/speedfolding for
code, videos, and datasets.

I. INTRODUCTION

These tasks are largely performed by humans due to the
complex configuration space as well as the highly non-
linear dynamics of deformable objects [1], [2]. Additionally,
folding is a long horizon sequential planning problem, as
it requires to first flatten or smooth the garment, and then
follow a sequence of steps [3], [4] or sub-goals [5] to achieve
the desired fold.

Prior work has mainly focused on single-arm manipula-
tion [2], [6], [7], [8] or on complex iterative algorithms [3],
[4], [9], requiring a large number of interactions and resulting
in long execution times. Recently, Ha et al. [10] proposed a
method for smoothing cloth that computes the pick points for
a high-velocity dynamic fling action directly from overhead
images, and can smooth garments to 80% coverage in 3
actions on average. However, the proposed 4 degrees of
freedom (DoFs) action parameterization constrains the two
pick poses significantly, in particular by discrete distances
and a fixed rotation in between.

We present SpeedFolding, an end-to-end system for fast
and efficient garment folding. At first, a novel BiManual Ma-
nipulation Network (BiMaMa-Net) learns to predict a pair of
gripper poses for bimanual actions from an overhead RGBD
input image to smooth an initially crumpled garment. Once
the garment has been smoothed to a desired level, determined
by a learned smoothing classifier, SpeedFolding executes a
folding pipeline (see Fig. 1). This paper contributes:
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Fig. 1: SpeedFolding learns to fold garments from arbitrary con-
figurations: Given a crumpled t-shirt, the robot unfolds using fling
actions (1, 2), smooths it with a drag action (3) until it is sufficiently
smoothed. It then moves the t-shirt for better reachability (4), and
applies folds (5-6) to achieve the user-defined configuration (7).

1) The BiMaMa-Net architecture for bimanual manipula-
tion that computes two corresponding planar gripper
poses without any spatial restrictions, with an automated
calibration procedure to account for robot reachability
constraints.

2) An end-to-end robotic system for efficient smoothing
and folding. First, the system learns to smooth a garment
to a sufficiently smoothed configuration through self-
supervision. Then, the robot folds the garment according
to user-defined folding lines.

3) An experimental dataset from physical experiments that
suggests the system can fold garments with a success
rate of over 90%, including garments unseen during
training that differ in color, shape and stiffness. Fold-
ing a t-shirt takes under 120 s on average, improving
baselines by 30 to 47% and prior works by 5 to 10×.

II. RELATED WORK

Bimanual robotic manipulation has been studied exten-
sively in fields from surgical robotics to industrial manipula-
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Fig. 2: Action Primitives. Given an overhead RGBD image, BiMaMa-Net selects a smoothing action from a discrete set of primitives
(left box), and computes a pair of end-effector poses. Coverage calculation (in blue) is insensitive to wrinkles in the fabric (right box,
bottom) and therefore BiMaMa-Net learns to classify configurations as Sufficiently Smoothed (right box, top) (in yellow). Folding a
t-shirt from a smooth configuration is done through a sequence of folding primitives (center box).

tion [11]. A dual-arm system extends the workspace, allows
for increased payload and for more complex behaviours than
a single arm system [5], [12], [13], [14], but comes at the cost
of higher planning complexity due to the additional DoFs and
self-collisions [15]. A promising line of research is to employ
dual-arm systems for garment manipulation [16]. Garments
are especially difficult to control and manipulate due to
their large configuration space, self-occlusions, and complex
dynamics [2]. Recent works have mainly focused on garment
smoothing from arbitrary configurations [10], or garment
folding, assuming the garment has been initially flattened [5].
We present an end-to-end approach to smoothing and then
folding garments from initial crumpled configurations.

Garment smoothing aims to transform the garment from
an arbitrary crumpled configuration to a smooth configura-
tion [7]. Prior works have focused on extracting and identi-
fying specific features such as corners and wrinkles [3], [4],
[17], [18]. Recent methods have used expert demonstrations
to learn garment smoothing policies in simulation [2], [6],
[7], however these methods learn quasi-static pick-and-place
actions that require a large number of interactions on initially
crumpled garments. Ha et al. [10] introduced a novel 4 DoF
dynamic fling action parameterization learned in simulation
that can achieve ∼ 80% garment coverage within 3 actions.
However, this parameterization is (1) limited to fling actions,
(2) fails to fully smooth garments, and (3) induces grasp
failures in more than 25% of actions. In this work we use
expert demonstrations and self-supervised learning purely in
the physical world to train a novel bimanual manipulation
neural network (NN) architecture to smooth a garment such
that it is ready to be folded.

Garment folding has many applications in hospitals,
homes and warehouses. Early approaches rely heavily on
heuristics and can achieve high success rates, but have long

cycle times on the order of 10 to 20min per garment [3],
[4], [9], [19], [20]. Recent methods have been focusing
on learning goal-conditioned policies in simulation [5], [6],
[21], [22] and directly on a physical robot [23]. In this
work, we compare an instruction-based folding approach that
can reliably fold smoothed garments, with a novel folding
approach that can fold a t-shirt directly from a non-smooth
configuration given prior knowledge about its dimensions.

III. PROBLEM STATEMENT

Given a visual observation ot ∈ RW×H×C of the
garment’s configuration st at time t, the objective is to
compute and execute an action at to transfer the garment
from an arbitrary configuration to a desired user-defined s∗

goal configuration. In particular, s∗ is invariant under the
garment’s position and orientation in the workspace. We
assume an overhead observation with a calibrated pixel-to-
world transformation, as well as a garment that is easily
distinguishable from the workspace.

We consider a dual-arm robot with parallel-jaw grippers
executing actions of type m ∈ M from a discrete set of
pre-defined action primitives. In particular, we parameterize
each primitive by two planar gripper poses

at = ⟨m, (x1, y1, θ1), (x2, y2, θ2)⟩

for each arm respectively, in which (xi, yi) are coordinates
in pixel space, and θi is the end-effector rotation about the z
axis. We further assume a flat obstacle-free workspace and a
motion planner that computes collision-free trajectories for
a dual-arm robot.

IV. METHOD

SpeedFolding uses BiMaMa-Net, a learned garment-
smoothing method to bring an initially crumpled garment to a
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Fig. 3: BiManual Manipulation Net (BiMaMa-Net) architecture first maps an image to a manipulation primitive type via its shared
encoder and classification head. Given a primitive, it predicts dense unconditioned value maps for a discrete set of gripper orientations.
It then calculates pixel-wise correspondence descriptors. A descriptor pair, representing a bimanual action, is combined in the descriptor
head to predict its joint value.

sufficiently smooth configuration, followed by an instruction-
based garment folding pipeline.

A. Action Primitives

We are interested in the set of quasi-static and dynamic
action primitives that enable the robot to (1) transfer an arbi-
trary garment configuration st to a folded goal configuration
s∗ (completeness), (2) reducing the number of action steps
(efficiency), and (3) with a reduced number of primitives
(minimality). Each action primitive is defined through a pair
of poses as well as a motion trajectory. All primitives share
a common procedure to reliably grasp the garment with
parallel jaw grippers: Each gripper moves 4 cm above the
grasp pose at, rotates 8◦ so that one fingertip is below the
other, and moves 1 cm towards the direction of the higher
fingertip. This motion improves the success for grasping in
particular at the edge of the garment. We define following
learned primitives (Fig. 2 left box):
Fling: Given two pick poses, the arms first pick those

points, lift the garment above the workspace and stretch
it until a force threshold is reached, measured using
the arms’ internal force sensors. Next, the arms apply a
dynamic motion, flinging the garment forward and then
backward while gradually reducing the height toward the
workspace. Similar to [10], we find the fling motion to be
robust under change of velocity and trajectory parameters,
and therefore we keep these parameters fixed. The fling
primitive allows to significantly increase the garment’s
coverage in a few steps, but often does not yield a smooth
configuration.

Pick-and-place: Given a pick and a corresponding place
pose, a single arm executes this quasi-static action, while

the second arm presses down the garment at a point on
a line extending the pick from the place pose. Pick-and-
place enables the robot to fix local faults such as corners
or sleeves folded on top of the garment.

Drag: Given two pick points, the robot drags the garment for
a fixed distance away from the garment’s center of mask,
leveraging the friction with the workspace to smooth
wrinkles or corners, e.g. sleeves folded below the garment.

We define heuristic-based primitives (Fig. 2 center box):

Fold: Both arms execute a pick-and-place action simultane-
ously to fold the garment. The heuristic for calculating
the pick and place poses is explained in Sec. IV-E.

Move: While similar to drag, this primitive’s pick poses and
its drag distance are calculated by a heuristic so that the
garment’s center of mask is moved to a goal target point.
Usually, the robot drags the garment towards itself to
mitigate reachability issues in subsequent actions. Sec. IV-
E provides details about the pose calculation.

We define an additional learned primitive to switch from
garment-smoothing to folding (Fig. 2 right box):

Sufficiently Smoothed: We find that deciding whether a
garment is ready to be folded purely from coverage
computation, as done in prior works [6], [7], [10], is not
sufficient. In particular, even a high coverage is prone to
wrinkles or faults that might reduce the subsequent fold
quality significantly (as described in Fig. 2). Instead of
relying on the coverage, BiMaMa-Net returns a smooth-
ness value given an overhead image. While this primitive
is not used to change the configuration of the garment, it
is used to switch from garment-smoothing to folding.



B. BiMaMa-Net for Bimanual Manipulation

Predicting a single pose from an overhead image is com-
monly done by first estimating a pixel-wise value map per
gripper z-axis rotation θ, in which each pixel value represents
a future expected reward (e.g., grasp success, increase in
garment coverage, etc.), and then selecting the maximum
greedily [24], [25], [26], [10]. Extending this approach to two
corresponding planar poses (x, y, θ)1,2 conditioned on each
other is however challenging primarily due to the exponential
scaling of possible end-effector poses with the number of
dimensions. In particular, this is a multi-modal problem,
and the predicted unconditioned value maps Qunc(x, y, θ)
have multiple peaks (as in Fig. 6). While unconditioned
value maps may provide information relevant for downstream
bimanual tasks, such as the grasp success, they provide no
information regarding their correspondences. To address this
we define correspondence descriptors

d = (Qunc, x, y, sin θ, cos θ,m, e)

where e ∈ RM is a learned embedding for each pixel (disre-
garding orientations θ) concatenated with the unconditioned
value Qunc, positional encodings, and the action primitive
type m. Then, the final conditioned value Q(d1,d2) depends
on a descriptor pair.

Fig. 3 shows the complete information flow of BiMaMa-
Net: A shared encoder using a ResNext-50 [27] backbone
maps an input image (e.g. depth and grayscale) to high-level
features. First, a classification head predicts the manipulation
primitive m. For a Sufficiently Smoothed primitive, no further
action is required. For all other learned primitives, a U-
Net [28] decoder predicts value maps for a discrete number
N of end-effector orientations θ. We choose a U-Net ar-
chitecture over fully convolutional NN used in prior robotics
manipulation works [29], [30], [10], [25] as U-Nets are better
suited for high-resolution inputs that we find necessary for
detecting edges and wrinkles for garment smoothing.

Then, BiMaMa-Net samples a set of poses from the value
map, where pixels with higher values are more likely to
get sampled. During training, BiMaMa-Net samples from
p(a|s) ∼

√
Qunc(a, s) to allow for sampling negative

examples to better estimate the underlying distribution of
action values. For inference, BiMaMa-Net samples from
p(a|s) ∼ Qunc(a, s)

2 which emphasizes action poses with
high values. It then calculates the correspondence descriptors
for each pose, and a final NN head combines all descriptor
pairs d1, d2 to output the final conditioned action value Q.

If two poses are interchangeable (e.g., during a fling or a
drag action), a single decoder predicts the value maps per
θ. However, if a certain relation between the poses must be
maintained (e.g., the conceptual difference between the pick
and the place poses in a pick-and-place action) then separate
decoders compute two value maps Q1

unc and Q2
unc.

C. Reachability Calibration

As shown in Fig. 6, to ensure reliable garment smoothing
and folding, the robot should compute the actions that
maximize the expected reward within the reachable space.

Execute
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Smoothed?
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Self-supervised 
data collection

BiMaMa-Net
training

Offline

Online

Input image Predict a bimanual action

fling

Fold

Fig. 4: SpeedFolding Pipeline. We start by manually annotating
input images with primitives and gripper poses, train a NN and
then iteratively use the NN for self-supervised data collection (top).
During runtime, we use the NN to predict a primitive and a
pair of poses given an input image and execute it on the robot.
If the resulting garment configuration is classified as Sufficiently
Smoothed the robot will fold the garment, otherwise it will repeat
the process.

To find the robot’s reachable space, we perform a one-time
boundary search along a discretized grid in the action space
(x, y, θ) for each gripper, assuming a constant height z above
the table. The search, done separately for each θ, starts with
a fixed lower value of y and increases x until the inverse
kinematics fails to find a solution. Afterwards, it repeatedly
increases y or decreases x so that the search is confined to
the continuous boundary at which reachability fails. As a
result, we get masks Ml and Mr for the left and right arms

M(x, y, θ) → {0, 1}

that can be incorporated into BiMaMa-Net as spatial bi-
nary constraints by restricting the action sampling to the
masks. To ensure that each reachability mask contains at
least one pose, we create up to four masked value maps
from Q1

unc (or Q2
unc) by multiplying them with Ml or

Mr: {Q1l
unc, Q

1r
unc, Q

2l
unc, Q

2r
unc}. An action value Qunc = 0

is ignored in the sampling process. We then sample and
combine the correspondence descriptors from Q1l

unc and
Q2r

unc, and vice versa for Q1r
unc and Q2l

unc.
We find that using a calibrated reachability mask for each

end-effector orientation θ separately significantly reduces the
number of false negatives that arise when using approxi-
mations, such as a circular mask. After selecting the final,
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Fig. 5: Folding Approaches. We compare three approaches for folding. Left: A template mask with a sequence of folding lines that is
compiled to a number of bimanual pick-and-place actions. Center: A so-called "2-second" folding heuristic that applies only very few
steps however is for t-shirts only [31]. Right: A fling-to-fold primitive that combines a fling with an immediate folding action. Here, the
garment does not need to be fully smoothed, however prior knowledge is required.

reachable poses (x, y, θ)1 and (x, y, θ)2 during runtime, we
check for possible collisions due to inter-arm interaction. If a
potential collision is detected, the next best action is selected
until reachable and collision-free poses are found.

D. Training for Smoothing

We train BiMaMa-Net via self-supervised real-world
learning to predict the manipulation primitive type m and
the corresponding action poses (x, y, θ)1 and (x, y, θ)2 given
an overhead image of a garment.

In order to scale real-world interaction, the learning pro-
cess is designed for minimal human intervention. First, we
collect examples of smooth configurations to train a clas-
sifier outputting the confidence p(Sufficiently Smoothed|s).
Additionally, let cov(s) be the coverage of the garment
at configuration s observed from an overhead perspective,
calculated by background subtraction and color filtering. We
define the reward r:

rt = max (tanh [α (cov(st+1)− cov(st))

+ β (p(smoothed|st+1)− p(smoothed|st))] , 0)

as the sum of the change of coverage and Sufficiently
Smoothed confidence with tuned weights α and β respec-
tively. It is scaled to r ∈ [−1, 1] first and then clipped to
a non-negative value, so that no change equals zero reward.
To ensure continuous training, the robot resets the garment
configuration by grasping it at a random position on its mask
and dropping it from a fixed height. We iteratively train a
self-supervised data collection NN, interleaving training and

(a) Workspace (b) Reachability mask

Fig. 6: Reachability. (a) We perform a boundary search to compute
separate reachability masks for the left (yellow) and right (blue)
robot arms. (b) BiMaMa-Net guarantees at least one pick pose
(black) from the value map within each mask.

execution (Fig. 4). The robot explores different actions by
uniformly sampling from the set of Ns best actions.

To avoid a purely random and sample-inefficient initial
exploration, we kickstart the training with human annota-
tions. We differentiate between self-supervised and human
annotated data within the training process in three ways: (1)
We set the reward of human annotated data to a fixed rh.
(2) Besides training the value map at the specific annotated
pixel position and orientation, we follow [26] and introduce a
Gaussian decay centered around each pose as a global target
value instead. (3) The classification head is trained only with
data that has a reward higher than a tuned threshold r ≥ rc.

E. Folding Pipeline

We compare three approaches for folding: instruction-
based folding, which can be adapted to different garments
and different folding techniques, ”2-second“ fold, a known
heuristic for surprisingly fast t-shirt folding, and fling-to-fold
(F2F), a novel technique that can increase the number of
folds-per-hour (FPH) by leveraging prior knowledge about
the t-shirt’s dimensions.
Instruction-based Folding: As shown in Fig. 5 (left), given

a mask of a smoothed garment, the robot iteratively folds
the garment along user-specified folding lines. These allow
to define the goal configuration of a smooth garment
precisely without using high-dimensional visual goal rep-
resentations [5], [6]. A complete user instruction includes:
(1) A binary mask called template and (2) a list of folding
lines relative to the template (Fig. 5 left). The folding
direction is defined with respect to the line according to
the right-hand-rule.
To execute the folding lines, a particle-swarm optimizer
computes an affine transformation by registering the tem-
plate with the current image. Afterwards, SpeedFolding
calculates corresponding poses for a bimanual fold action:
Let pent be the first and pexit be the second intersection
point of the line and the mask, where the line enters and
exits the mask respectively. This splits the mask into a
base and a fold-on-top part. On the contour of the latter,
the algorithm finds two pick points p1 and p2 so that
the area of the four-sided polygon (pent,p1,p2,pexit) is
maximized. We use the normal at the pick point for the
gripper orientation θ. The place poses are calculated by
mirroring the pick poses at the folding line.
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Fig. 7: Garment smoothing until it is Sufficiently Smoothed. We compare the normalized coverage (left) and prediction of the learned
Sufficiently Smoothed classifier (center) over the number of action steps with different baseline methods. The system is able to generalize
to unseen garments of different color, patterns, and material (right).

“2-Second” Fold: For specific garments such as t-shirts,
there exist heuristics for efficient folding. Given a smooth
configuration, the ”2-second“ fold follows a set of steps
that requires using two arms simultaneously (Fig. 5), and
is therefore well suited for a bimanual robot [31].

Fling-to-fold (F2F): We observe that (1) a fling action
while grasping a sleeve and the non-diagonal bottom
corner is especially effective and (2) the first fold action
grasps the same points. We conclude that these two
steps can be merged to reduce imaging and motion time.
We implement F2F by adding a learned primitive to
BiMaMa-Net that computes these pick points if visible.
The primitive’s motion is implemented by combining a
fling with a consecutive fold action (Fig. 5). To ensure
that the t-shirt is folded correctly, prior knowledge about
the t-shirt’s dimension is required to adapt the height of
each arm prior to the fold.

V. EXPERIMENTS

We experimentally evaluate the garment smoothing and
folding performance of SpeedFolding on a known t-shirt, as
well as on two garments unseen during training.

A. Experimental Setup
We perform experiments on a physical ABB YuMi robot

with parallel-jaw grippers. The gripper’s fingertips are ex-
tended by small 3D printed teeth to improve grasping. A thin
sponge mattress is placed on the workspace to allow the grip-
pers to reach below the garment without colliding. A Photo-
neo PhoXi captures overhead grayscale and depth images of
the workspace, generating observations ot ∈ R256×192×2. As
the garment is frequently outside the camera’s field of view,
a 1080P GESMATEK RGB webcam is mounted above the
workspace and used for coverage calculation. Computing is
done on a system using an Intel i7-6850K CPU, 32GB RAM,
and a NVIDIA GeForce RTX 2080 Ti.

We first perform data collection, and train IV-D on a single
t-shirt. Initially, 600 scenes of random garment configuration

were recorded and manually annotated in 1 h. After training
a first NN, the robot collected 2200 self-supervised actions
in 16 h. To include data of less frequently observed actions,
we copied and re-annotated 1500 actions in 3 h, resulting
in a dataset of 4300 actions in total. We used a single t-
shirt shown in Fig. 1 throughout the training. We further
perform data augmentation, including random translations,
rotations, flips, resizes, brightness and contrast changes. We
use N = 20 gripper orientations equally distributed over
[0, 2π) to implement the BiMaMa-Net decoder as described
in Sec. IV-B. For training, we manually tune Ns = 50, rh =
0.8 and rc = 0.3 (see Sec. IV-D).

We design a set of garment smoothing and folding ex-
periments to evaluate SpeedFolding. Initial garment config-
urations are generated by environment resets as described
in IV-D. Each experiment is averaged over 15 trials. We
ignore experiments that terminate early due to a motion
planning error, as this is not the focus of this paper. A trial is
considered unsuccessful if the garment was not successfully
folded according to the majority vote of three reviewers
or the number of actions exceeded a maximal horizon of
H = 10. We define a grasp success if the gripper holds
the garment after an executed action. For known garments,
BiMaMa-Net achieves a grasp success rate of over 96%.

B. Sufficiently Smoothed

We evaluate garment smoothing using two metrics: The
garment coverage, computed from an overhead image, and
a binary Sufficiently Smoothed value, predicted using the
Sufficiently Smoothed classifier. We compare BiMaMa-Net
to two baseline (1) Max Value Map, a variant of BiMaMa-
Net that computes the pick points directly from the value
maps Qunc by computing the maximum over the map to find
two pick points without using correspondence descriptors,
(2) Only Flings, a variant restricted to fling actions only,
and (3) Flingbot, the pre-trained method from [10] (see
Fig. 7). Results suggest that BiMaMa-Net is able to smooth



TABLE I: End-to-end folding for different NN architectures, folding approaches, and garments, averaged over 15 trials per experiment.
The durations are averaged over successful folds, while the cycle time and FPH are averaged over both successful and unsuccessful folds.

Method Folding Approach Garment Smoothing
Actions

Duration [s] Fold Success Cycle Time [s] Folds Per
Hour (FPH)

Max Value Map Instruction T-shirt 5.1± 0.5 133.9± 7.4 80% 167.4± 9.2 21.5± 1.2

BiMaMa-Net
Instruction

T-shirt
3.0± 0.4 108.7± 7.3 93% 116.9± 7.9 30.8± 2.1

”2-Second“ Fold 3.0± 0.4 97.3± 4.8 53% 182.4± 5.4 19.7± 0.6
Fling-to-fold 1.8 ± 0.2 81.7 ± 4.3 93% 87.9 ± 4.7 40.9 ± 2.2

Garments Unseen During Training

BiMaMa-Net Instruction Towel 1.7± 0.2 59.2± 3.8 87% 68.1± 4.4 52.9± 3.4
T-shirt 4.8± 0.4 141.1± 8.7 80% 176.3± 10.9 20.4± 1.3

a known t-shirt to a Sufficiently Smoothed configuration
in ∼ 3 fewer steps compared to baselines requiring ∼ 5.
Although the increase of coverage is similar to Only Flings,
the latter reaches a Sufficiently Smoothed configuration later
or even fails to do so, confirming the need of additional
action primitives to fully smooth a garment.

We note that the FlingBot baseline fails to reach an 80%
coverage as reported in [10], as we observe frequent grasp
failures presumably due to differences in the physical setting.
We ablate the stretching motion before a fling and observe
that stretching leads to higher coverage.

C. Folds per Hour

Table I shows results of end-to-end garments folding
experiments. BiMaMa-Net manages to (1) successfully fold
garments in over 90% of the trials on known garments and
(2) 30% faster than the Max Value Map baseline using
the Instruction-based folding approach. The ”2-second“ fold
achieves an additional speedup of 10.4% when executed
successfully, however we find that it is sensitive to t-shirt’s
orientation in a Sufficiently Smoothed configuration and
suffers from a low fold success rate. With prior information
on the t-shirt’s dimensions, F2F uses 40% less smoothing
actions and imaging time. As a result, it achieves a speedup
of over 25% compared to the instruction-based approach,

0 20 40 60 80 100

Fling-
to-fold

”2-Second“
Fold

Instruction

Duration [s]

Fling Drag Pick-and-place
Fling-to-fold Move Fold

Fig. 8: Timings for calculating and executing the action primitive
types depending on the folding approach. Instruction-based and
”2-Second“ fold share the same smoothing actions (blue), but
differ in folding (orange). By introducing a combined Fling-to-fold
primitive, a smoothed state is not required before folding. However,
the ”2-Second“ fold is suited for manipulating a t-shirt only, and
Fling-to-fold assumes prior knowledge of the garment.

leading to 40.9 folds per hour on average. Calculating an
action using BiMaMa-Net takes (126.0 ± 0.9)ms on our
hardware.

D. Generalization to Unseen Garments

We explore how SpeedFolding, trained on a single t-shirt,
can generalize to garments unseen during training. In these
experiments we use (1) a t-shirt with a different color and
stiffness and (2) a rectangular towel with a different color
compared to the original t-shirt. We evaluate SpeedFolding
on unseen garments using instruction-based folding, as this
is the only approach that easily adapts to general garments.
We run the same experiments on the unseen t-shirt with no
changes to the BiMaMa-Net model or the folding template.
In contrast, when we run the towel experiments we observe
that the system fails to classify a Sufficiently Smoothed
configuration, as the object’s shape is different from that
BiMaMa-Net was trained on. To address this, we add 20
Sufficiently Smoothed towel images to the dataset and re-
train BiMaMa-Net. Table I suggests that SpeedFolding can
generalize to garments with different color, stiffness and
shape.

E. System Limitations

Grasp failures, especially during a fling motion, can de-
crease the garment’s coverage dramatically. We find that
most grasp failures happen due to losing the grip during the
stretching motion prior to a fling action. This limitation can
be mitigated using improved force feedback or by adding
visual feedback. We observe a frequent failure case during
top-down grasps while executing the first step of the ”2-
second“ fold. These grasps may require different gripper jaws
that are better suited for top-down grasps.

As common with data-driven methods, SpeedFolding can
generalize to similar unseen garments. For example, textile
patterns may be more challenging to detect and classify
correctly. This limitation can be addressed through addi-
tional data augmentation. Generalization to different garment
shapes may also be limited, and can be addressed by adding
examples of Sufficiently Smoothed configurations to the
dataset, as described in Sec. V-D for the towel example.

VI. CONCLUSION AND DISCUSSION

We presented SpeedFolding, a bimanual robotic system for
efficient folding of garments from arbitrary initial configura-



tions. At its core, a novel BiMaMa-Net architecture predicts
two conditioned poses to parameterize a set of manipulation
primitives. After learning from 4300 human-annotated or
self-supervised actions, the robot is able to fold garments
in under 120 s on average with a success rate of 93%.

While prior works e.g. by Maitin-Shepard et al. [4] or
Doumanoglou et al. [3] achieved high success rate for end-
to-end cloth folding, cycle times for a single fold were
on the order of 3 − 6 Folds Per Hour (FPH), whereas
SpeedFolding achieves 30 to 40FPH. Similar to Ha et
al. [10], the fling primitive can unfold the garment in a
few actions. In contrast however, we introduce additional
action primitives that enable the robot to reach a sufficiently
smoothed configuration. In future work, we will explore
methods that can learn to manipulate a novel garment given
a few demonstrations.
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