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Abstract— Robust vision-based grasping is still a hard prob-
lem for humanoid robot systems. When being restricted to using
the camera system built-in into the robot’s head for object
localization, the scenarios get often very simplified in order to
allow the robot to grasp autonomously. Within the computer
vision community, many object recognition and localization
systems exist, but in general, they are not tailored to the
application on a humanoid robot. In particular, accurate 6D
object localization in the camera coordinate system with respect
to a 3D rigid model is crucial for a general framework for
grasping. While many approaches try to avoid the use of stereo
calibration, we will present a system that makes explicit use of
the stereo camera system in order to achieve maximum depth
accuracy. Our system can deal with textured objects as well as
objects that can be segmented globally and are defined by their
shape. Thus, it covers the cases of objects with complex texture
and complex shape. Our work is directly linked to a grasping
framework being implemented on the humanoid robot ARMAR
and serves as its perception module for various grasping and
manipulation experiments in a kitchen scenario.

I. INTRODUCTION

A vision system suitable for grasping of objects in a
realistic scenario sets the highest requirements to a humanoid
robot system, more than any other application. Not only have
the computations to be performed in real-time and objects
have to be recognized in an arbitrary scene, but localization
has also to deliver full 6D pose information with respect to
some 3D rigid model in the world coordinate system with
sufficient accuracy.

When taking a look at commonly applied image-based
vision systems for robot grasping, one finds that in many
cases a very simplified scenario is assumed: objects of simple
geometries and a simplified hand. Only recently, research on
grasping and manipulation of objects with arbitrary geome-
tries with an anthropomorphic five-fingered hand has become
feasible and therefore of interest. However, currently, vision
systems that can fulfill the requirements for research in this
area are rare.

We will present an object recognition and localization
system for two different classes of objects: textured objects
and objects that can be segmented globally, e.g. by color,
and are defined by their shape. The focus is in both cases on
accurate 6D localization with respect to a rigid object model
using stereo vision. The application for which this system is
designed for is vision-based grasping with humanoid robot
systems, for which we have presented our framework in

[1]. Furthermore, determining the object pose with the same
sensor system and the same stereo algorithms as for the pose
estimation of the robot hand allows the implementation of
visual servoing techniques without any additional calibration
such as hand-eye-calibration.

The paper is organized as follows: In Section II, the re-
quirements for a component of a vision system in the context
of autonomous grasping with a humanoid robot system in a
realistic scenario are explained. According to these, the limits
of state-of-the-art vision systems are shown in Section III.
We present our approach in the Sections IV and V. For both
subsystems, the focus is on full 6D localization in terms of
rigid object models. Experimental results with the proposed
system performed with the humanoid robot ARMAR in a
kitchen environment are presented in Section VI. The results
are discussed in Section VII.

Fig. 1. The humanoid robot ARMAR in a kitchen environment.

II. REQUIREMENTS

In general, any component of a vision system for a
humanoid robot for application in a realistic scenario has to
fulfill a minimum number of requirements. In this section,
we briefly discuss these requirements, in particular in the
context of vision-based grasping of objects.

1) The component has to deal with a potentially moving
robot and robot head: The difficulty caused by this
is that the problem of segmenting objects can not be
solved by simple background subtraction. The robot
has to be able to recognize and localize objects in
an arbitrary scene when approaching the scene in an
arbitrary way.
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2) Recognition of objects has to be invariant to 3D
rotation and translation: It must not matter in which
rotation and translation the objects are placed in the
scene.

3) Objects have to be localized in the 3D camera coor-
dinate system and in terms of a 3D representation: It
is not sufficient to fit the object model to the image,
but it is crucial that the calculated pose is sufficiently
accurate in the 3D camera coordinate system. In par-
ticular, the assumption that depth can be recovered
from scaling with sufficient accuracy is questionable
in practice.

4) Computations have to be performed in real-time: For
realistic application, the analysis of a scene and accu-
rate localization of the objects of interest in this scene
should take place at frame rate in the optimal case, and
should not take more than one second.

Apart from these requirements, it is desired that object
representations can be acquired in a convenient manner.

III. THE LIMITS OF STATE-OF-THE-ART SYSTEMS

Most vision systems in the context of grasping and ma-
nipulation assume simple object shapes. Furthermore, the
benefits of stereo-vision are rarely used together with state-
of-the-art feature-based object recognition and localization
systems. In this section, we want to show the limits of state-
of-the-art systems in the context of vision-based grasping
with humanoid robot systems.

A. Model-based Methods

Model-based object tracking algorithms are based on
relatively simple CAD wire models of objects. Using such
models, the starting and end points of lines can be projected
efficiently into the image plane, allowing real-time tracking
of objects with relatively low computational effort. However,
the limits of such systems are clearly the shapes they can
deal with. Most real-world objects, such as cups, plates
and bottles, can not be represented in this manner. The
crux becomes clear when taking a look at an object with
a complex shape, as it is the case for the can illustrated in
Fig. 2.

Fig. 2. Illustration of a 3D model of a can. Left: wire model. Right:
rendered model.

The only practical way to represent such an object ac-
curately as a 3D model is to approximate its shape by a
relatively high number of polygons. To calculate the projec-
tion of such a model into the image plane, practically the
same computations a rendering engine would do have to be

performed, either in software or with hardware acceleration.
But not only the significantly higher computational cost
makes common model-based approaches not feasible, also
from a conceptual point of view the algorithms can not be
extended for complex shapes, as is explained in [2]. This
is due to the fact that even with offscreen rendering with
hardware acceleration, approximately 100 projections per
second is the maximum speed that can be achieved for a 3D
model as illustrated in Fig. 2. Furthermore, such a projection
does not allow establishing correspondences between model
points and image points, which would be necessary for any
kind of optimization procedure as commonly used in model-
based tracking.

B. Appearance-based Methods

Appearance-based methods span a wide spectrum of algo-
rithms, which can be roughly classified into global and local
approaches. While global methods segment a potential region
containing an object as a whole, local approaches recognize
and localize objects on the base of local features. A further
class of methods is based on histograms, which will not be
discussed, since they are not suitable for accurate localization
in terms of a 3D model. In this section, we briefly introduce
methods using local features and show their limits for our
intended application.

The use of local features always depends on extracting
textural information. Several methods have been proposed
for feature detection, among which are the most popular
the Harris corner detector [3], Shi-Tomasi features [4], SIFT
features [5], and Maximally Stable Extremal Regions [6]. All
object recognition and localization systems based on such
features depend on the successful extraction of a sufficient
number of features for each object.

It has been shown that powerful object recognition systems
can be built on the base of local features ([7], [6], [8]).
However, in general, localization is performed on the base
of a single camera image and feature correspondences only.
Therefore, depth information is determined on the base of
scaling. However, a higher accuracy can achieved by using
a calibrated stereo system, for which we will show our
approach in Section V.

IV. RECOGNITION AND LOCALIZATION BASED ON SHAPE

Our approach for shape-based object recognition and lo-
calization is inspired by the global appearance-based object
recognition system proposed in [9], which is explained
briefly in the following. For each object, a set of segmented
views is stored, covering the space of possible views of one
object. By associating pose information with each view, it
is possible to recover the pose through the matched view
from the database. For reasons of computational efficiency,
Principal Component Analysis (PCA) is applied for reducing
dimensionality. However, the system proposed in [9] from
1996 is far away from being applicable for a humanoid robot
in a realistic scenario:
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• Different views are produced using a rotation plate.
Thus, objects are not localized in 6D but in 1D, which
is not suitable for grasping applications.

• Recognition is performed with the same setup as for
learning i.e. a humanoid robot would not be allowed to
move, since this would cause a change of the viewpoint.

In the following, we will give an outline of the system
presented in [2], in which appearance-based methods and
stereo vision are combined. A 3D model of the object is
used for generating multiple views.

A. Segmentation

For the proposed shape-based approach, the objects have
to be segmented. In the presented examples, this is done
by performing color segmentation in HSV color space for
colored dishes. In order to use stereo vision, segmentation
is performed for the left and the right image. The properties
of the resulting blobs are represented by the bounding box,
the centroid of the region, and the number of pixels being
part of the region. Using this information together with
the epipolar geometry, the correspondence problem can be
solved efficiently and effectively.

B. Region Processing Pipeline

Before a segmented region can be used as input for
appearance-based calculations it has to be transformed into
a normalized representation. For application of the PCA,
the region has to be normalized in size. This is done by
resizing the region to a squared window of 64 × 64 pixels.
The resizing can be done with or without keeping the aspect
ratio of the region. As illustrated in Fig. 3, not keeping
the aspect ratio can cause falsifications in the appearance of
an object, which lead to false matches. Keeping the aspect
ratio can be achieved by using a conventional resize function
with bilinear interpolation and transforming the region to
a temporary target image with width and height (w0, h0),
which can be calculated with the following equation:

(w0, h0) :=
{

(k, bkh
w + 0.5c) : w ≥ h

(bkw
h + 0.5c, k) : otherwise

(1)

where (w, h) denotes the width and height of the region
to be normalized, and k is the side length of the squared
destination window. The resulting temporary image of size
(w0, h0) is then copied into the destination image of size
(k, k). In the second step, the gradient image is calculated for
the normalized window, which leads to a more robust match-
ing procedure, as shown in [2]. Finally, in order to achieve

Fig. 3. Illustration of size normalization. Left: original view. Middle: nor-
malization with keeping aspect ratio. Right: normalization without keeping
aspect ratio.

invariance to constant multiplicative illumination changes,
the signal energy of each gradient image I is normalized,
so that

∑
n

= I2(n) = 1 (see [9], [2]). By normalizing the

intensity of the gradient image, variations in the embodiment
of the edges can be handled.

C. Full 6D Localization using Appearance-based Methods

Ideally, for appearance-based 6D localization with respect
to a rigid object model, for each object, training views would
have to be acquired in the complete six dimensional space
i.e. varying orientation and position. However, in practice it
is not possible to solve the problem in this six dimensional
space directly within adequate time. Therefore, we solve
the problem by calculating the position and the orientation
independently in first place. A first estimate of the position is
calculated by triangulating the centroids of the color blobs.
A first estimate of the orientation is retrieved from the
database for the matched view. Since the position influences
the view and the view influences the position of the centroids,
corrective calculations are performed afterwards. Details are
given in [2].

Fig. 4. Effect of corrective calculations for three objects lying on a flat
table. Left: before correction. Right: after correction.

D. Combining Appearance-based and Model-based Meth-
ods: Convenient Acquisition and Real-Time Recognition

A suitable hardware setup for the acquisition of the view
set for an object would consist of an accurate robot manip-
ulator and a stereo camera system. However, the hardware
effort is quite high, and the calibration of the kinematic chain
between the head and the manipulator has to be known for
the generation of accurate data. Therefore, we have used a
3D model of the object to generate the views.

By using an appearance-based approach for a model-based
object representation in the core of the system, it is possible
to recognize and localize the objects in a given scene in real-
time – which is by far impossible with a purely model-based
method, as explained in Section III-A. To achieve real-time
performance, we use PCA to reduce dimensionality from
64 × 64 = 4096 to 100. 3D models of rather simple shapes
can be generated manually. For more complicated objects we
use the interactive object modeling center presented in [10].

V. RECOGNITION AND LOCALIZATION BASED ON
TEXTURE

Our system for the recognition and localization of textured
objects builds on top of the approach proposed in [7]. After
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comparing the different features that we have tested, a sum-
mary of the framework for recognition and 2D localization
using 2D feature correspondences will be given. Then, we
will introduce our approach for 6D localization of planar
objects with respect to a rigid object model using stereo
vision. In Section VII, we will briefly discuss an extension
for partly cylindrical objects such as bottles.

A. Feature Calculation

Various texture-based 2D point features have been pro-
posed in the past. One has to distinguish between the
calculation of feature points and the calculation of the feature
descriptor. A feature point itself is determined by the 2D
coordinates (u, v). Since different views of the same image
patch around a feature point vary, the image patches can not
be correlated directly. The task of the feature descriptor is to
achieve a sufficient degree of invariance with respect to the
potentially differing views. In general, such descriptors are
computed on the base of a local planar assumption.

We have tested three different features respectively de-
scriptors: Shi-Tomasi features and representing a patch by a
view set, the Maximally Stable Extremal Regions (MSER)
in combination with the Local Affine Frames (LAF) as
presented in [6], and the SIFT features [7]. The first approach
has been motivated by the work in [8] and our system for
the recognition of multiple objects has been presented in
[11]. However, despite the use of shared features using k-
means clustering, this method does not scale well with an
increasing number of objects. This is due the fact that one
patch is represented by 100-200 views to achieve invariance.
In addition to robustness considerations, the total amount
of patches leads to long computation times for the Princi-
pal Component Analysis (PCA) compression and k-means
clustering. Learning 20 objects with a view set consisting
of 20000 patches per object in average takes more than 20
hours on a 3 GHz CPU.

The MSER features are a powerful method for segmenting
homogenous regions of arbitrary gray values. In particular,
regions with sharp borders such as letters and symbols lead
to robust MSER features. Since such regions can be of any
size, scale invariance is supported naturally. Invariance to
affine transformations is achieved by computing the LAF
descriptor. However, although theoretically the LAF are fully
scale invariant, in practice the limited resolution often leads
to varying embodiments of one MSER at lower scaling steps.
In particular, the resolution of 640 × 480 of ARMAR’s
cameras turned out to be too low for a robust application
of the MSER in a realistic scenario. However, in the future,
when more computational power and miniaturized cameras
with higher resolution will be availabe, the MSER can serve
as valuable features in combination with traditional gradient-
based features.

The best results could be achieved with the SIFT features.
The SIFT descriptor is fully rotation invariant and invariant
to skew and depth to some degree. The feature information
used in the following is the position (u, v), the rotation
angle ϕ and a feature vector {xj} consisting of 128 floating

point values. These feature vectors are matched using a cross
correlation. As the SIFT features are gradient-based, sharp
input images with high contrast lead to more features of high
quality.

B. Object Recognition

Given a set of n features {ui, vi, ϕi, {xj}i} with i ∈
{1, . . . , n} and j ∈ {1, . . . , 128} that have been calculated
for an input image, the first task is to recognize which objects
are present in the scene. Simply counting the features does
not lead to a robust system since the number of wrong
matches increases with the number of objects. Therefore, it is
necessary to incorporate the feature positions with respect to
each other into the recognition process. The state-of-the-art
technique for this purpose is the general Hough transform.
We use a two dimensional Hough space with the parameters
u, v; the rotative information ϕ and the scale are used within
the voting formula. Given a feature with u, v, ϕ in the current
scene and the matched feature with u′, v′, ϕ′, the following
bins of the Hough space are incremented:„

uk

vk

«
= r

»„
u
v

«
− sk

„
cos∆ϕ − sin∆ϕ
sin∆ϕ cos∆ϕ

« „
u′

v′

«–
(2)

where ∆ϕ := ϕ − ϕ′ and sk := 0.5 + k · 0.1 with
k ∈ {0, . . . , 5}. The scaling parameters sk can be adapted
depending on the desired scale space. Instead of using a
three dimensional hough space, we vote at several scales
in a two dimensional hough space, which practically means
voting along a straight line. An alternative is to use the scale
available from the SIFT descriptor. However, we experienced
that this scale information is not as reliable as it is the case
for the rotative information. The parameter r is a constant
factor denoting the resolution of the Hough space. Currently,
we use r = 0.05, which means that the Hough space is
smaller than the image by a factor of 20 in each direction.
The rotation assumes that the v-axis of the image coordinate
system is oriented from top to bottom i.e. the coordinate
system is left-handed. After the voting procedure, instances
of an object in the scene are represented by maxima in the
Hough space.

C. 2D Object Localization

After having found an instance of an object, the feature
correspondences for this object are filtered by considering
only those ones that have voted for this instance. For these
correspondences, a homography is computed, which will
be explained in the following. A homography is a 2D
transformation described by x′ = H x where H is a 3 × 3
matrix:

H =

 h1 h2 h3

h4 h5 h6

h7 h8 h9

 .

Since this formulation is defined on homogenous coordinates
i.e. x = (u v 1)T , any multiple of H specifies the same
transformation. In general, one chooses h9 = 1. An affine
transformation is a restriction of a homography with h7 =
h8 = 0. First, an estimate of an affine transformation is
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determined by solving the following linear system A h = b:
u1 v1 1 0 0 0
0 0 0 u1 v1 1
...

...
...

...
...

...
un vn 1 0 0 0
0 0 0 un vn 1




h1

h2

h3

h4

h5

h6

 =


u′1
v′1
...

u′n
v′n

 (3)

After having determined the parameters h1 . . . h6 by, e.g.,
computing (AT A)−1AT b or using a QR-decomposition,
the projection error for each correspondence is calculated
and compared to the mean error. Correspondences with an
error greater than three times the mean error are removed.
This procedure is performed in an iterative manner with
three iterations. In addition to this technique, we perform
a final optimization step, in which we calculate the full
homography for the remaining feature correspondences by
solving the linear system with the following replaced left
side of Equation (3):

u1 v1 1 0 0 0 −u1 u′1 −v1 u′1
0 0 0 u1 v1 1 −u1 v′1 −v1 v′1
...

...
...

...
...

...
...

...
un vn 1 0 0 0 −un u′n −vn u′n
0 0 0 un vn 1 −un v′n −vn v′n


 h1

...
h8


Using the homography instead of the affine transformation

throughout the whole iterative procedure does not lead to a
robust system, since the additional two degrees of freedom
make the least squares optimization too sensitive to outliers.
Only after filtering the outliers by using an affine transfor-
mation as described, the computation of the homography is
a suitable optimization for the final iteration.

Fig. 5. Difference between 2D localization using an affine transformation
only (left) and a homography in the final iteration (right).

If after this process five or more feature correspondences
are remaining and the mean error is smaller than two pixels,
an instance of the object is declared as recognized. The 2D
localization is given by the projection of the four corner
points of the front side of the cuboid, which had been marked
manually in the training image, as illustrated in Fig. 6.

D. 6D Object Localization

The state-of-the-art technique for 6D localization is to
calculate the pose based on the correspondences between 3D
model coordinates and image coordinates from one camera
image. This is usually done by using the POSIT algorithm
[12] or similar methods. The drawback is that the correctness

Fig. 6. Correspondences between current view of the scene and training
image. Only the valid features after the filtering process are shown. The
blue box illustrates the result of 2D localization. Left: input image. Right:
training image.

of the calculated pose depends on the accuracy of the 2D
correspondences only. In particular, the depth information is
very sensitive to small errors in the 2D coordinates of the
correspondences. The smaller the area is that the matched
features span in relation to the total area of the object,
the greater this error becomes. The result of the calculated
homography in Figure 7(a) for the right object illustrates this
circumstance, where only matches in the upper half of the
object could be determined.

However, for a successful grasp, accurate depth informa-
tion is crucial. Therefore, our strategy is to make explicit
use of the calibrated stereo system in order to calculate
depth information with maximum accuracy. Our approach
for cuboids consists of the following five steps:

1) Determine highly textured points within the calculated
2D contour of the object in the left camera image by
calculating Shi-Tomasi features [4].

2) Determine correspondences with subpixel-accuracy in
the right camera image for the calculated points by
using Zero Mean Cross Correlation (ZNCC) in com-
bination with the epipolar geometry.

3) Calculate a 3D point for each correspondence.
4) Fit a 3D plane into the calculated 3D point cloud.
5) Calculate the intersections of the four 3D lines through

the 2D corners in the left camera image with the 3D
plane.

The result of this algorithm are the 3D coordinates of the
four corners of the object’s front surface, given in the world
coordinate system. Occlusions can be handled by performing
the fitting of the 3D plane with a RANSAC algorithm [13].
To offer the same interface as for the subsystem presented in
Section IV, the 6D pose must be determined on the base of
the calculated 3D corner points. For this purpose, a simple
but yet accurate 3D model of a cuboid for the object is
generated manually. The pose of this model with respect to
the static pose stored in the file is determined by calculating
the optimal transformation between the calculated 3D corner
points and the corresponding 3D corner points from the 3D
model. This is done by using the method proposed in [14].

VI. EXPERIMENTAL RESULTS

In order to achieve maximum accuracy, we do not undis-
tort or rectify the images but use the distortion and extrinsic
camera parameters directly for the stereo calculations. We
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have measured the quality of the plane fitting, which indi-
cates the accuracy of the stereo system. With 70-206 3D
points for each fitted plane throughout the experiments, the
mean error was between 0.7-1.3 mm and the maximum error
between 1.8-3.1 mm, with a standard deviation of 0.5-0.9
mm. The next step is to perform an absolute evaluation of
both presented systems.

Fig. 7. Recognition and localization result for an exemplary scene. (a)
Left input image. (b) 3D visualization of the result.

Figure 7 shows the result of an exemplary scene analysis,
which shows that the relative pose of the objects is correct.
The absolute depth information depends on the base line
and resolution of the stereo system and is therefore scalable.
It has to be noted that in the context of grasping with a
humanoid robot, the accuracy of the hand-eye calibration is
the harder problem. The errors of the 3D measurements of
the proposed system are negligible in relation to the hand-eye
calibration problem. The benchmark will be the execution of
grasping tasks with the humanoid robot ARMAR using the
proposed framework in [1].

Currently, the computation time for a complete scene
analysis amounts to approximately 1 s on a 3 GHz CPU.
The recognition and localization of segmentable objects is
performed at frame rate with a database of over 22000 views,
as described in [2]. Currently, the computation of the SIFT
features takes about 0.4 s and brute-force matching with
about 1500 features in the database takes about 0.6 s for one
input image. In the future, we will replace the brute-force
matching routine by a search using a kd-tree structure.

The presented system has been implemented making ex-
tensive use of the Integrating Vision Toolkit (IVT), which is
available on Sourceforge [15]. The Shi-Tomasi features have
been calculated using the OpenCV [16].

VII. CONCLUSION

We have presented an object recognition and 6D localiza-
tion system running on the humanoid robot ARMAR with
two integrated methods for textured objects as well as objects
that can be segmented globally and are defined by their
shape. In both subsystems, the 6D pose is calculated by
making explicit use of the stereo system to attain maximum
depth accuracy. By offering the proposed two solutions with
the exact same interface, our system serves as a valuable
platform for visual perception in the context of vision-based
grasping with humanoid robot systems. It enables research on
integrated grasp planning and execution with realistic objects
and complex shapes in realistic scenarios.

Currently, we are working on integrating localization of
partly cylindrical, textured objects as it is the case for
most bottles encountered in a kitchen environment. For this
purpose, our presented approach for cuboids can be modified
by extending the hough space and fitting a cylinder into the
point cloud. Furthermore, we are working on an automatic
and accurate calibration procedure for the eye unit of the
robot head, which will allow to make use of the stereo
calibration also when moving the eyes independently.
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