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Abstract— In this paper, we present an image-based mark-
erless human motion capture system, intended for humanoid
robot systems. The restrictions set by this ambitious goal are
numerous. The input of the system is a sequence of stereo image
pairs only, captured by cameras positioned at approximately
eye distance. No artificial markers can be used to simplify the
estimation problem. Furthermore, the complexity of all algo-
rithms incorporated must be suitable for real-time application,
which is maybe the biggest problem when considering the high
dimensionality of the search space. Finally, the system must
not depend on a static camera setup and has to find the initial
configuration automatically.

We present a system, which tackles these problems by
combining multiple cues within a particle filter framework,
allowing the system to recover from wrong estimations in a
natural way. We make extensive use of the benefit of having
a calibrated stereo setup. To reduce search space implicitly,
we use the 3D positions of the hands and the head, computed
by a separate hand and head tracker using a linear motion
model for each entity to be tracked. With stereo input image
sequences at a resolution of 320×240 pixels, the processing rate
of our system is 15 Hz on a 3 GHz CPU. Experimental results
documenting the performance of our system are available in
form of several videos.

I. INTRODUCTION

The idea of markerless human motion capture is to capture
human motion without any additional arrangements required,
by operating on image sequences only. Implementing such
a system on a humanoid robot and thus giving the robot
the ability to perceive human motion would be valuable for
various reasons. Captured trajectories, which are calculated
in joint angle space, can serve as a solid base for learning
human-like movements. Commercial human motion capture
systems such as the VICON system [1], which are popular
both in the film industry and in the biological research field,
require reflective markers and time consuming manual post-
processing of captured sequences. A real-time human motion
capture system using the image data acquired by the robot’s
head would make one big step toward autonomous online
learning of movements. Another application for the data
computed by such a system is the recognition of actions
and activities, serving as a perceptive component for human-
robot interaction. However, providing data for learning of
movements and actions – often referred to as learning-by-
imitation – is the more challenging goal, since transforming
captured movements in configuration space into the robot’s
kinematics and reproducing them on the robot sets the higher
demands to smoothness and accuracy.
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For application on an active head of a humanoid robot,
a number of restrictions has to be coped with. In addition
to the limitation to two cameras positioned at approximately
eye distance, one has to take into account that an active head
can potentially move. Furthermore, computations have to be
performed in real-time, preferably at 30 Hz or higher, in
order to achieve optimal results.

The general problem definition is to find the correct
configuration of the underlying articulated 3D human model
for each input image respectively image tuple when using
multiple cameras. The main problem is that search space
increases exponentionally with the number of Degrees Of
Freedom (DOF). A realistic model of the human body has
at least 14 DOF if only modeling the upper body without the
neck (3 DOF for each shoulder, 1 DOF for each elbow, 6
DOF for base translation and rotation), or 25 DOF for the full
body (plus 3 DOF for each hip joint, 1 DOF for each knee,
3 DOF for the neck), leading to a very high-dimensional
search space.

There are several approaches to solve the general problem
of markerless human motion capture, differing in the sen-
sors incorporated and the intended application. When using
multiple cameras, i.e. three or more cameras located around
the area of interest, two different systems have shown very
good results. The one class of approaches is based on the
calculation of 3D voxel data, as done by [2], [3]. The other
approach is based on particle filtering and became popular
by the work of Deutscher et al. [4]. Other approaches depend
on incorporation of an additional 3D sensor and the Iterative
Closest Point (ICP) algorithm, such as the Swiss Ranger, as
presented by [5]. Other approaches concentrate on deriving
as much information as possible from monocular image
sequences [6], and reducing the size of the search space by
applying restrictions to the range of possible movements,
e.g. by incorporating a task-specific dynamic model [7].
Our experience is that it is not possible to build a general
3D human motion capture system using monocular image
sequences only, since in many cases a single camera is not
sufficient to determine accurate 3D information, based on the
principle depth through scaling. A further strategy to reduce
search space is search space decomposition i.e. performing
a hierarchical search, as done by [8]. However, by doing
this, the power of the system is limited, since in many
cases the global view is needed to determine the correct
configuration, e.g. for rotations around the body axis, the
information provided by the positions of the arms is very
helpful.

Recently, we have started to adapt and extend the particle
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filter based system for real-time application on a humanoid
robot head ([9], [10]), presenting our newest results in the
following. Particle filtering has proven to be an applicable
and robust technique for contour tracking in general ([11],
[12], [13]), and for human motion capture in particular, as
shown in [4], [6]. However, in particle filters, a larger search
space requires a greater number of particles. One strategy
to cope with this problem is to reduce the dimensionality of
configuration space by restricting the range of the subject’s
potential movements, as already mentioned, or to approach
a linear relationship between the dimension of configuration
space and the size of the search space by performing a
hierarchical search. A general but yet effective way to reduce
the number of particles is based on the idea of Simulated
Annealing, presented in [4], [14]. However, the final system,
which uses three cameras at fixed positions in the corners
of a room, requires on average 15 seconds to process one
frame on a 1 GHz CPU [14].

Theoretically, an edge-based cue would be already suf-
ficient to track the movements of a human – if using an
adequate number of particles. To span the search space with
a sufficient resolution when using an edge-based cue only,
millions of particles would be necessary for a successful
tracker. Therefore, the common approach using particle fil-
ters for human motion capture is to combine edge and region
information within the likelihood function, which evaluates
a given configuration matching the current observation. Al-
though this is a powerful approach, the computational effort
is relatively high. Especially the evaluation of the region
based cue is computationally expensive.

Our strategy is to combine as many cues derivable from
the input images as possible to reduce search space implicitly
by achieving a faster convergence. We present a running
system on our humanoid robot ARMAR using the benefits
of a stereo setup and combining edge, region and skin color
information. The initial configuration is found automatically
– a necessity for any perceptive component of a vision
system. The system is able to capture real 3D motion without
using markers or manual post-processing. The processing
rate of our algorithm is 15 Hz on a 3 GHz CPU using stereo
input image sequences with a resolution of 320×240 pixels.

II. USING PARTICLE FILTERS FOR HUMAN MOTION
CAPTURE

Particle filtering has become popular for various visual
tracking applications – often also referred to as the Conden-
sation Algorithm. The benefits of a particle filter compared to
a Kalman filter are the ability to track non-linear movements
and the property to store multiple hypotheses simultaneously.
The price one has to pay for these advantages is the higher
computational effort. The probability density function repre-
senting the likelihood of the configurations in configuration
space matching the observations is modeled by a finite set of
N particles S = {(s1, π1), ..., (sN, πN)}, where si denotes
one configuration and πi the likelihood associated with it.
The core of a particle filter is the likelihood function p(z|s)
computing the a-posteriori probabilities πi, where s denotes

a given configuration and z the current observations i.e.
the current image pair. This likelihood function must be
evaluated for each particle for each frame i.e. N ·f times per
second. As an example this means for N = 1000 particles
and f = 30 Hz N · f = 30000 evaluations per second.

For resampling the particle set, N particles from the last
generation are picked proportional to their probability. The
configuration of each of these particles is used as a base
to build a new configuration, incorporating a motion model
and adding Gaussian noise. We use a first-order linear motion
model together with adaptive Gaussian noise, whose amount
is decreased or increased depending on the current errors.
A detailed description about the use of particle filters for
human motion capture can be found in [9].

A. Edge Cue

Given the projected edges of a configuration s of the
human model and the current input image z, the likelihood
function p(z|s) for the edge cue calculates the a-posteriori
probability that the configuration leading to the set of pro-
jected edges is the proper configuration i.e. the one taht best
matches the gradient image.

The approach we use is to spread the gradients in the
gradient image with a Gaussian filter or any other suitable
operator and to sum the gradient values along a projected
edge, as done in [4]. Assuming that the spread gradient map
has been remapped between 0 and 1, the modified likelihood
function can be formulated as:

pg(z|s) ∝ exp

− 1
2σ2

gMg

Mg∑
m=1

(1− gm)2


where gm denotes the remapped gradient value for the mth
point.

B. Region Cue

The second cue commonly used is region-based, for which
a foreground segmentation technique has to be applied. The
segmentation algorithm to be picked is independent from
the likelihood function itself. The most common approach is
background subtraction. However, this segmentation method
assumes a static camera setup and is therefore not suitable
for application on a potentially moving robot head. Another
option is to segment motion by using difference images or
optical flow, but this method also assumes a static camera
setup. It has to be mentioned that there are extensions of
the basic optical flow algorithm that allow to distinguish
real motion in the scene and ego-motion [15]. However,
the problem with all motion-based methods – which does
not include background subtraction – is that the quality of
the segmentation result is not sufficient for a region-based
cue. Only those parts of the image that contain edges or any
other kind of texture can be segmented, and the silhouette
of segmented moving objects often contains parts of the
background, resulting in a relatively blurred segmentation
result.

Having segmented the foreground in the input image,
where foreground pixels are set to 1 and background pixels
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are set to 0, the likelihood function commonly used can be
formulated as [4]:

pr(z|s) ∝ exp

{
− 1

2σ2
rMr

Mr∑
m=1

(1− rm)2
}

(1)

where rm denotes the segmentation value of the mth pixel
from the set of pixels of all projected body part regions.
Although this function can be optimized further, using the
fact that rm ∈ {0, 1}, its computation is still rather inef-
ficient. The bottleneck is the computation of the set of all
M projected pixels together with reading the corresponding
values from the segmentation map.

C. Fusion of Multiple Cues
The both introduced cues are fused by multiplying the two

likelihood functions resulting in:

pg,r(z|s) ∝ exp

(
−

1

2

 PMg

m=1(1− gm)2

σ2
gMg

+

PMr
m=1(1− rm)2

σ2
rMr

!)

Any other cue can be fused within the particle filter with the
same rule. One way of combining the information provided
by multiple cameras is to incorporate the likelihoods for
each image in the exact same manner [4]. In our system,
we additionally use 3D information which can be computed
explicitly by knowing the stereo calibration. This separate
cue is then combined with the other likelihoods with the
same method, as will be described in Section III.

III. MULTIPLE CUES IN THE PROPOSED SYSTEM

In this section, we want to introduce the cues our sys-
tem is based on. Instead of the commonly used region-
based likelihood function pr, as introduced in Equation (1),
we incorporate the result of foreground segmentation in a
more efficient way, as will be introduced in Section III-
A. In Section III-B we will present the results of studies
regarding the effectivity of the introduced cues, leading to a
new likelihood function. As already mentioned, we use the
benefits of a stereo system in an additional explicit way, as
will be introduced in III-C. The final combined likelihood
function is presented in Section III-D.

A. Edge Filtering using Foreground Segmentation

When looking deeper into the region-based likelihood
function pr, one can state two separate abilities:

• Leading to a faster convergence of the particle filter
• Compensating the failure of the edge-based likelihood

function in cluttered backgrounds
The first property is discussed in detail in Section III-
B, and an efficient alternative is presented. The second
property can be implemented explicitly by using the result of
foreground segmentation directly to generate a filtered edge
map, containing only foreground edge pixels. In general,
there are two possibilities:

• Filtering the gradient image by masking out background
pixels with the segmentation result

• Calculating gradients on the segmentation result

While the first alternative preserves more details in the
image, the second alternative computes a sharper silhouette.
Furthermore, in the second case, gradient computation can
be optimized for binarized input images, which is why we
currently use this approach. As explained in Section II-B, the
only commonly used foreground segmentation technique is
background subtraction, which we do not intend to use, since
the robot head can potentially move. It has to be mentioned
that taking into account that the robot head can move is not a
burden, but there are several benefits of using an active head,
which will be discussed in Section VI. As an alternative to
using background subtraction, we are using a solid colored
shirt, which allows us to perform tests practically anywhere
in our lab. Since foreground segmentation is performed in
almost any markerless human motion capture system, we do
not restrict ourselves compared to other approaches, but only
trade in the restriction of wearing a colored shirt for the need
of having a completely static setup. Experiments have shown
that the segmentation result using a colored shirt leads to a
slightly smoother output of the human motion capture system
compared to background subtraction. However, if the shirt
color is not to be used, background subtraction still results
in a robust system.

B. Cue Comparison and Distance Likelihood Function

In order to understand the benefits and drawbacks of each
likelihood function and thus getting a feeling of what a
likelihood function can accomplish and what not, it is helpful
to measure their effectivity in a simple one-dimensional
example. The experiment we have used in simulation is
tracking a square of fixed size in 2D, which can be further
simplified to tracking the intersection of a square with a
straight line along the straight line i.e. in one dimension.

The model of the square to be tracked is defined by
the midpoint (x, y) and the edge length k, where y and
k are constant and x is the one dimensional configuration
to be predicted. In [10], we have compared three different
likelihood functions separately: the gradient-based cue pg ,
the region-based cue pr, and a third cue pd, which is based
on the Euclidian distance:

pd(z|s) ∝ exp
{
− 1

2σ2
d

|f(s)− c|2
}

where c is an arbitrary dimensional vector which has been
calculated previously on the base of the observations z, and
f : Rdim(s) → Rdim(c) is a transformation mapping a
configuration s to the vector space of c. In our example,
c denotes the midpoint of the square in the observation
z, dim(s) = dim(c) = 1, and f(s) = s. For efficiency
considerations, we have used the squared Euclidian distance,
practically resulting in the SSD. Evidently, in this simple
case, there is no need to use a particle filter for tracking, if the
configuration to be predicted c can be determined directly.
However, in this example, we want to show the characteristic
properties of the likelihood function pd, in order to describe
the performance in the final likelihood function of the human
motion capture system, presented in the sections III-C and
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III-D. In the update step of the particle filter, we applied
Gaussian noise only, with an amplification factor of ω = 3.
The task was to find a static square with k = 70, based on the
pixel data at the intersection of the square with the x-axis.
The number of iterations needed depending on the initial
distance to the goal is given in Figure 1 for each likelihood
function. While with starting points in a close neighborhood
of the goal the gradient cue leads to the fastest convergence,
the region cue and the distance cue converge faster the farther
the starting point is away from the goal. The results of the
comparison of the cues is explained in detail in [10].
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Fig. 1. Comparison of iteration numbers: an iteration number of 100
indicates that the goal was not found

As a conclusion, one can state that whenever possible to
determine a discrete point directly, it is the best choice to use
the likelihood function pd rather than pr. A second drawback
of the region cue is explained in Section III-D. While it is
not possible to do a successful tracking without the edge
cue – especially when scaling has to be taken into account
– it is also not possible to rely on the edge cue only. The
higher the dimensionality of search space is, the more drastic
the lack of a sufficient number of particles becomes. Thus,
in the case of human motion capture with dimensions of
14 and greater, the configurations will never perfectly match
the image observations. Note, that the simulated experiment
examined a static case. In the dynamic case, the robustness
of the tracker is always related to the frame rate at which
images are captured and processed, and to the speed of the
subject’s movements. In the next section, we show how the
likelihood function pd is incorporated into our system using
3D points, leading to a significant implicit reduction of the
search space.

C. Using Stereo Information

There are various ways to use stereo information in a
vision system. One possibility is to calculate depth maps,
however, the quality of depth maps is in general not sufficient
and only rather rough information can be derived from them.
Another option in a particle filter framework is to project the
model into both the left and the right image and evaluate
the likelihood function for both images and multiply the
the resulting likelihoods, as already mentioned in Section
II-C. This approach can be described as implicit stereo. A
third alternative is to determine correspondences for specific

features in the image pair and calculate the 3D position for
each match explicitly by triangulation.

In the proposed system, we use both implicit stereo and
stereo triangulation. As features we use the hands and the
head, which are segmented by color and matched in a
pre-processing step. Thus, the hands and the head can be
understood as three natural markers. The image processing
line for determining the positions of the hands and the head
in the input image is described in Section IV.

There are two alternatives to use the likelihood function pd

together with skin color blobs: apply pd in 2D for each image
separately and let the 3D position be calculated implicitly
by the particle filter, or apply pd in 3D to the triangulated
3D positions of the matched skin color blobs. We have
experienced that the first approach does not lead to a robust
acquisition of 3D information. This fact is not surprising,
since in a high dimensional space the mismatch between the
number of particles used and the size of the search space
is more drastic. This leads, together with the fact that the
prediction result of the likelihood function pd is noisy within
an area of 1-2 pixels already in a very simple experiment,
to a considerable error in the implicit stereo calculation in
the real scenario. For this reason we apply pd in 3D to the
triangulation result of matched skin color blobs. By doing
this, the particle filter is forced to always move the peak
of the probability density function toward configurations in
which the positions of the hands and the head from the model
are very close to the real 3D positions, which have been
determined on the base of the image observations.

D. Final Likelihood Function

In the final likelihood function, we use two different
components: the edge cue based on the likelihood function
pg , and the distance cue based on the likelihood function pd,
as explained in the sections III-B and III-C. The region cue
is left out for two reasons: it reduces the efficiency of the
system significantly, and it can diminish the accuracy of the
estimation. The reason for this is that the region cue is less
precise than the edge cue; in many cases it evaluates wrong
configurations with a similar or even equal likelihood as it
does for the proper configuration, as illustrated in Figure 2.

Fig. 2. Illustration of a wrong and a proper configuration, which are
assigned the same likelhood by the region cue

We have experienced that when leaving out the square in
Equation (II-A), i.e. calculating the Sum of Absolute Dif-
ferences (SAD) instead of the Sum Of Squared Differences
(SSD), the quality of the results remains the same for our
application. In this special case one can optimize pg further,
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resulting in:

p′
g(z|s) ∝ exp

− 1
2σ2

g

(1− 1
Mg

Mg∑
m=1

gm)


For a system intended for real-time application, we have de-
cided to replace the region-based cue based on pr completely
by the distance cue based on pd. In order to formulate the
distance cue, first the function di(s, c) is defined as:

di(s, c) :=
{

|fi(s)− c|2 : c 6= 0
0 : otherwise

where n := dim(s) is the number of DOF of the human
modal, dim(c) = 3, i ∈ {1, 2, 3} to indicate the function
for the left hand, right hand or the head. The transformation
fi : Rn → R3 transforms the n-dimensional configuration of
the human model into the 3D position of the left hand, right
hand or head respectively, using the forward kinematics of
the human model. The likelihood function for the distance
cue is then formulated as:

p′
d(z|s) ∝ exp

{
− 1

2σ2
d

(d1(s, c1) + d2(s, c2) + d3(s, c3))
}

where the vectors ci are computed on the base of the
image observations z using skin color segmentation and
stereo triangulation, as explained in Section III-C. If the
position of a hand or the head can not be determined because
of occlusions or any other disturbance, the corresponding
vector ci is set to the zero vector. Note that this does not
falsify the resulting probability density function in any way.
Since all likelihoods of a generation k are independent from
the likelihoods calculated for any previous generation, the
distribution for each generation is also independent. Thus, it
does not make any difference that in the last image pair one
ci was present, and in the next image pair it is not. The final
likelihood function is the product of p′

g and p′
d:

p(z|s) ∝ exp

8<:−1

2

0@ 1

σ2
d

3X
i=1

di(s, ci) +
1

σ2
g

(1−
1

Mg

MgX
m=1

gm)

1A9=;
IV. IMAGE PROCESSING PIPELINE AND TRACKING OF

HANDS AND HEAD

The image processing pipeline transforms each image of
the stereo pair into a skin color map and a gradient map,
which are then used by the likelihood function presented in
Section III −D. In Figure 3, the pipeline is shown for one
image; in the system, the pipeline is applied twice: once for
each image of the stereo pair. After the input images are
smoothed with a 3 × 3 Gaussian kernel, the HSV image is
computed. The HSV image is then filtered twice, once for
skin color segmentation and once for foreground segmen-
tation by segmenting the shirt color. A simple combination
of a 2 × 1 and a 1 × 2 gradient operator is applied to the
segmented foreground image, which is sufficient and the
most efficient for a binarized image. Finally, a gradient pixel
map is generated by blurring the gradient image, as done in
[4].

Currently, the hands and the head are segmented using a
fixed interval color model in HSV color space. Similar to
the idea presented in [16], each color blob is tracked with

Smooth HSI

Skin Color
Segmentation

Shirt Segmentation

Gradients

Eroded Skin Color MapGradient Pixel Map

Fig. 3. Visualization of the image processing line

a linear motion model, which makes it possible to track
through images in which blobs are occluded or blobs fall
together. In these images, the state of the affected blobs from
the last image is propagated to the current image, predicting
their current position by using the linear motion model. The
resulting color blobs are matched between the left and right
image, taking into account their size, the ratio between the
height and width of the bounding box, and the epipolar
geometry. By doing this, false regions in the background can
be discarded easily. Finally, the centroids of matched regions
are triangulated using the parameters of the calibrated stereo
setup.

All image processing routines and mathematical compu-
tations are implemented using the Integrating Vision Toolkit
(IVT) [17]. It is an Open Source vision library, offering a
clean interface to image devices and camera calibration, and
a variety of filters, segmentation methods, stereo routines,
mathematical function and data structures.

V. EXPERIMENTAL RESULTS

The experiments being presented in this section were
performed on the humanoid robot ARMAR. In the robot
head, two Dragonfly cameras are positioned at a distance
of approximately eleven centimeters. As input for the image
processing line, we used a resolution of 320× 240, captured
at a frame rate of 25 Hz. The particle filter was run with a
set of N = 1000 particles. The computation times for one
image pair, processed on a 3 GHz CPU, are listed in Table I.
As one can see, the processing rate of the system is 15 Hz,
which is not yet real-time for an image sequence captured
at 25 Hz, but very close. Of course, when moving slowly, a
processing rate of 15 Hz is sufficient.

In Figure 4, six screenshots are shown which demonstrate
how the system automatically initializes itself. No initial
configuration is given; it autonomously finds the only possi-
ble configuration matching the observations. Figure 5 shows
four screenshots of the same video sequence, showing the
performance of the human motion capture system tracking
a punch with the left hand. We have also run successful
experiments with a half a minute sequence with a resolution
of 640× 480 captured at 57 Hz.
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Time [ms]
Image Processing Line 14
1000 Forward Kinematics and Projection 23
1000 Evaluations of Likelihood Function 29
Total 66

TABLE I
PROCESSING TIMES WITH N = 1000 PARTICLES ON A 3 GHZ CPU

USING A 320× 240 STEREO INPUT IMAGE SEQUENCE

Fig. 4. Screenshots showing automatic initialization

Fig. 5. Screenshots showing tracking performance. Top: input images of the
left camera with projected estimation. Middle: Visualization with a simple
3D model. Bottom: Visualization by mapping to a realistic human model

VI. CONCLUSION

We have presented an image-based markerless human
motion capture system for application on a humanoid robot.
The system is capable of computing motion trajectories in
the configuration space of a human body. We presented our
strategy for fusing multiple cues within the particle filter.
The proposed strategy is supported by the results of a study
examining the properties of commonly used image cues and
the newly introduced distance cue. We showed that by using
the 3-D distance cue we could find optimal configuration
withs less particles than standard approaches. This implicit
reduction of the search space allows us to capture human
motion with a particle filter using as few as 1000 particles,
which results in a processing rate of 15 Hz on a 3 GHz CPU
for a 320× 240 stereo input video stream.

In the near future, we plan to extend the system by

incorporating the legs and feet into the human model. Fur-
thermore, we intend to make use of the active head to follow
the human subject, thus keeping her/him in the robot’s field
of view. This would not be possible with a static head.
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