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Abstract— In this paper, we present a framework for per-
ception, visualization, reproduction and recognition of human
motion. On the perception side, various human motion capture
systems exist, all of them having in common to calculate a
sequence of configuration vectors for the human model in
the core of the system. These human models may be 2D
or 3D kinematic models, or on a lower level, 2D or 3D
positions of markers. However, for appropriate visualization
in terms of a 3D animation, and for reproduction on an actual
robot, the acquired motion must be mapped to the target 3D
kinematic model. On the understanding side, various action
and activity recognition systems exist, which assume input of
different kinds. However, given human motion capture data
in terms of a high-dimensional 3D kinematic model, it is
possible to transform the configurations into the appropriate
representation which is specific to the recognition module. We
will propose a complete architecture, allowing the replacement
of any perception, visualization, reproduction module, or target
platform. In the core of our architecture, we define a reference
3D kinematic model, which we intend to become a common
standard in the robotics community, to allow sharing different
software modules and having common benchmarks.

I. INTRODUCTION

In the recent past, research on visual perception and
understanding of human motion has become of high interest.
On the one hand, a large number of various approaches on the
perception side exists, resulting in different human motion
capture systems, producing output in terms of different mod-
els and stored in different formats. On the other hand, many
action recognition and activity recognition systems exist,
expecting input data specific to their own internal represen-
tation. Furthermore, any target platform for the reproduction
of human motion, namely 3D models for animation and
simulation purposes, and humanoid robots, expects human
motion capture data in terms of its own 3D kinematic model.
Because of this fact, currently it is not possible to exchange
single modules in an overall infrastructure for a humanoid
robot, including perception, visualization, reproduction, and
recognition of human motion. Furthermore, having common
benchmarks is only feasible when a common representation
for human motion is shared.

Methods for modeling, generating of human motion and
its reproduction on humanoid robots have been proposed in
robotics and computer graphics ([1], [2], [3], [4]). These
methods involve capturing full body motion of a human
performer using human motion capture systems and the

transformation of the motion to the kinematics of a humanoid
robot or human figures. To answer the question of how to
generate and represent motor primitives in imitation learning
architectures, several approaches have been proposed. In
most related researches, continuous Hidden Markov Models
(HMM) are used, where the Viterbi algorithm plays an
important role to generate a close motion to the observation.
In [5], a stochastic model has been proposed that abstracts
the whole body motion as symbols and integrates motion
recognition, generation, and symbolization of motion pat-
terns. Nakamura presents in [6] a stochastic mimesis model
for the imitation of new observed motions without learning
the motion and for the online acquisition of motion patterns.

Human motion capture systems can be generally divided
into marker-based and markerless systems. Marker-based
systems are widely used in the film and animation industry,
and in the research field of human motion analysis. One of
the most popular marker-based motion capture systems is
the VICON system [7], which can track a set of reflective
markers that are attached to the person to be tracked. Such
systems can acquire a very high accuracy and a high temporal
resolution; their output is a set of 3D positions of markers
over time in first place. This output data has then to be
post-processed manually, and if necessary translated into
the configuration space of a given 3D human model by
determining rotations on the base of adjacent markers, as
done in [8].

Markerless systems are often used in the context of visual
perception for humanoid robot systems. Recently, many
approaches have been proposed, differing in the number,
type, and arrangement of the sensors incorporated, real-time
applicability, the ability to perceive 2D or real 3D motion,
and the smoothness of the output trajectories. When using
multiple cameras, i.e. three or more cameras located around
the area of interest, two different systems have shown very
good results. The one class of approaches is based on the
calculation of 3D voxel data, as done by [9], [10]. The other
approach is based on particle filtering and became popular by
the work of Deutscher et al. [11] for multi-camera systems,
and later by [12] for the specific case of monocular image
sequences. Recently, we have started to adapt and extend
this system for real-time application on a humanoid robot
head ([13], [14]). Other approaches depend on incorporation
of an additional 3D sensor and the Iterative Closest Point
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(ICP) algorithm, such as the Swiss Ranger, as presented by
[15].

The output data computed by the mentioned systems
is intended to be used for different applications, namely
action and activity recognition, and the reproduction of
movements on a humanoid robot system. For visualization
and evaluation purposes, the data is usually also applied to a
3D human model. The problem is that most human motion
capture systems are intended for the mentioned applications,
but in practice the transfer rarely happens. The reason is
that each system is based on its own representation and
therefore the output data is always given in terms of this
specific human model with its own data format, which
is in general not compatible with systems for action or
activity recognition, or the kinematic model of an actual
robot system. Since one research group cannot deal with all
the mentioned issues, it is crucial to overcome this deficiency
to allow for compatibility of any module developed for any
of the mentioned purposes. In the following, we propose a
framework, defining a reference 3D kinematic human model
in its core, and presenting the architecture, with which all
modules are connected together. As a practical example, we
show how we built in a markerless human motion capture
system developed at our institute and the humanoid robot
ARMAR III for reproduction of movements.

Fig. 1. ARMAR III with sensor head

II. HUMAN MOTION CAPTURE

In this section, we want to give a short outline of marker-
based and markerless human motion capture systems, in
particular concentrating on the data input and output of the
systems. In Section III, we show how their output can be
mapped to one canonical representation.

A. Markerless Human Motion Capture

As mentioned in Section I, various approaches for marker-
less human motion capture exist. Here, we want to introduce
a system intended for real-time application on an active head
of a humanoid robot system, which has been developed
at our institute ([13], [14]). The input of the system is a
stereo color image sequence, captured with two calibrated

Dragonfly cameras built-in into the head of the humanoid
robot ARMAR III, which can be seen in Figure 1. The
input images are preprocessed, generating output for the
gradient cue, the distance cue, and an optional region cue,
as described in [14]. The image processing pipeline for this
purpose is illustrated in Figure 2.

Smooth HSI

Skin Color
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Gradients

Eroded Skin Color MapGradient Pixel Map

Fig. 2. Visualization of the image processing line

Based on the output of the image processing pipeline, a
particle filter is used for tracking the movements in configu-
ration space. The overall likelihood function to compute the
a-posteriori probabilities is formulated as:

p(z|s) ∝ exp
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where s is the configuration to be evaluated, z is a general
denotation for the current observations i.e. the current input
image pair, and ci ∈ R3 with i ∈ {1, 2, 3} denotes the
triangulated 3D position of the hands and the head. The
function di(s, c) is defined as:

di(s, c) :=
{

|fi(s)− c|2 : c 6= 0
0 : otherwise ,

where n := dim(s) is the number of DoF of the human
model. The transformation fi : Rn → R3 transforms the n-
dimensional configuration of the human model into the 3D
position of the left hand, right hand, or head respectively,
using the forward kinematics of the human model.

The gm with m ∈ {1, . . . ,Mg} denote the intensity values
in the gradient image (which is derived from the input images
z) at the Mg pixel coordinates of the projected contour of
the human model for a given configuration s. This process
is performed for both input images using the calibration
parameters of each camera.

A detailed description is given in [14]. For each image
pair of the input sequence the output of the system is the
estimation of the particle filter, given by the weighted mean
s over all particles. The format of the output configuration s
is:

s = (tBT θBT θLS θLE θRS θRE)T ,
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where BT denotes the base transformation, LS and RS
the shoulder joints for the left and right arm, and LE
and RE the elbow joints. tBT ∈ R1×3 is the base trans-
lation, θBT ,θLS ,θRS ∈ R1×3 are rotations given in the
Euler convention RX′Z′Y ′(α, β, γ), and θRE , θRE ∈ R are
scalar values for the elbow angle α in the Euler convention
RX′Z′Y ′(α, 0, 0). The Euler angle conventions can be found
in the Appendix B of [16].

B. Marker-based Human Motion Capture

Marker-based human motion capture systems are commer-
cially available and often used in the film and animation
industry. The probably most popular one is the VICON
system, which consists of a set of infrared cameras, with
each having a diode array attached to it. The system offers
a convenient calibration routine, which makes it possible to
determine 3D positions for the reflective markers that come
with the system. Since occlusions can occur, it is necessary
to postprocess the output, which can be relatively time-
consuming, depending on the number of markers used. In
Figure 3, a typical marker setup for the acquisition of human
upper body motion is illustrated. Having postprocessed the
data, the human motion capture data, which consists of a
temporal sequence of 3D marker position sets, can be used
for various purposes.

Fig. 3. Illustration of a marker-based human motion capture setup from
[8]

For action recognition, it is possible either to use the plain
3D marker positions as input directly, or use trajectories in
joint angle space. For the second approach, the trajectories
of 3D marker position have to be transformed to joint
angle trajectories by deriving rotations from the positions
of adjacent markers, as described in [8]. Depending on the
target kinematic model of the transformation, the joint angle
trajectories can be used for visualization with an articulated
3D human model, or reproduced on an actual humanoid robot
system. However, the problem is that usually this approach is
a dead-end, since the target kinematic model is determined in
advance, and therefore, the final data can be used only for the
one desired purpose. Only with a lot of effort, human motion
capture data can be shared within the robotics community,

since an agreement on a common representation has been
missing so far.

III. MASTER MOTOR MAP

To overcome the deficiencies mentioned above, we pro-
pose a reference kinematic model, which we will call the
Master Motor Map (MMM) in the following. The strategy is
to define the maximum number of DoF that might be used
by any visualization, recognition, or reproduction module,
but not more than that. The H-Anim 1.1 specification [17]
defines a joint for each vertebra of the spine, which is not
suitable for the robotic applications mentioned. Moreover,
the H-Anim 1.1 specification does only define relative joint
positions in terms of a graph, but not the actual kinematic
model including the joint angle conventions for each joint,
which is crucial for any robotic application. Therefore, we
have defined a subset of the H-Anim 1.1 specification and
have specified the joint angle conventions for each joint.

The joints which build the subset of H-Anim
1.1 are skullbase, vc7, vt6, pelvis, Humanoid-
Root, l hip/r hip, l knee/r knee, l ankle/r ankle,
l sternoclavicular/r sternoclavicular, l shoulder/r shoulder,
l elbow/r elbow, and l wrist/r wrist. The numbers of DoF
and the Euler angle conventions are listed in Table I. The
kinematic model for the MMM is illustrated in Figure 4.

DoF Euler angles
skullbase 3 RX′Z′Y ′ (α, β, γ)
vc7 3 RX′Z′Y ′ (α, β, γ)
vt6 3 RX′Z′Y ′ (α, β, γ)
pelvis 3 RX′Z′Y ′ (α, β, γ)
HumanoidRoot 3 RX′Z′Y ′ (α, β, γ)
l hip / r hip 3 + 3 RX′Z′Y ′ (α, β, γ)
l knee / r knee 1 + 1 RX′Z′Y ′ (α, 0, 0)
l ankle / r ankle 3 + 3 RX′Z′Y ′ (α, β, γ)
l sternoclavicular / r sternoclavicular 3 + 3 RX′Z′Y ′ (α, β, γ)
l shoulder / r shoulder 3 + 3 RX′Z′Y ′ (α, β, γ)
l elbow / r elbow 2 + 2 RX′Z′Y ′ (α, β, 0)
l wrist / r wrist 2 + 2 RX′Z′Y ′ (α, 0, γ)
Total 52

TABLE I
NUMBER OF DEGREES OF FREEDOM AND EULER ANGLE CONVENTIONS

FOR THE JOINTS OF THE MMM

The file format is specified as follows. The 52-dimensional
configuration vectors are written sequentially to a text file,
where each component is a floating point number formatted
as readable text. All components are separated by whites-
pace. After one configuration, an additional floating point
value specifies the associated timestamp in milliseconds.
Since one configuration contains a fixed number of 53
numbers (including the timestamp), it is not necessary to in-
troduce an explicit end of one configuration. For readability,
it is recommended to put a line break after each timestamp
instead of a space. The order of the 52 floating point numbers
for the configuration vector is:

(tRT θRT θSB θV C7 θP θV T6 θLSC θLS θLE θLW

θRSC θRS θRE θRW θLH θLK θLA θRH θRK θRA)T
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Fig. 4. Illustration of the MMM kinematic model

where RT denotes the root transformation, SB the skull
base joint, P the pelvis joint, LSC/RSC the sternoclavic-
ular joints, LS/RS the shoulder joints, LE/RE the elbow
joints, LH/RH the hip joints, LK/RK the knee joints, and
LA/RA the ankle joints. The length of each vector is given
by the number of DoF, given in Table I.

IV. FRAMEWORK AND CONVERTER MODULES

In the following, we propose the framework which con-
nects all mentioned modules, namely responsible for data
acquisition, visualization, reproduction, and recognition. In
the core of the framework is the MMM, as specified in
Section III. All perceptive modules have an additionally
implemented converter module, which transforms the output
data to the MMM. Modules for visualization, reproduction,
and recognition, which need motion capture data as input,
implement an additional converter module, which transforms
the data provided in the MMM format to the required input
data format. This framework is illustrated in Figure 5.

The converter modules implement the transformation from
one human motion representation to the MMM, or vice versa.
In the case of marker-based human motion capture systems,
this transformation is computed on the base of adjacent
markers, as described in [8]. For all other modules, the
converter module has to perform a transformation between
two different kinematic models. There are five common basic
types of adaptations which can occur in such a transforma-
tion:

1) Changing the order of values (all modules).
2) Setting zeroes for joint angles which are not captured

(perception modules).
3) Ignoring joint angle values which can or are not to be

used (reproduction and recognition modules).
4) Transformations between two different Euler angle

conventions for a ball joint (all modules).
5) Adaptations that include more than one joint, if the

target module does not offer the corresponding degrees
of freedom (reproduction and recognition modules).

We will show three example converter modules, cover-
ing all five mentioned cases. One converter module is for
mapping the output of our markerless human motion capture
system to the MMM, the second for mapping the MMM to
the kinematic model for the humanoid robot ARMAR, and
the third for transforming 6D task space trajectories to the
MMM. Cases 1, 2, and 3 are trivial. Case 4 can be solved by
carefully calculating the conversion between two Euler angle
conventions, as will be shown. Case 5 can not be generalized;
we will show an example for the humanoid robot ARMAR.
In the following, the notation 0i denotes the transposed zero
vector of Ri i.e. 0i ∈ {0}1×i.

A. Conversion Example 1
Here, we show how the output of our markerless human

motion capture system is mapped to the MMM. The conver-
sion covers the cases 1 and 2; case 4 does not occur, since
the Euler angle conventions for the shoulder joints are both
RX′Z′Y ′(α, β, γ), as is the base rotation for both models.
Cases 3 and 5 are not of interest for perception modules.
The transformation is formulated as follows:

f1 : R14 → R52

(tBT θBT θLS θLE θRS θRE)T →
(tBT θBT 015 θLS θLE 06 θRS θRE 017)T

B. Conversion Example 2
Here, we show how the MMM is mapped to the kinematic

model of the humanoid robot ARMAR. The conversion
covers the cases 1, 3, 4, and 5. Case 2 is only of interest
for perception modules. The first problem is that ARMAR
does not have the sternoclavicular joint, which is an example
for case 5. One solution is to calculate the effective rotation
matrix for the combination of the sternoclavicular and the
shoulder joint. The effective rotation for the sternoclavicular
and the shoulder joints is then formulated as:

RLS′ = RX′Z′Y ′(θLSC) ·RX′Z′Y ′(θLS)
RRS′ = RX′Z′Y ′(θRSC) ·RX′Z′Y ′(θRS) ,

ThC5.4

2561

Authorized licensed use limited to: Universitatsbibliothek Karlsruhe. Downloaded on September 28, 2009 at 04:53 from IEEE Xplore.  Restrictions apply. 



Markerless
HMC2

Converter
HMC2→MMM

HMCn

Converter
HMCn→MMM

...

Marker-based
HMC1

Converter
HMC1→MMM

3D Marker
Trajectory

Joint Angle
Trajectory

Master Motor Map

3D 
Visualization

Converter
MMM→Visualization

Robot1

Converter
MMM→Robot1

Robotn

Converter
MMM→Robotn

Action 
Recognizern

Converter
MMM→ARn

Action 
Recognizer1

Converter
MMM→AR1

... ...

Fig. 5. Illustration of the proposed framework

where the notation R(θ) means R(α, β, γ) with (α β γ) =
θ. In the following, c denotes the side, which is necessary
because ARMAR III has different coordinate systems for the
two sides, in contrast to the MMM:

c :=
{

1 : left
−1 : right

Then, the kinematics for the shoulder joint of ARMAR III
are defined as:

RS,ARMAR(c, α, β, γ)
= Ry(cπ

6 ) ·Rx(−π
2 ) ·Rz(−cα) ·Rx(β) ·Ry(cγ)

= Ry(cπ
6 ) ·Rx(−π

2 ) ·RZ′X′Y ′(−cα, β, cγ)

The problem of calculating the transformed rotation can be
formulated as finding the angles α, β, γ so that:

RLS′ = RS,ARMAR(1, α, β, γ)
RRS′ = RS,ARMAR(−1, α, β, γ)

and furthermore:

RL := Rx(−π

2
)T ·Ry(

π

6
)T ·RLS′ = RZ′X′Y ′(−α, β, γ)

RR := Rx(−π

2
)T ·Ry(−π

6
)T ·RRS′ = RZ′X′Y ′(α, β,−γ)

In the following, we determine the solution for the left
shoulder; the solution for the right shoulder can be de-
termined analogously. First, we need the rotation matrix
RZ′X′Y ′(−α, β, γ):

RZ′X′Y ′(−α, β, γ)

=

 sαsβsγ + cαcγ sαcβ −sαsβcγ + cαsγ
cαsβsγ − sαcγ cαcβ −cαsβcγ − sαsγ

−cβsγ sβ cβcγ


=

 r1 r2 r3

r4 r5 r6

r7 r8 r9

 = RL

The two possible solutions can then be calculated by:

α = atan2(±r2,±r5) (1)

β = atan2(r8,±
√

r2
2 + r2

5) (2)

γ = atan2(∓r7,±r9) (3)

These can be disambiguated by taking into account max-
imum joint angle constraints. To formulate the complete
conversion, we define for the left shoulder:

gl : R6 → R3 : (θLSC θLS) → (α β γ)T ,

as given in the equations (1)-(3); gr is defined analogously.
The final conversion is then given by:

f2 : R52 → R14

(tRT θRT θSB θV C7 θP θV T6 θLSC θLS θLE θLW

θRSC θRS θRE θRW θLH θLK θLA θRH θRK θRA)T →

(gl

(
θT

LSC

θT
LS

)T

θLE θLW gr

(
θT

RSC

θT
RS

)T

θRE θRW )T

C. Conversion Example 3

This example is important for the programming and exe-
cution of manipulation tasks, which are specified in terms
of object trajectories. Using a magnetic tracking system
(Fasttrak, www.polhemus.com), both the position and the
orientation of the hand (x y z α β γ)T is tracked in
Cartesian space. The mapping to the MMM is provided by
a closed-form inverse kinematics algorithm, which computes
the transformation for an arm:

f3 : R6 → R7 :
(x y z α β γ)T → (θLS θLE θLW )T

In solving the inverse kinematics problem of the arm, the
arm redundancy is used for the generation of human-like
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arm postures. The arm joint angles are reconstructed using
a sensorimotor transformation model, which was found in
physiological observation of human arm movements [18],
[19]. The model maps the Cartesian wrist position to a
natural arm posture using a set of representation parameters,
which are the upperarm elevation, the forearm elevation, the
upperarm yaw, and the forearm yaw. Once these parameters
are obtained, the shoulder and elbow joint angles are cal-
culated to match the hand position whereas the forearm and
wrist joint angles are calculated to match the hand orientation
(see [20]).

Fig. 6. Example frames. Top: Projected result from the HMC system.
Middle: 3D Visualization with the HMC model. Bottom: 3D Visualization
of the MMM representation.

V. CONCLUSION

We have presented a framework for perception, visualiza-
tion, reproduction, and recognition of 3D human motion. In
the core of our framework, we have defined a reference kine-
matic model – the Master Motor Map. We have showed that
our approach performs well in practice by having built in a
markerless human motion capture system, a 3D visualization
of the MMM, and a module for converting trajectories given
in the MMM to the kinematic model of the humanoid robot
ARMAR III. Although the proposed framework is intended
primarily to query the kinematics of 3D human motion, it
can be also augmented with dynamic parameters of the body
parts. Currently, we are working on reproducing movements
on ARMAR III not only in simulation but on the real
robot. Herefore, it is crucial to incorporate a self-collision
detection module to avoid configurations which are outside
the robot’s working space. Furthermore, we are building up
a database of movements in the MMM format, consisting
of both markerless and marker-based human motion capture
data, which will serve as a solid data source for applications
related to imitation learning within the EU project PACO-
PLUS, and hopefully also within in the entire robotics
community.
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