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Abstract. In the recent past, object recognition and localization based
on correspondences of local point features in 2D views has become very
popular in the robotics community. For grasping and manipulation with
robotic systems, in addition accurate 6-DoF pose estimation of the ob-
ject of interest is necessary. Now there are two substantially different
approaches to computing a 6-DoF pose: monocular and stereo-based. In
this paper we show the theoretical and practical drawbacks and limits
of monocular approaches based on 2D-3D correspondences. We will then
present our stereo-based approach and compare the results to the con-
ventional monocular approach in an experimental evaluation. As will be
shown, our stereo-based approach performs superior in terms of robust-
ness and accuracy, with only few additional computational effort.

1 Introduction

Accurate pose estimation of objects in 3D space is an important computer
vision task, in particular for robotic manipulation applications. For a success-
ful grasp, in particular accurate estimation of the depth is crucial. In the recent
past, the recognition and pose estimation of objects based on local point features
has become a widely accepted and utilized method. The most popular features
are currently the SIFT features [10]; followed by the more recent SURF fea-
tures [5], and region-based features such as the MSER [13]. Object recognition
frameworks using such features usually operate on a set of computed feature
correspondences, either by simply counting feature correspondences or by also
exploiting the spatial relationships of the feature points, as proposed in [10].

Operating on the 2D localization result of such a framework, the common
approach for 6-DoF pose estimation of objects computes the rotation and trans-
lation of the object in 3D space on the basis of 2D-3D point correspondences. The
traditional method for this is the POSIT algorithm [7]. A more recent method for
estimating a 6-DoF pose on the basis of 2D-3D point correspondences, which also
succeeds for coplanar point sets, is presented in [11], and was used throughout
our comparative experiments. Monocular approaches are popular for augmented
reality applications as presented e.g. in [9].

Such methods all have in common that the full pose of the object is com-
puted on the basis of a monocular image. This means that in particular the



distance of the object to the camera, namely the z-coordinate in the camera
coordinate system, is derived from the scaling i.e. the size of the object in the
image. Furthermore, the computation of out-of-plane rotations on the basis of
2D-3D correspondences is sensitive to small errors in the 2D feature positions.

One possibility for improving the accuracy of a pose estimate is the applica-
tion of an edge-based optimization step exploiting the projected contour of the
object. Such an optimization utilizes essentially the same methods as applied for
edge-based rigid object tracking (e.g. [12]). A hybrid approach fusing texture,
edge, and color information in an Iterated Extended Kalman Filter (IEKF) is
proposed in [14]. However, an edge-based improvement of an object pose esti-
mate always requires the projected contour of the object to be prominent in the
image, which is often not the case.

In order to overcome the abovementioned problems, we have developed an
approach that exploits the benefits offered by a calibrated stereo system, op-
erating on top of the 2D recognition and localization result based on feature
correspondences, as introduced in [3]. In this paper, we will show in theory and
in practice that our stereo-based approach is more robust and more accurate
compared to conventional monocular approaches based on 2D-3D point corre-
spondences. Note that it is neither an accepted fact nor obvious that monocular
pose estimation based on 2D-3D point correspondences performs inferior com-
pared to stereo-based pose estimation1.

In [6], related work on 3D object tracking is presented, which uses the KLT
tracker [15] for tracking features in order to save computation time. A monoc-
ular approach using 2D-3D point correspondences and a stereo-based pose es-
timation method using 3D-3D point correspondences are presented. Although
it is experimentally shown that the stereo-based approach is more accurate, a
thorough analysis is not performed. Our measurements will show, when monoc-
ular and stereo-based pose estimation achieve comparable results and when the
monocular approach deteriorates. In particular, we will show that the monocu-
lar approach suffers from instabilities for planar objects in the presence of skew
and that the stereo-based approach achieves a significantly greater depth ac-
curacy at far distances of the object. Furthermore, our stereo-based approach
achieves maximum accuracy by exploiting model fitting rather than relying on
point correspondences only.

In Section 2, the maximally achievable accuracy of monocular and stereo-
based pose estimation is compared in theory. Our stereo-based 6-DoF pose es-
timation method is explained in detail in Section 3. The two approaches are
compared in simulation and in real-world experiments in Section 4, ending with
a conclusion in Section 5.

1Also note that not any stereo-based approach performs superior. For instance,
performing 2D localization in the left and right camera image independently and then
fusing the results is a – theoretically and practically – suboptimal approach in terms
of accuracy.



2 Accuracy Considerations

In this section, the theoretically achievable accuracy of pose estimation meth-
ods based on 2D-3D correspondences will be compared to 3D calculations using
stereo triangulation. As an example, values from a real setup on the humanoid
robot ARMAR-III [1] are used. The task of localizing an object at a manipu-
lation distance of approx. 75 cm for subsequent grasping is considered. Lenses
with a focal length of 4 mm are assumed, resulting in approx. f = fx = fy = 530
(pixels) computed by the calibration procedure. The stereo system has a baseline
of b = 90 mm; the principal axes of the cameras are assumed to run parallel.

As shown in [2], a pixel error of ∆ pixels leads to a relative error in the
estimated zc-coordinate of:

zc(u)
zc(u+∆)

− 1 =
∆

u
. (1)

This shows that the error depends – in addition to the pixel error – on the
projected size of the object: The greater the projected size u, the smaller the
error. For the calculation of the pose on the basis of feature points, u is related
to the farthest distance of two feature points in the optimal case. For an object
whose feature pair with the farthest distance has a distance of 100 mm, it is
u = f ·xc

zc
≈ 70, assuming the object surface and the image plane run parallel. A

pixel error of ∆ = 1 would already lead to a total error of the zc-coordinate of
75 cm · 1

70 ≈ 1 cm under in other respects perfect conditions.
In a realistic scenario, however, objects often exhibit out-of-plane rotations,

leading to a skewed image. This skew not only causes a smaller projected size
of the object but also a greater error of the feature point positions. A projected
size of 50 pixels and an effective pixel error of ∆ = 1.5 would already lead to an
error greater than 2 cm. Note that the depth accuracy not only depends on the
pixel errors in the current view, but also in the learned view, since the depth is
estimated relative to the learned view.

In contrast, when exploiting a calibrated stereo system, the depth is com-
puted on the basis of the current view only. As shown in [2], a disparity error of
∆ pixels leads to a relative error in the estimated zc-coordinate of:

zc(d)
zc(d+∆)

− 1 =
∆

d
, (2)

where d denotes the disparity between the left and right camera image. Eq. (2)
shows that the error does not depend on the projected size of the object, as it
is the case in Eq. (1), but instead depends on the disparity d: The greater the
disparity, the smaller the error. For the specified setup, the disparity amounts to
d = f ·b

zc
≈ 64. For typical stereo camera setups, the correspondences between the

left and the right camera image for distinctive feature points can be computed
with subpixel accuracy. For this, usually a second order parabola is fitted to
the measured disparity/correlation pairs and the two neighbors. In practice,
a subpixel accuracy of at least 0.5 pixels is achieved easily by this approach.
Together with Eq. (2) this leads to a total error of only 75 cm · 0.5

64 ≈ 0.6 cm.



Judging from the presented theoretical calculations, the position accuracy
that can be achieved by stereo vision is higher by a factor of approx. 2–3. Al-
though for fine manipulation of objects, e.g. grasping the handle of a cup, the
lower estimated accuracy of methods relying on 2D-3D correspondences is prob-
lematic, for many other applications it might be sufficient.

However, the real errors arising from pose estimation on the basis of 2D-
3D point correspondences can hardly be expressed by theoretic formulas. The
accuracy and stability of such approaches dramatically depends on the spatial
distribution of the feature points and their accuracy.

3 6-DoF Pose Estimation

Conventional approaches to 6-DoF pose estimation, which are based on 2D-
3D point correspondences, cannot achieve a sufficient accuracy and robustness.
In particular, they tend to become instable when the effective resolution of the
object decreases and thereby also the accuracy of the 2D feature point positions
(see Section 4 and [2]). In this section, we present our approach, which exploits
the benefits of a calibrated stereo system. As will be shown, this leads to a
significantly higher robustness and accuracy, and succeeds also at lower scales of
the object.

The idea is to compute a sparse 3D point cloud for the 2D area that is
defined by the transformation of the contour in the training view by means of
the homography estimated by the 2D recognition and localization procedure (see
[4,2]). Given a 3D model of the object, this model can be fitted into the calculated
point cloud, resulting in a 6-DoF pose. The general approach is summarized in
Algorithm 1.

Algorithm 1 CalculatePoseTextured(Il, Ir, C) → R, t

1. Determine the set of interest points within the calculated 2D contour C of the
object in the left camera image Il.

2. For each calculated point, determine a correspondence in the right camera image Ir

by computing the Zero Normalized Cross Correlation (ZNCC) along the epipolar
line.

3. Calculate a 3D point for each correspondence.
4. Fit a 3D model of the object into the calculated 3D point cloud and return the

resulting rotation R and the translation t.

Essentially, two variants of Step 4 in Algorithm 1 are possible: Fit an analyti-
cally formulated 3D representation (or a high-quality mesh) of an object into the
point cloud, or perform an alignment based on 3D-3D point correspondences.
For applying the first variant, the object or a substantial part of the object,
respectively, must be represented as a geometric 3D model.



For applying the second variant, 3D points must be calculated for the feature
points from the training view in the same manner as throughout recognition, i.e.
by computing stereo correspondences and applying stereo triangulation. A set
of 3D-3D point correspondences is then automatically given by the filtered set
of 2D-2D point correspondences resulting from the homography estimation. If
applicable, the first variant should be preferred, since it does not rely on the
accuracy of the feature point positions. However, even the second variant is
expected to be more robust and more accurate than the conventional approach,
since it does not suffer from the instabilities that are typical for pose estimation
based on 2D-3D point correspondences.

In the case of cuboids – as used throughout the comparative experiments
from Section 4 – a 3D plane is fitted into the sparse 3D point cloud, which
is obtained by computing stereo correspondences for the interest points within
the 2D contour of the object in the left camera image (details are given in
[2]). Then, the intersection of the 3D plane with the estimated 2D contour is
calculated to obtain 3D contour points. In the case of a cuboid, this can be easily
achieved by intersecting the 3D straight lines through the corner points and the
projection center of the left camera with the computed plane. To provide the
result as a rigid body transformation, finally the rotation R and the translation
t must be computed that transform the points of the 3D object model from
the object coordinate system to the world coordinate system. When using 3D-
3D point correspondences without fitting a 3D primitive, this transformation
is calculated automatically. Otherwise, the searched rigid body transformation
can be computed on the basis of 3D-3D point correspondences between the
calculated 3D contour points and the corresponding 3D model points. For this,
the minimization method from [8] is used. In the case of a rectangular planar
surface, it is sufficient to use the four corner points.

4 Experimental Evaluation

In this section, the accuracies of monocular and stereo-based pose estimation
are compared in several experiments. For recognition and 2D localization, the
features and the recognition pipeline presented in [4] were used. The system
was implemented using the Integrating Vision Toolkit (IVT)2. The company
keyetech3 offers highly optimized implementations (e.g. Harris corner detection
within less than 5 ms).

In the first experiments, the wide angle stereo camera pair of the humanoid
robot ARMAR-III (as specified in Section 2) was simulated, allowing to measure
the estimation errors under perfect conditions and having accurate ground truth
information. The errors of the z-coordinate are shown in Fig. 1, as they show the
weak points of the monocular approach. For this purpose, the object of interest
was moved along (resp. rotated around) a single degree of freedom for each plot.
In addition, 1,000 random poses were evaluated; the results are shown in Fig. 2.

2http://ivt.sourceforge.net
3http://www.keyetech.de



-30

-20

-10

0

10

20

30

400 600 800 1000
z
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

z
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

z
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

-180 -90 0 90 180

z
-e

rr
o
r

[m
m

]

z-angle [o]

Fig. 1. Results of the simulation experiments. The z-errors are plotted depending on
changes in a single degree of freedom. The solid line indicates the result of the proposed
method, the dashed line the result of monocular pose estimation.
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Fig. 2. Accuracy of 6-DoF pose estimation for 1,000 random trials; the errors are
sorted in decreasing order. The solid line indicates the average error, the dashed line the
maximum error. The 3D error was measured on the basis of sampled 3D surface points.
Left: using the monocular method. Right: using the proposed stereo-based method.
Note the different scaling of the vertical axis.

In Fig. 3, a situation is shown in which the monocular approach becomes
instable. In Table 1, the standard deviations over 100 frames for experiments
with a static object are given. As can be seen, the standard deviation of the
z-coordinate amounts to 1.52 mm using the monocular approach, in contrast to
0.39 mm when using the stereo-based approach.

The runtime of the 6-DoF pose estimation procedure amounts to approx.
6 ms for a single object using the specified stereo setup (3 GHz single core CPU).
The only computational expensive task here is the correlation procedure for the
interest points belonging to the object. The runtime can be reduced easily by
taking into account the correlation results of neighbored interest points.



Fig. 3. Result of 6-DoF pose estimation. Left: using the conventional monocular ap-
proach. Right: using the proposed stereo-based approach.

x y z θx θy θz

Proposed method 0.23 0.42 0.39 0.066 0.17 0.10

Conventional method 0.24 0.038 1.52 0.17 0.29 0.13
Table 1. Standard deviations for the estimated poses of a static object. The standard
deviations have been calculated for 100 frames. The units are [mm] and [o], respectively.
Note that a situation was chosen in which the monocular approach does not become
instable.

5 Discussion and Outlook

We have compared monocular 6-DoF pose estimation based on 2D-3D point
correspondences to our stereo-based approach. After discussing both approaches,
it was shown that our stereo-based approach is significantly more robust and
more accurate. The greatest deviations between the two approaches could be
observed in the z-coordinate.

Various grasping experiments with the humanoid robot ARMAR-III have
proved the applicability of our stereo-based pose estimation method [16].

In the near future, we plan to investigate the performance of our stereo-based
approach for objects of arbitrary shape, in particular evaluating the improvement
that can be achieved by the fitting of 3D primitives in addition to pose estimation
using 3D-3D point correspondences.
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