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Abstract— We present an approach for the selection of robot
grasp candidates by treating specified metrics in a probabilistic
manner and maximizing the success rate through statistical
optimization. Recently, progress has been made in grasping
unknown objects in cluttered scenes by using deep neural net-
works or incorporating classifiers. Although existing methods
deliver promising results, they either lack explainability or fail to
account for uncertainties that accumulate over the entire system.
To address this shortcoming, we optimize a ranking score based
on the sensitivities of the grasp success with respect to a set of
metrics. These sensitivities reflect each metric’s contribution to
the success. To perform this optimization, we refer to a dataset
of 932 randomly selected grasps recorded under real-world
conditions with the humanoid robot ARMAR-6. By validating
our approach on a separate data collection of 187 physical
real-world grasps, we demonstrate that our approach yields a
success rate of 73.8%, amounting to an improvement of more
than 40% compared to a random grasp selection. The results
exemplify that sensitivity optimization, scarcely applied in the
context of robotic applications so far, can significantly enhance
the grasp success by considering respective metrics in the face
of uncertainties.

I. INTRODUCTION

Autonomous robotic grasping in unknown and unstruc-
tured environments is a complex task that is required for
many real-world applications. While grasping in structured
environments, e. g., assembly lines, can be handled by robots
with very high accuracy and speed, the same process be-
comes very fragile, slow, and unreliable in unknown en-
vironments due to perceptual and systematic uncertainties.
However, in everyday scenarios like helping in a household
or elderly care, or even in inhospitable environments like nu-
clear power plants or landfills, such structured environments
are rarely available. Therefore, autonomous manipulation
abilities in unknown surroundings without prior knowledge
become more and more important.

The selection of a suitable grasp to execute on an object
or in a scene plays an essential role in many approaches to
autonomous grasping (see e. g., [1], [2], [3]). For example,
in Figure 1, the humanoid robot ARMAR-6 needs to select
a suitable grasp in order to lift an object. Humans, on the
other hand, can easily build on their scene understanding
and prior knowledge to always select a promising grasp.
However, this is not a trivial task for robots, as the large
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Fig. 1: Autonomously generated grasp candidates for execu-
tion on the humanoid robot ARMAR-6.

amount of raw visual data of the observed scene needs to be
analyzed before any assumptions can be made. Additionally,
this task becomes more complex due to uncertainties in
the robot’s perception and execution. To address this issue,
we propose a probabilistic approach for grasp selection
built upon traditional statistical methods, that facilitates the
derivation of a heuristic scoring function for grasp candidates
extracted from visual perception based on previous grasp
executions.

A. Previous Work

In our previous work [4], we investigated the influence of
expert knowledge on the grasp selection process and showed
that by selecting the correct autonomously-generated grasp
candidate, the success rate of grasping with the humanoid
robot ARMAR-6 [5] could be significantly increased. There-
fore, we hypothesize that by improving only the quality
of the grasp selection, we can significantly improve the
autonomous grasping process. Additionally, in [6], we fuse
multiple observations of manipulation actions in a scene
using Bayesian Recursive State Estimation, to calculate the
existence certainty, as well as the covariance of the pose,
of a grasp action hypothesis. In real-world experiments
on ARMAR-6, we showed that the probabilistic fusion of
the grasp candidates improved the success rate of grasping
compared to a non-probabilistic treatment. Therefore, our
goal is to develop a probabilistic formulation of different
metrics extracted from the visual perception and use sta-
tistical techniques to improve the grasp selection process.
By doing so, we aim at enhancing the success rate of



autonomous grasping and gaining further insights into the
influence of perceptual uncertainties.

B. Contributions

In this work, we propose an approach that employs
traditional statistical tools to maximize the grasp success
rate in a robot grasping application. To do so, we derive
a scalar ranking score to rate grasp candidates. Specifically,
we exploit the sensitivities of the grasp success with respect
to selected grasp metrics, where sensitivities reflect to which
extent each metric contributes to the success rate. In doing
so, we distinguish ourselves from existing literature by
presenting a method that is not only generalizable but also
offers the possibility to analyze and interpret results in detail,
for instance by studying the correlation and causality of
different parameters. Specifically, we characterize each grasp
by four Gaussian-distributed metrics, representing high-level
scene understanding and its uncertainties. We collect data
on the humanoid robot ARMAR-6 consisting of 932 grasps
executed under real-world conditions in a random selection
mode, providing the basis for the sensitivity optimization.
For the optimized selection of grasp candidates, we employ
the ranking score which is calculated on the basis of the
randomly collected dataset. In particular, we assign weights
to each metric according to their influence on the grasp
success to rate each grasp candidate. We denote this approach
with the term Uncertainty-aware Sensitivity Optimization.
By validating our method in separate experiments, we show
that explicitly considering uncertainties for the selection of
grasp candidates according to our method yields a notable
improvement of the grasp success rate. Additionally, we
perform correlation studies and statistical tests to gain a
deeper understanding of each metric’s contribution to the
enhanced success rate. Overall, the scientific novelty of
our contribution is twofold: We (i) present an explainable
and generalizable uncertainty-aware grasp selection method
incorporating Gaussian distributed uncertainties build upon
sensitivity analyses. In addition, we (ii) complement obtained
results by thoroughly studying the impact of the metrics’
uncertainties on the grasp success.

II. RELATED WORK

The ability of a robot to decide which action to execute in
an unstructured environment is fundamental for autonomous
manipulation. However, due to an incomplete knowledge and
understanding of the scene, this is still a very challenging
problem. A common approach for robotic grasping consists
of generating several possible grasp candidates and subse-
quently selecting the best one for execution. State-of-the-
Art methods in the field of discriminative grasping as [7],
[8] employ neural networks to predict grasp poses based on
point clouds or suggest the development of machine-learned
classifiers as in [9], [10], [11] to distinguish highly promising
grasp candidates. However, employing these black-box clas-
sifiers, the decisions are often non-comprehensible for human
operators. Additionally, while some authors (e. g., [12] and
[8]) propose to incorporate uncertainties by modeling metrics

as Gaussian distributions, their influence on the grasp success
is neither quantified explicitly nor analyzed thoroughly. Mo-
tivated by this gap, we present an uncertainty-aware approach
to grasp selection that makes transparent decisions based
on previously executed grasps by exploiting the nature of
statistical tools.

One possible approach for grasp selection is the success
prediction of all candidates and the subsequent execution of
the one with the highest probability of success. For example,
in [9], a probabilistic framework for rating grasp hypotheses
based on a semi-supervised Kernel Logistic Regression is
developed. The authors use a smoothness assumption to
train their classifier on partially unlabeled data and show
that their approach can improve the success rate in grasping
unknown objects. A Gaussian Process-based classifier is
used in [10] to predict the success probability of grasps based
on multiple metrics from literature. In [11], the performance
of different learning methods is compared with respect to the
prediction of a success probability for a manually annotated
grasp dataset. Each classifier is trained with seven metrics
as input. In contrast to these approaches that make use of
data-driven methods to predict the success of one grasp
candidate, the authors of [13] introduce four hand-crafted
metrics combined with a probabilistic surface representation
to predict the likelihood of the success. Since this work incor-
porates uncertainties, it shows similarities to our approach.
However, as their scoring functions are hand-crafted, they
automatically rely on the validity of their assumptions which
prohibits learning from experience.

A second line of work suggests ranking grasp candidates
with respect to certain criteria or databases. In [14], a
segmented point cloud of an object of interest is used
to calculate four metrics. Afterward, a pairwise ranking
approach is applied to a set of grasp candidates, where a
classifier is trained to predict whether one grasp candidate is
preferred depending on object features and its corresponding
metrics. In this way, a ranking of the grasp candidates is
obtained from a set of training data and can be transferred to
novel objects. In contrast, the authors of [15] build a library
of successful grasps for shape patches and use the local
features of patches of a queried shape to identify the best
matching grasp in the library. They use the lowest distance of
the queried shape template to the library shapes to rank grasp
candidates. Even though this makes the decision process
quite transparent, perceptual uncertainties are not accounted
for in their approach.

A third line of work makes use of deep neural networks
(DNNs) for robotic grasp selection applications. A physics
simulation, in addition to crowdsourcing, is used in [7] to
generate a large body of grasp data. The authors use this
dataset as the basis for their analysis of stability metrics
and the training of a DNN for grasp success prediction.
In [8], a mixture density network is used to predict a prior
distribution of feasible grasps specific to an object, which is
used to sample grasp candidates that are rated using a voxel-
based convolutional neural network for success prediction.
For training, they use a large dataset generated in simulation



Fig. 2: Overview of our approach presented in Section III.

and evaluate their method on eight unseen objects on a real
robot in very simple scenes.

One key characteristic of our contribution is the incor-
poration of a sensitivity optimization method to enhance the
grasp success rate in a robotic application. While the authors
of [16] and [17] investigate how the drawbacks of missing
data can be alleviated for the assessment of clinical trials
by incorporating sensitivity analyses, large-scale experiments
as presented in [18] have provided experimental evidence
that sensitivity optimization methods effectively contribute
to discoveries of the lightest massive particles.

Inspired by these achievements and the flexible applica-
bility of statistical techniques, we present a method to frame
the maximization of the success rate in robotic grasping as
a sensitivity optimization problem. In contrast to existing
approaches, we place particular focus on both, the explicit
consideration of uncertainties as well as the explainability
of obtained results by carrying out in-depth analyses with
respect to correlation and causality.

III. UNCERTAINTY-AWARE SENSITIVITY OPTIMIZATION

An overview of our approach for the autonomous selection
of grasp candidates can be seen in Figure 2. Grasp candidates
are generated based on the local surface geometry of a raw
point cloud and probabilistically fused over multiple obser-
vations of the same scene to approximate the certainty in
the grasp pose (see [6]). This pose and a segmented version
of the point cloud are used to calculate four Gaussian-
distributed grasp quality metrics. Based on a previously
recorded dataset of random grasps, the sensitivities of the
metrics towards the grasp success rate is estimated. Based on
these sensitivities, the grasp score z is calculated and used
for the selection of the most-likely grasp to succeed. In order
to derive our methodology, we first provide an overview
of the fundamentals, definitions, and assumptions we make
throughout this work.

A. Preliminaries and Assumptions

As indicated above, we characterize each grasp g by n
specified grasp metrics mi, i. e., g 7→ m1, ...,mn. In particu-
lar, the key idea of our approach is to capture uncertainties of
these metrics. However, as we are not provided with detailed
knowledge about the specific behavior of these metrics, e. g.,
functional models, we argue that they can be represented by
Gaussian distributions mi ∝ N(µi, σi) with mean value µi

and standard deviation σi. In addition, each grasp candidate
g is classified as either succeeded gs or failed gf after
execution. For optimization purposes, we make use of the
Kullback-Leibler divergence DKL – a measure that reflects
to which extent a distribution P differs from a reference
distribution Q; i. e.,

DKL(P∥Q) :=

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx. (1)

Here, p(x) and q(x) denote the probability density functions
of P and Q, respectively.
Specifically, we aim to account for possible deviations due
to perceptual inaccuracies. For instance, estimating the above
metrics m1, ...,mn depends on employed measurement de-
vices such as sensors, cameras, and their relationships with
each other. We argue that resulting inaccuracies are a con-
sequence of measurement uncertainties. Generally, measure-
ments are one method to estimate real-world parameters. To
obtain reliable estimates, however, respective data must be
evaluated thoroughly, taking into account limitations of sen-
sory devices or the lack of available data which impede the
achievement of a perfect accuracy of 100%. We thus rely on
the metrological viewpoint of uncertainties presented in the
Guideline to the Expression of Uncertainties in Measurement
(GUM) [19]. Accordingly, the term sensitivity describes how
the output of a system Y behaves with respect to changes in
the input parameters xi, that can be expressed by the local
derivate ∂Y

∂xi
. As the behavior of the metrics’ uncertainties

strongly depends on the considered application, we suggest
to specify them based on the user’s experience and system
knowledge.

B. Problem Statement and Method

One central goal of our contribution is to analyze whether
we can improve the rate of succeeded grasps defined by

rs :=
gs
gtot

, (2)

where gs is the number of succeeded grasps and gtot re-
presents the total number of executed grasps. Especially, our
goal is to derive a scalar ranking score z which is aimed at
maximizing rs. Specifically, as each grasp is characterized by
its metrics and respective uncertainties, the main challenge
lies in the derivation of a functional model y : R+ → R+

0

for the ranking score z given by

z := y (m1, ...,mn)

= y
(
N(µ1, σ1), ..., N(µn, σn), c

)
, (3)

where the constant c stands for application-specific biases or
constant values which are included in the scoring function,
but not subject to uncertainties. To develop a method that
addresses the above problem, we assume that a dataset
containing randomly collected grasps covers the respective
range of all metrics mi and reliably distinguishes between
the group of successful grasps gs and failed ones gf . In
other words, we treat the randomly gathered data as our



population, which serves as the basis for the sensitivity opti-
mization. Given this information, and taking the uncertainties
for all metrics σi into account, we obtain a probability
density function (PDF) pi(x) for the population of each
metric mi. This function returns the probability pi of the
occurrence of any value x of metric mi for each grasp
candidate g, i. e., pi(mi=x|o). Here, o denotes the binary
outcome of a grasp o ∈ {s, f}, where s stands for the
successful and f for the failed grasps. We thus obtain one
PDF corresponding to the successful grasps pi,s(x) and one
to the failed grasps pi,f (x) for each metric. Referring to
these PDFs, we carry out a two-stage optimization by scoring
each newly generated grasp candidate g as described in the
following:

• Global Weighting: First, we rank all considered metrics
according to their influence on the grasp success. Intu-
itively, the difference between the PDFs of the success-
ful and failed grasps indicates how sensitive the grasp
success behaves with respect to the considered metric.
Therefore, we calculate the KL divergence defined in
Equation 1 between the distributions Pi,s and Pi,f for
each metric. We define the global score fglob,i for each
metric mi as follows

fglob,i :=DKL(Pi,s||Pi,f ), (4)

where Pi,s and Pi,f are the distributions representing
the PDFs pi,s = pi(mi|o=s) and pi,f = pi(mi|o=f),
respectively.

• Local Weighting: In the second step, we calculate the
likelihood of belonging to the set of successful grasps
gs for each candidate g, denoting this scalar quantity as
the local score floc,i. To be specific, we calculate the
fraction

floc,i :=
pi,s

pi,s + pi,f
(5)

by again referring to the distributions Pi,f and Pi,s.
Finally, we suggest a total score ftot,i for each metric i given
by:

ftot,i :=fglob,i · floc,i. (6)

By multiplying fglob,i with floc,i, we assign one weighting
factor ftot,i to each grasp candidate. Particularly, ftot,i
ensures that the influence of each metric on the grasp success
(given by fglob,i) and the likelihood for a successful outcome
(floc,i) are both considered to rank each grasp candidate.

IV. SENSITIVITY OPTIMIZATION FOR GRASP SELECTION

In this section, we describe how the Uncertainty-aware
Sensitivity Optimization can be used for grasp selection using
several metrics derived from visual perception.

A. Metrics

For the characterization of a grasp candidate g, we chose
four metrics, which are defined based on visual and pro-
prioception sensor information and modeled as Gaussian
distributions. These metrics are computed based on the
Probabilistic Action Extraction and Fusion (PAEF) [6]. To

this end, the local surface geometry of the raw point cloud is
analyzed and the principal curvatures and normals for each
point extracted. To obtain averaged statistics of the surface
information, the points are clustered in Supervoxels. Using
the averaged information of a Supervoxel, affordances are
extracted and a temporally-consistent coordinate frame is cal-
culated, which can be used to track an action hypothesis over
multiple observations of the scene. An unscented Kalman
filter is employed to calculate the covariance of an action’s
execution pose. Additionally, a Hidden Markov Model, which
tracks the number of scene observations in which a specific
action hypothesis could be identified, is used to estimate the
Existence Certainty ϵ of the action.

1) Grasp Height (h): This metric reflects the height of
a grasp candidate above the floor. It should favor objects,
which lie on top of the clutter. The mean and variance
(µh, σ

2
h) are computed from the covariance of the grasping

pose, which is obtained through the computations of PAEF.
2) Distance to Center (d): This metric describes the

distance of the grasp position to the center of the object-
oriented bounding box of the point cloud segment closest to
the grasping pose. It is computed combining PAEF and a
segmentation of the scene. The metric should favor grasps
that are situated close to the center of mass of an object.
The variance σ2

d is approximated to amount to 10% of the
bounding box’s length, while the mean value µd equals the
distance to the center of the bounding box.

3) Support Relations (s): The metric provides the number
of objects that are supported by the point cloud segment
closest to the grasping pose and is computed using PAEF and
the segmented scene. This metric favors objects which are
not covered by other objects. The mean and variance (µs, σ

2
s)

are obtained from a probabilistic support graph described in
[20]. Here, a large number of scene graphs are generated
based on all RANSAC shape estimations of a segmented
scene and a probabilistic representation is calculated based
on the distribution of shapes and support relations between
them.

4) Manipulability (a): This metric represents the extended
manipulability score proposed in [21], which is a quality
measure for how freely an end-effector can move at a
certain workspace position and is computed using only the
grasping pose from PAEF. The mean and variance (µa, σ

2
a)

are taken from a manipulability map. To this end, random
joint configurations are sampled and the mean and variance
of the corresponding manipulability in a voxelized workspace
representation are updated. This metric favors grasps that are
easily reachable by the robot.

Additionally, we take the grasp’s Existence Certainty ϵ into
account, which is a scalar value indicating the probability
that a grasp affordance actually exists at a certain position.
However, it is important to note that this value does not
correspond to or is in any way related to a grasp quality
measure. This value is not modeled as a Gaussian distribu-
tion, as it corresponds to a probability. Therefore, ϵ is not
treated as a metric. The Existence Certainty is also computed
by PAEF.



Fig. 3: Examples of the experimental setup with ARMAR-6.

B. Scoring Function

As our primary goal lies in validating the efficacy of
the proposed Uncertainty-aware Sensitivity Optimization, we
choose a straightforward scoring function. To account for
the possibility of including further scalar parameters which
might be used for scaling purposes of the ranking score
by a factor α or stand for application-specific biases β, we
propose a functional model yexp given by

yexp(α,mi, β) :=α ·
n∑

i=1

ftot,i + β. (7)

We emphasize that this scoring function is generalizable for
other applications, where the purpose lies in the optimization
of data with respect to one category. For example, it would be
possible to exchange a grasp g for any other kind of sample
with binary properties. In addition, we highlight that we
applied deterministic methods to derive above scoring func-
tion and that the parameters for the Gaussian distributions
of the metrics are explicitly defined such that our method
is explainable, i. e., it is possible to perform more detailed
studies on the obtained results. We assign the following
application-specific parameters to the metrics m1, ...,m4 as
well as to the parameters α and β:

m1 7→ h; m2 7→ d; m3 7→ s; m4 7→ a;

α 7→ ϵ; β = 0; (8)

According to these assignments, the resulting scoring func-
tion for rating grasp candidates becomes

z := yexp(ϵ, h, d, s, a)

= ϵ ·
(
ftot,h + ftot,d + ftot,s + ftot,a

)
. (9)

As the Existence Certainty ϵ is related to the number of
observations of a grasp candidate at a certain position and,
therefore, the accuracy of the estimated parameters, the
candidates that correspond to ϵ=0 are neglected, while such
with high ϵ are attributed to higher ranking scores.

V. EXPERIMENTS AND RESULTS

For the data collection, as well as the evaluation of our ap-
proach, multiple real-world grasping experiments have been
conducted on the humanoid robot ARMAR-6 [5] resulting in
more than 1100 grasp attempts on unknown objects. A video
illustrating the approach and experiments can be found under
https://youtu.be/puJmGsK6hSE.

A. Experimental Setup and Data Acquisition

To improve the grasp success rate using our approach
described in Section III-B, a dataset consisting of randomly
chosen grasp candidates and their outcomes is required. For
this, we used a similar setup to the box emptying experiments
in [6], which can be seen in Figure 3: 11 objects (five
plastic pipes, four boxes, and two metal pipes) are randomly
placed in a box and grasp candidates are extracted based on
the PAEF approach. Additionally, the scene was segmented
using a region-growing segmentation. Afterward, the inverse
kinematics of each candidate, as well as the distance to the
borders of the box, were checked to ensure reachability and
prevent collisions with the box. Finally, a random grasp
was chosen from among all reachable candidates and was
executed by the robot. Together with the result of the
grasp attempt, the metrics described in Section IV-A were
calculated for the executed grasp in order to perform the
global and local weighting steps described in Equation 4
and Equation 5. After grasping an object, the robot placed
the object in the same box to introduce random changes
in the scene. If the scene did not change for multiple
attempts (either because no object was graspable or the same
object was grasped repeatedly), the objects in the box were
randomly rearranged by a human operator.

B. Evaluation and Results

To apply the Uncertainty-aware Sensitivity Optimization,
932 random grasps were executed during four days of
experiments on ARMAR-6. The probability density functions
of these grasps can be seen in Figure 4. Among them, 304
attempts were classified as successful while the remaining
628 were classified as failed. Therefore, the success rate
of the randomly performed grasps amounts to 32.6%. The
resulting values for the KL divergence are shown in Table I.

To rate grasp candidates according to the scoring function
(Equation 9), the PDFs of the random dataset have been
used to evaluate the grasp selection: The same experiments
as described in Section V-A, including an identical grasp
candidate generation process, were run again, with the differ-
ence that the scoring function z was used this time to select
a grasp candidate. Specifically, the metrics were calculated
for each candidate and the one with the highest score was
chosen for execution. For the evaluation of our approach, 187
grasps were carried out with ARMAR-6 on the last day of
experiments. Using our optimized grasp selection described
in Section III and IV, the success rate could be increased
to 73.8% with 138 successful and 49 failed grasp attempts.

TABLE I: Kullback-Leibler divergences of the metrics ob-
tained from random grasping.

Metric Kullback-Leibler Divergence

Grasp Height h 0.460

Distance to Center d 0.034

Support Relations s 0.014

Manipulability a 0.010

https://youtu.be/puJmGsK6hSE


(a) Grasp Height (b) Distance to Center (c) Support Relations (d) Manipulability

Fig. 4: Probability density functions for succeeded (black) and failed (red) grasp attempts of considered metrics for randomly
selected grasps. These distributions provide the basis for the calculation of the ranking score according to Equation 9.

This large increase in performance indicates that our scoring
function was able to rate the grasp candidates according to
their success probability. However, as visible in Figure 4a,
the PDFs of the Grasp Height h show the biggest difference
between the black (succeeded grasps) and red (failed grasps)
curve, which suggests that h had a dominant influence on
the scoring function, and therefore on the grasp selection.
The KL divergence of h in Table I, which is one order of
magnitude greater than the KL divergences of the remaining
metrics, further supports this observation. To investigate the
interdependencies of the metrics, as well as demonstrate
the explainability of our approach, additional analyses were
performed.

VI. DATA ANALYSIS AND DATA INTERPRETATION

As shown in Table I, the KL divergence of the height h
is one order of magnitude higher than the others and thus
plays the most dominant role in the scoring function given
by Equation 9. Accordingly, the highest grasp candidate is
chosen for execution while the remaining metrics do not
seem to contribute to the grasp selection due to their small
KL divergence values. However, we hypothesize that small
changes in the scoring function originating from the KL
variations of the distance d, manipulability a, and support
relations s become relevant for grasp candidates on similar
heights. Apart from that, the score z obtained by applying
Equation 9 depends on the specified uncertainties of each
metric. In the following, we analyse the metrics’ contribu-
tions and the influence of the uncertainties on the success
rate.

A. Intra-Cluster Correlation Studies

To investigate the dependency of the score z on the height
h, we refer to the correlation plot in Figure 5, which results
from the data obtained in the second round of experiments
(validation data set). It is apparent that z generally increases
with h, which matches our expectations. On the other hand,
it can be seen that clusters are formed. In particular, higher
scores are attributed to grasp candidates with lower height
values in these clusters, which indicates that the remaining
metrics were decisive. In order to quantify the contribution
of each metric to z, we calculate the so-called intra-cluster
correlations (IC) in Table II, which describe the correlation
with the score z within the circles depicted in Figure 5.

Fig. 5: Correlation between the final score z and the height
h of the validation dataset. The circles in orange and green
depict the clusters 1 and 2, respectively.

Obviously, the correlation values shown in the second
column of this table consolidate the dominant character of
the height h. Considering the entire dataset, its correlation
with z is more than twice as much as the remaining three
metrics. This, however, does not apply to the IC values:
While the IC value for the height h decreases within the
clusters, a higher absolute value of the IC values of the
support relations s can be observed for cluster 2, indicating
an increase in the influence of s in this cluster. In addition,
the IC for the distance d changes its sign in cluster 1.
These observations can be explained as follows: In the case
of grasp candidates showing significant height differences,
higher grasps are clearly preferred. The dominant character
of the height h leads to the suppression of all remaining
metrics on a large scale. On smaller scales of the height h,

TABLE II: Correlation and intra-cluster correlation (IC)
values between the final score and the metrics.

Metric Corr. with z IC Cluster 1 IC Cluster 2

Grasp Height h 0.8267 0.3592 0.2236

Distance to Center d 0.2998 -0.2967 0.1387

Support Relations s -0.0982 -0.1424 -0.1902

Manipulability a 0.0345 -0.0749 -0.0166



Fig. 6: PDFs of a population with the uncertainty from
Section IV-A (left) and with a modified uncertainty (right).

however, namely inside clusters 1 and 2, the significance of
the other three metrics becomes relevant. At first glance, the
correlation values for the distance d and support relations
s indicate that grasp candidates with larger distances to the
object center are preferred. However, the IC values clearly
demonstrate that the influence of these metrics on z increases
drastically and that the IC values even invert their signs
in some cases on small height scales. For example, the
selection of candidates close to the object center is favored
in cluster 1. Generally, the IC values lie in the same order
of magnitudes for all considered metrics except for the
manipulability a that, according to our results, does not
significantly contribute to the final score. We clearly note
that higher amounts of data are required to draw conclusions
on the causality of our findings.

B. Influence of Uncertainties

The explainable nature of the Uncertainty-aware Sensi-
tivity Optimization enables us to not only perform corre-
lation studies but also to perform more thorough analyses
of the obtained results. As described above, we suggested
specifying the metrics and uncertainties individually for each
application to facilitate the generalization to other scenarios.
So far, although our results convincingly demonstrated that
applying Uncertainty-aware Sensitivity Optimization yields
a remarkable improvement of the grasp success rate, it is
not yet obvious to which extent the specification of the
uncertainties has contributed to the improved success rate.
In particular, the PDFs in Figure 4 result from the total
amount of random grasps, where each grasp is modeled
as a Gaussian distribution with uncertainties σ specified
in Section IV-A. Thus, different uncertainty specifications
would lead to different PDFs. The right part in Figure 6
illustrates the PDF for a reduced uncertainty by a factor of
0.3. In the following, we perform studies on how the metrics’
uncertainties influence the grasp success rate. We focus on
the two metrics, which indicate the highest contributions to
the score z: the height h and the distance to the object d.

1) Modification of Uncertainties: The optimization relies
on the PDFs in Figure 4. Since these distributions belong to
the uncertainty specifications in Section IV-A, their shapes
will vary when modifying the uncertainties σ as illustrated
in Figure 6. For analysis purposes, we consider three uncer-
tainty settings for the height h and the distance d.

2) Bootstrapping: We bootstrap the distribution belonging
to the group of succeeded grasps (black curve in Figure 4). To
do so, we generate 10 000 simulated datasets with each 932

random samples from the modified distributions. According
to the Central Limit Theorem, we obtain a Gaussian distri-
bution by plotting the mean values of these 10 000 simulated
distributions, which provide the information of the expected
values for the succeeded and failed grasp attempts for each
uncertainty constellation. We thereby consider a confidence
level of 95%.

3) Hypothesis Testing: We generate samples from the
modified PDFs representing the distributions of the three
uncertainty settings shown in Table III. We conduct a p-
test (see e. g., [22]) to decide whether a sample belongs
to the group of succeeded or failed grasp attempts. To do
so, we refer to the distributions in the Bootstrapping step.
We define our null hypothesis H0 as follows: The selected
candidate does not belong to the group of succeeded grasp
attempts. As we deal with binary classifications of each
grasp, the rejection of H0 would automatically hint at a failed
grasp attempt which equals the acceptance of the alternate
hypothesis H1 stating the selected candidate does belong
to the group of succeeded grasp attempts. The hypothesis
testing is conducted on a significance level of ρH = 0.05. We
divide the number of simulated grasp samples, which reject
the null hypothesis and the total number of 932 samples to
obtain the success rate. Table III displays our results.

C. Discussion

Generally, the intra-cluster correlation analyses support
our claim that the influence of the remaining metrics in-
creases for objects with negligible height differences. In
particular, observing the behavior of the IC values shows
that a mere glimpse of the correlation on the entire dataset
can be misleading. We conclude from the findings of our IC
studies, that the effect of the distance to the object d and the
support relations s should indeed be considered for scenes
with a high number of objects. However, the validation
dataset contains only 187 grasps, which is a rather small
sample size from a statistical point of view. Specifically,
these 187 selections represent only a small subset of the
available choices, as an average of 100-200 candidates were
suggested by PAEF per scene. Nevertheless, the results from
the evaluation presented in Section V-B also demonstrate
the ability of the Uncertainty-aware Sensitivity Optimization,
as even a relatively small dataset resulted in such a large
increase in performance over the randomly selected grasp
candidates. The results of our statistical analyses presented in
Table III imply that reducing the metrics’ uncertainties does
not necessarily yield higher success rates. In fact, Table III
presents the expected success rates for three settings, where
the uncertainties of the grasp metrics are reduced by factors
0.5, 0.25 and 0.1 compared to the PDFs in Figure 4.

TABLE III: Expected success rates for modified σ.

Metric σ 0.50σ 0.25σ 0.10σ

Grasp Height h 73.80 % 64.05 % 57.63 % 60.19 %

Distance to Center d 73.80 % 74.01 % 76.04 % 70.96 %



Specifically for the height h, it can be seen that lower
uncertainty values yield decreased success rates: According
to the results of the hypothesis tests, reducing the uncertainty
by a factor of 0.25 would lead to a grasp success rate of
57.63%, which corresponds to a decrease by more than
16%. Arguing that the accurate estimation of uncertainties is
essential for the increase of the grasp success, we conclude
that the specified uncertainties σh and σd in the experiments
were appropriately chosen. In the case of the distance to
the object d, however, slight improvements are found to
be attainable by reducing the respective uncertainty. As
the estimated success rate in the third constellation (0.1σ)
in Table III becomes smaller, we infer that reducing the
uncertainty by a factor of 0.25 would be desired to achieve
an improvement of approximately 3% of the success rate.

VII. CONCLUSION AND OUTLOOK

In this work, we presented an explainable and generaliz-
able approach for Uncertainty-aware Sensitivity Optimization
and applied it to autonomous grasp selection. To do so,
we recorded 932 randomly selected grasps under real-world
conditions with the humanoid robot ARMAR-6, which were
generated using our previous work on probabilistic action
extraction and execution described in [6]. Referring to this
dataset, we introduced a scoring function that takes into
account four specified metrics to rate grasp candidates by
applying a global and local weighting. In a second round
of experiments, we used this scoring function to select the
most promising grasp candidate for a given constellation of
objects in the scene. Doing so, we were able to achieve
a grasp success rate of 73.8 % (in comparison to 32.6 %
using randomly selected grasps). This significant increase
in performance demonstrates that the choice of metrics was
indeed suitable for predicting successful grasp candidates.
In addition to the real-world grasping experiments, we
performed in-depth analyses on the influence of the grasp
metrics, as well as their uncertainties, on the grasp success.
It was found that the height of grasp candidates contributes
to the improvement of the success rate the most. On the
other hand, our intra-cluster correlation studies indicated
that the remaining metrics become decisive for objects on
similar heights. In addition, we analyzed the impact of the
metrics’ uncertainty specifications on the grasp success rate.
Interestingly, our results signify that decreased uncertainties
would not generally yield higher success rates. However,
from a statistical point of view, we note that obtained
results were based on a rather small amount of data of 932
grasps and thus must be augmented by further experiments
and respective analyses in the future. To this end, using
simulated grasp experiments to generate a large number of
grasps could be a promising approach. Therefore, we plan
to study the versatility of our approach by applying it to
different scenarios, as it is not limited to an application
in grasp selection. Moreover, we aim to investigate how
the incorporation of additional metrics as well as different
scoring functions would influence the grasp selection.
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