
1

Incremental Learning of Humanoid Robot
Behavior from Natural Interaction & Large
Language Models
Leonard Bärmann ∗, Rainer Kartmann, Fabian Peller-Konrad, Jan Niehues,
Alex Waibel, Tamim Asfour

Institute for Anthropomatics and Robotics (IAR), Karlsruhe Institute of
Technology (KIT), Germany
Correspondence*:
Leonard Bärmann
baermann@kit.edu

ABSTRACT2

Natural-language dialog is key for intuitive human-robot interaction. It can be used not only to3
express humans’ intents, but also to communicate instructions for improvement if a robot does not4
understand a command correctly. Of great importance is to let robots learn from such interaction5
experience in an incremental way to allow them to improve their behaviors or avoid mistakes in6
the future. In this paper, we propose a system to achieve such incremental learning of complex7
high-level behavior from natural interaction, and demonstrate its implementation on a humanoid8
robot. Our system deploys Large Language Models (LLMs) for high-level orchestration of the9
robot’s behavior, based on the idea of enabling the LLM to generate Python statements in an10
interactive console to invoke both robot perception and action. Human instructions, environment11
observations, and execution results are fed back to the LLM, thus informing the generation of12
the next statement. Since an LLM can misunderstand (potentially ambiguous) user instructions,13
we introduce incremental learning from interaction, which enables the system to learn from its14
mistakes. For that purpose, the LLM can call another LLM responsible for code-level improvements15
of the current interaction based on human feedback. Subsequently, we store the improved16
interaction in the robot’s memory so that it can later be retrieved on semantically similar requests.17
We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-618
and evaluate our methods both quantitatively (in simulation) and qualitatively (in simulation and19
real-world) by demonstrating generalized incrementally-learned knowledge.20

Keywords: Incremental Learning, Human-Robot Interaction, Cognitive Modeling, Knowledge Representation for Robots, Humanoid21
Robots, Large Language Models22
Content: ≈ 7400 Words, 5 Figures, 2 Tables, 1 Listing23

1 INTRODUCTION

Humans can easily communicate tasks and goals to a robot via language. Such natural language interface24
is key for achieving truly intuitive human-robot interaction (HRI). However, the robot’s interpretation of25
such commands, and thus the resulting execution, might be sub-optimal, incomplete or wrong. In such26
cases, it is desirable for the human to give further instructions to correct or improve the robot’s behavior.27

1

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Help me clean the top of the fridge

Ok, I will bring a sponge

I also need the ladder

Here is the ladder

Remember
that you

should always
bring me
the ladder

when I need
to reach a

high surface

1

2

3

4

5

6

Figure 1. ARMAR-6 incrementally learns behavior from natural interaction. Demonstration videos at
https://lbaermann.github.io/interactive-incremental-robot-behavior-learning/

Furthermore, the robot should memorize the improvement strategy given by the human to incrementally28
learn from them and thus avoid the same mistake in the future. For instance, consider the interaction29
depicted in Fig. 1. First, the user instructs the robot to help him cleaning the top of the fridge (1). The robot30
then executes several actions to hand over a sponge to the human (2). The user observes this insufficient31
result and gives instructions for improvement (“I also need a ladder”) (3), whereupon the robot performs32
corrective actions (4). If the desired goal is achieved, the user can reconfirm the correction (5), which leads33
to the robot updating its memory appropriately (6), thus incrementally learning new behavior based on34
language instructions.35

In this paper, we present a system to achieve such behavior and describe its implementation on the36
humanoid robot ARMAR-6 (Asfour et al., 2018). We build on the capabilities of Large Language37
Models (LLMs) (Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023a,b) emerging from massive-scale38
next token prediction pretraining, and aim to transfer their success to HRI. The goal is to utilize the rich39
world knowledge contained in LLMs for embodied natural-language dialog, thus enhancing the capabilities40
of the LLM by integrating robot perception and action. In the cognitive architecture of our humanoid41
robot (Peller-Konrad et al., 2023), this means the LLM will be in charge of the high-level planning42
and decision-making. Recent works like SayCan (Ahn et al., 2022) and Code as Policies (CaP) (Liang43
et al., 2023) already demonstrate the usefulness of applying LLMs to orchestrate robot abilities, enabling44
high-level task understanding, planning and generalization. Going a step further, inner monologue (Huang45
et al., 2022b) feeds back execution results and observations into the LLM, thus involving the LLM in a46
closed-loop interaction.47

Inspired by these works, we propose to utilize the code-writing capabilities of LLMs to directly integrate48
it into closed-loop orchestration of a humanoid robot. This is achieved by simulating an interactive (Python)49
console in the prompt, and letting the LLM produce the next statement given the previous execution history,50
including results returned or exceptions thrown by previous function calls. Thus, the LLM can dynamically51
respond to unexpected situations such as execution errors or wrong assumptions, while still leveraging the52
power of code-based interaction such as storing results in intermediate variables or defining new functions.53

For utilizing the few- and zero-shot capabilities of LLMs, it is crucial to design a (set of) prompts to54
properly bias the LLM towards the desired output. All of the above works use a predefined, manually55
written set of prompts tuned for their respective use case. However, no LLM or prompting scheme will56
always interpret each user instruction correctly, especially since natural language can be ambiguous57
and correct execution might depend on user preferences. Therefore, we propose a novel, self-extending58

Frontiers 2

https://lbaermann.github.io/interactive-incremental-robot-behavior-learning/

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

prompting method to allow incremental learning of new and adaptation of existing high-level behaviors. To59
this end, our system dynamically constructs prompts based on a set of interaction examples, populated60
from the robot’s prior knowledge and previously learned behavior. Given a user instruction, we rank all61
such interaction examples by semantic similarity to the input, and select the top-k entries to construct the62
actual prompt to the LLM. Crucially, the robot’s prior knowledge contains specific examples involving63
the user complaining about mistakes and correcting the robot, or instructing it on how to improve its64
behavior. Therefore, when the system fails to correctly execute a task and the user gives such corrective65
instructions, the LLM is biased to invoke code that inspects the current execution history and forwards it to66
another, few-shot-prompted LLM. This LLM can inspect the complete interaction including all user inputs,67
performed actions and observed results, represented as the transcript of an interactive Python console. It68
then spots the mistakes and produces an improved interaction using chain-of-thought (CoT) prompting (Wei69
et al., 2022). Finally, the improved transcript will be added to the interaction examples, thus enabling the70
system to perform better the next time a similar task is requested.71

Our method is explained in detail in Section 3. We evaluate our system quantitatively on the scenarios72
defined in CaP (Liang et al., 2023) to show the effectiveness of our proposed approach in Section 4.73
Furthermore, Section 5 demonstrates the capabilities of incremental learning from natural-language74
interaction on a real-world humanoid robot. Our code can be found at https://github.com/lbaermann/75
interactive-incremental-robot-behavior-learning.76

2 RELATED WORK

We start with reviewing works on understanding and learning from natural language in robotics.77
Subsequently, we present works using LLMs for high-level orchestration of robot abilities.Finally, we78
focus on dynamic creation of prompts for LLMs.79

2.1 Understanding and Learning from Natural Language80

Understanding and performing tasks specified in natural language has been a long-standing challenge in81
robotics (Tellex et al., 2020). Of great challenge is grounding the words of natural language sentences in82
the robot’s perception and action, which is known as signal-to-symbol gap (Krüger et al., 2011). Many83
works have focused on the grounding of expressions referring to objects, places and robot actions based84
on graphical models (Tellex et al., 2011; Misra et al., 2016), language generation (Forbes et al., 2015),85
or spatial relations (Guadarrama et al., 2013), especially for ambiguity resolution (Fasola and Matarić,86
2013; Shridhar et al., 2020). Pramanick et al. (2020) focus on resolving task dependencies to generate87
execution plans from complex instructions. However, in these works the robot does not explicitly learn88
from language-based interactions. In contrast, Walter et al. (2013) enrich the robot’s semantic environment89
map from language, and Bao et al. (2016) syntactically parse daily human instructions to learn attributes of90
new objects. In Kartmann and Asfour (2023), the robot asks for a demonstration if its current understanding91
of a spatial relation is insufficient to perform a given instruction. Other works go further by learning on92
the task level. Mohan and Laird (2014) learn symbolic task representations from language interaction93
using Explanation-based learning. Nicolescu et al. (2019) learn executable task representations encoding94
sequential, non-ordering or alternative paths of execution from verbal instructions for interactive teaching95
by demonstration. Weigelt et al. (2020) consider the general problem of programming new functions on96
code level via natural language. While our goal is similar to these works, we leverage LLMs for task-level97
reasoning and learning.98

Frontiers 3

https://github.com/lbaermann/interactive-incremental-robot-behavior-learning
https://github.com/lbaermann/interactive-incremental-robot-behavior-learning
https://github.com/lbaermann/interactive-incremental-robot-behavior-learning

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

2.2 Code-Generation and Interaction with LLMs99

Generating code from natural language specifications is a large area of active research. For instance,100
LLMs tuned specifically on code (Chen et al., 2021; Nijkamp et al., 2023) perform well in common101
code-generation benchmarks. Madaan et al. (2022b) show that code-based models have more structured102
representations, thus aiding structured (e.g. graph-based) tasks. Training code-LLMs can also benefit from103
using an interpreter in the optimization loop (Le et al., 2022; Haluptzok et al., 2023). We refer the reader to104
recent surveys (Zheng et al., 2024; Ahmed et al., 2023; Dehaerne et al., 2022; Wang and Chen, 2023) for a105
more in-depth discussion.106

Another recent trend is to use LLMs in an interactive, chat-style format. This became popular through107
OpenAI’s models (OpenAI, 2023a,b) and is typically powered by finetuning on alignment data using108
reinforcement learning from human feedback (Ouyang et al., 2022). In a code-based setting, such interaction109
can, for instance, assist software development (Lahiri et al., 2023; Google, 2023). Further, many recent110
works utilize interactive coding strategies to deploy LLMs as agents (Yang et al., 2024). For instance,111
Voyager (Wang et al., 2024a) iteratively learns to master the game of Minecraft by letting an LLM code112
functions, and InterCode (Yang et al., 2023) connects an LLM to a Bash shell to solve file system task,113
similar to our use of an interactive Python console. Recent benchmarks (Liu et al., 2024; Wang et al.,114
2024b) will further catalyze this development. We deploy such interactive coding strategy to real-world115
humanoid robotics, and enrich it with incremental learning from natural interactions.116

2.3 Orchestrating Robot Behavior with LLMs117

Recently, many works extend the capabilities of LLMs by giving them access to external models, tools118
and APIs (Mialon et al., 2023; Parisi et al., 2022; Qin et al., 2023; Wang et al., 2023). Tool usage can also119
be combined with reasoning techniques such as CoT prompting (Wei et al., 2022) to significantly improve120
planning (Yao et al., 2023). In particular, orchestrating robot behavior and thus interacting with the physical121
environment can be seen as an embodied special case of LLM tool usage. Huang et al. (2022a) initially122
proposed the idea to utilize world knowledge from LLM pretraining to map high-level tasks to executable123
mid-level action sequences. SayCan (Ahn et al., 2022) fuses LLM output probabilities with pretrained124
affordance functions to choose a feasible plan given a natural language command. Socratic Models (Zeng125
et al., 2023) combine visual and textual LLMs to generate instructions in the form of API calls, which126
are then executed by a pretrained language-conditioned robot policy. Both Code as Policies (CaP) (Liang127
et al., 2023) and ProgPrompt (Singh et al., 2023) demonstrate the usefulness of a code-generating LLM128
for robot orchestration, as they convert user commands to (optionally, recursively defined) policy code129
grounded in predefined atomic API calls. While the generated policies can react to the robot’s perception,130
these approaches do not directly involve the LLM in the online execution of a multi-step task after the131
policy has been generated. In contrast, Inner Monologue (Huang et al., 2022b) feeds back execution results132
and observations into the LLM, but does not rely on code-writing, thus missing its combinatorial power.133
KnowNo (Ren et al., 2023) iteratively asks the LLM for a set of possible next steps, determines the LLM’s134
confidence in each possibility using its output token distribution in a multiple-choice setup, and then135
uses conformal prediction to decide whether the system is sure how to proceed or should ask the user136
for help. AutoGPT+P (Birr et al., 2024) combines an LLM with a symbolic planner. Recent technical137
reports (Vemprala et al., 2023; Wake et al., 2023) provide guidance on utilizing ChatGPT (OpenAI, 2023a)138
for robot orchestration. While TidyBot (Wu et al., 2023) uses GPT-3 (Brown et al., 2020) in a similar139
way to generate high-level plans for tidying up a cluttered real-world environment, the authors focus on140
personalization by summarizing and thereby generalizing individual object placement rules.141

Frontiers 4

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Command

Execution

Static Prompt

Language Model
Program

Python Code

PLANNER

Python Code

EXECUTOR

Language-
Program-
Memory

Command

Failure
Observation

Error
Correction
Memory

Successif

CaP HELPER DROC ours

Python
Console

Linteract

Execution

Interaction
example
memory

Command /
Feedback

Observation

CoT,
Console
transcript

Limprove
can

invoke

Command

Task-Level
Constraints

Skill-Level
Variables

Task Planner

Natural
Language

Skill Composer

Python Code

Interrupt
& Correct

Correction
Handler

Skill-
level

Plan-
level

Knowledge
Extractor

Execution

Figure 2. Comparison of Code as Policies (Liang et al., 2023), HELPER (Sarch et al., 2023), DROC
(Zha et al., 2023) and our method, focusing on information flow from user input, observations, prompts,
memories to LLM modules to robot execution, and how the methods learn from user interactions. Building
on the interactive Python console prompting scheme, our method realizes incremental learning from natural
interaction in a conceptually simple way.

With our proposed emulated Python console prompting, we differ from these existing works by142
(i) formatting and interpreting all interaction with the LLM as Python code, in contrast to (Ahn et al., 2022;143
Huang et al., 2022b), (ii) closing the interaction loop by enabling the LLM to reason about each perception144
and action outcome, in contrast to (Liang et al., 2023; Singh et al., 2023; Wake et al., 2023; Zeng et al.,145
2023; Ahn et al., 2022), (iii) allowing the LLM to decide when and which perception primitives to invoke,146
instead of providing a predefined list of observations (usually a list of objects in the scene) as part of the147
prompt as in (Zeng et al., 2023; Huang et al., 2022b; Singh et al., 2023; Liang et al., 2023; Wu et al., 2023),148
and (iv) simplifying the task for the LLM by allowing it to generate one statement at a time, in contrast149
to (Liang et al., 2023; Singh et al., 2023; Vemprala et al., 2023).150

2.4 Dynamic Prompt Creation151

When prompting an LLM to perform a task, quality and relevance of the provided few-shot examples are152
key to the performance of the system. Thus, several works propose to dynamically select these examples153
(e. g., from a larger training set) for constructing a useful prompt. Liu et al. (2022) improve performance in a154
downstream question-answering (QA) task by selecting relevant few-shot samples via k-Nearest-Neighbor155
search in a latent space of pretrained sentence embeddings (Reimers and Gurevych, 2019) representing156
the questions. Ye et al. (2023) select not only the most similar, but also a diverse set of samples. Luo et al.157
(2023) show that this dynamic prompt construction is also applicable for instruction-fine-tuned language158
models (LMs) (Ouyang et al., 2022) and in combination with CoT prompting. Song et al. (2023) use top-k159
retrieval for instructing an LLM to plan robotic tasks. Similar to that approach, we apply vector embeddings160
of human utterances to find the top-k examples which are most similar to the current situation.161

Other works go further by proposing to update the database of examples by user interaction. In Madaan162
et al. (2022a), GPT-3 is tasked with solving lexical and semantic natural language processing questions163
few-shot by generating both an understanding of the question as well as the answer. A user can then correct164
an erroneous understanding to improve the answer, and such correction is stored in a lookup table for later165
retrieval on similar queries. Similarly, user feedback can be used to improve open-ended QA by generating166
an entailment chain along with the answer, and allowing the user to then correct false model beliefs in that167

Frontiers 5

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

entailment chain (Dalvi Mishra et al., 2022). Corrections are stored in memory and later retrieved based on168
their distance to a novel question.169

In our work, we also propose to store corrective user feedback as interaction examples in the robot’s170
memory. However, we go even further by (i) letting the LLM decide when such feedback is relevant171
(by invoking a certain function), (ii) generating new examples of improved behavior from the human’s172
feedback and thus (iii) treating prior knowledge and instructed behavior in a uniform way by treating173
both as interaction examples in the robot’s memory. The authors of (Vemprala et al., 2023) mention that174
ChatGPT can be used to change code based on high-level user feedback. However, they do not combine175
this with incremental learning to persist the improved behavior.176

Closest to our approach are the concurrent works DROC (Zha et al., 2023) and HELPER (Sarch et al.,177
2023), shown in Fig. 2. Similar to our learning from interaction, DROC (Zha et al., 2023) distills knowledge178
from problematic interactions and retrieves it later when solving new tasks. While the goal and problem179
setting are similar, we differ by formulating the complete interaction in code, instead of separating task-180
level and skill-level into natural-language- and code-level interaction, respectively, and also generalizing181
incremental learning as code manipulation, instead of explicitly memorizing task-level natural language182
constraints and skill-level variable assignments separately. HELPER (Sarch et al., 2023) retrieves few-shot183
examples for the LLM’s prompt from a language-program memory similar to our interaction examples184
memory, and learns personalized robot behavior by extending the memory. In contrast to our approach,185
they add examples only from successful episodes, and they have separate mechanisms for normal behavior186
and error correction. We focus on learning from feedback in erroneous or suboptimal episodes, and we187
treat initial and follow-up instructions uniformly using the proposed Python console prompting.188

3 APPROACH

In this section, we more precisely formulate the considered problem and explain our approach to intuitive189
HRI and incremental learning of humanoid robot behavior using LLMs.190

3.1 Problem Formulation and Concept191

In this work, we consider the problem of enabling a robot to interact with a human in natural language192
as depicted in Fig. 3. First, the human gives a natural language instruction to the robot. Then, the robot193
interprets the instruction and performs a sequence of actions. However, the performed actions might be194
sub-optimal, incomplete or wrong. In that case, the human instructs the robot how to improve or correct its195

Robot system

LLM

SceneHuman

1. Instruction
 3. Correction
 5. Confirmation

2. Execution

Memory6. Memory Update

Observation of Execution Result

Reasoning
& Control

4. Corrective Actions

Figure 3. Incremental learning of robot behavior from interaction

Frontiers 6

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

behavior. The robot executes further actions accordingly, and if the human is satisfied with the result, they196
can confirm that the robot should memorize this behavior. Finally, the robot must incrementally learn from197
the corrective instructions and avoid similar mistakes in the future.198

We formulate this problem as follows. Consider a robot with a set of functions F = {F1, . . . , Fn}. A199
function can be invoked to query the robot’s perception or execute certain actions. Further, letM denote200
knowledge of interactions and behaviors as part of the episodic memory of the robot which is initialized201
by prior knowledge. Based on the initial instruction I0 andM, the robot must perform a sequence of202
function invocations (f1, . . . , fm), where each invocation fi consists of the invoked function Fi with its203
corresponding parameters. Executing these invocations yields a sequence of results (r1, . . . , rm). Overall,204
performing the task indicated by I0 results in an interaction historyH of the form205

H = ((f1, r1) , . . . , (fm, rm))← perform (I0,M) (1)

Note that we explicitly allow executing a generated invocation right away (potentially modifying the206
world state W) and using the result to inform the generation of the subsequent invocation. Therefore, the207
current historyHt = ((f1, r1) , . . . , (ft, rt)) is available when generating the next invocation ft+1, i. e., for208
t ∈ {0, . . . ,m− 1},209

ft+1 ← generate (I0,Ht,M) , (2)

(rt+1,Wt+1)← execute (ft+1,Wt) , (3)

Ht+1 ← Ht ◦ ((ft+1, rt+1)) , (4)

where ◦ denotes sequence concatenation. In other words, invocations are generated auto-regressively by210
reasoning over the memory, the instruction as well as the previous actions and their execution results.211

To unify the subsequent notation, we define the human’s instructions as a special case of perception,212
i. e., the system perceives them as a result of invoking the function Fwait ∈ F . Using that terminology,213
H0 = ((fwait, I0)), and we can drop I0 as explicit parameter of generate. Similarly, further instructions214
are handled as part of the interaction history.215

If the human gives an instruction to correct the robot’s behavior, the robot must be able to learn from this216
instruction to improve its behavior in the future. We model this capability as another function Flearn ∈ F .217
Its purpose is to update the robot’s interaction knowledgeM to learn from the corrective instructions and218
avoid the mistake in the future219

M← learn from interaction (M,Ht) (5)

whereHt is the interaction history when Flearn is called.220

To address this problem, we propose a system as depicted in Fig. 4. A humanoid robot is interacting221
with a human and the scene. The robot is equipped with a multimodal memory system containing the222
following information about the current scene: First, semantic knowledge about objects, locations, agents223
and their relations in the world. Second, additional subsymbolic knowledge about the current scene. Third,224
executable skills (in our case implemented through scripted policies) as part of the robots procedural225
memory. An execution request sent to the procedural memory triggers physical robot actions. The set of226
available functions F contains methods to query knowledge from the semantic memory and to trigger227
actions from the procedural memory. Finally, as part of the robots episodic memory,M contains interaction228

Frontiers 7

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Memory

SemanticPerception
Interaction Examples

Procedural
Action

 Frozen LLM (e.g. GPT-4)

Interaction Manager

Linteract

 Python shell environment

Limprove

Robot

Scene

Human

In
te

ra
ct

Query

Execute

Update

Retrieve

Figure 4. Conceptual view of our system. Here, the robot’s memory system (Peller-Konrad et al., 2023)
works as a mediator between the interaction manager and the robots low-level system components, such
as controllers, sensors and drivers. The interaction LLM acts in a Python console environment. It can
invoke functions to fetch the content of the current scene (as given by perception modules and stored in the
memory) or invoke skills and thus perform robot actions. Relevant interaction examples are queried from
the memory for few-shot prompting of the LLM. Incremental learning is performed by an improvement
LLM updating the interaction examples memory with new content learned from instruction.

histories H, i. e., short episodes of interactions between the human and the robot, including the natural229
language inputs, the actions executed by the robot, and their results.230

The interaction manager is responsible for the high-level orchestration of the robot’s abilities. It has231
access to two instances of LLMs, an interaction LLM Linteract and an improvement LLM Limprove, as well232
as a Python console environment E to execute generated function invocations. Utilizing E, we uniformly233
represent all H ∈ M as well as Ht as a textual Python console transcript, i. e., a sequence of function234
invocations fi represented as Python statement and return values ri converted to text using Python’s “repr”235
function. Linteract is prompted by the interaction manager with the available functions F , the current236
interaction history Ht, as well as relevant few-shot examples retrieved fromM, and generates function237
invocations f . Following the notation of Eqs. (2) and (3), the function generate is implemented through238
Linteract, while the function execute is provided by E. By generating an invocation of Flearn ∈ F , Linteract239
can trigger Eq. (5). We implement the function learn from interaction by few-shot prompting Limprove. It240
reasons overHt and generates an improved version of the interaction, which is then saved to the memory241
M.242

3.2 Procedure Overview243

To start, we populate the memoryM with both prior knowledge (i. e., predefined interaction examples)244
and previously learned interaction examples. The interaction manager sets up E including F , and then245
invokes an initial Fwait = “wait for trigger()” inside that environment. This call waits for dialog246
input and returns when the human gives an initial instruction. The interaction manager handles any function247
return value by inserting its textual representation into the current interaction history, thus extendingHt.248
Thereby, it emulates the look of a Python console (Section 3.3). In the following, a prompt is constructed249
(Section 3.4) based on F , the most relevant examples fromM, andHt. This prompt is passed to Linteract250
to produce the next command(s). The generated code is executed within E, and both the code and its251
return values are again inserted into Ht. The interaction manager repeats this process as the high-level252
behavior-driving loop of the robot (see Fig. 5). Note that Linteract can listen to further user utterances253
by generating “wait for trigger()” again. Our proposed prompt-based incremental learning strategy254
(Section 3.5) is also invoked by Linteract itself when it calls Flearn = “learn from interaction()”.255

Frontiers 8

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Interaction examples
memory

Can you please
get me some tea?

Prompt
>>> import ...
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'can you please bring me some water'}
>>> say('Ok, I am going to get you some water.')
... list_object_locations()
[('bottle', 'counter'), ('cup', 'table'), ('fork', 'table'), ('knife',
'table'), ('person', 'table')]
>>> bring_object_to('bottle', 'table')
'success'
...
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'can you please get me some tea?’}
>>>

similarity

LLM

Output

say('Ok, I am going to get you some tea.')
... list_object_locations()

Few-Shot Examples

Improvement LLM

Perception

Dialog

Action

Imports

Current interaction history

Figure 5. Overview of our method for incremental learning of robot behavior. We use an LLM (in our
experiments, GPT-4 (OpenAI, 2023b)) to control robot perception and action given a prompt of few-shot
examples (bottom, Section 3.3). Prompts are constructed dynamically based on the similarity to the current
user request (top left, Section 3.4). The interaction examples memory is initialized with prior knowledge,
and then incrementally enriched by LLM-improved problematic interactions to learn from mistakes (top
right, Section 3.5).

3.3 LLM interacting with an Emulated Python Console256

The left of Fig. 5 shows an interaction example using our proposed prompting scheme emulating a257
Python console. All commands entered into the emulated console (lines starting with “>>>” or “...”)258
are to be generated by the LLM, while the function return values are inserted below each invocation. The259
proposed syntax enables a closed interaction loop so that the LLM can dynamically react to unexpected260
situations and errors, while also keeping the flexibility of coding non-trivial statements. We achieve this261
by setting “>>>” to be the stop token when prompting the LLM. This means that the LLM can generate262
continuation statements (including control flow and function definitions) by starting a new line with “...”.263
Since generation stops at the beginning of the next statement, the LLM’s output will also include the264
expected outcome of its own command, which we discard for the scope of this work.265

During our experiments, we observed that it is important for functions to provide semantically rich error266
messages, including hints on how to improve. This leads to self-correcting behavior (Skreta et al., 2023).267
For instance, when calling “move to” with an invalid or underspecified location such as “counter,”268
we pass the error message “Invalid location. Use one of the locations returned by269
list locations()” to the LLM. In this example, the error message guides the LLM to query a list270
of possible locations which are then used to correctly ground the natural language request to the name271
“inFrontOf mobile-kitchen-counter 0” that the “move to” function understands.272

Analogously to Code as Policies (Liang et al., 2023), we dynamically generate non-existing functions273
the LLM tries to use. Specifically, when Linteract generates code that refers to an undefined function, we274
invoke another LLM Lfgen that is prompted to define the function, given the line of code that is using it275
as context. For Lfgen, we exactly follow the method of Liang et al. (2023), including recursive function276
generation. The generated function is then inserted into the emulated Python console before the statement277
that referred to the undefined function, and then that statement is executed. The purpose of inserting the278
function definition into the execution history is that it is thereby accessible to user feedback and can be279
improved upon by incremental learning.280

Frontiers 9

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

3.4 Dynamic Prompt Construction281

We dynamically construct the prompt for Linteract depending on the current interaction historyHt (i. e.,282
the code statements, execution results and user inputs observed so far). We start with some predefined283
base prompt, stating the general task and “importing” all defined names and functions. These imports are284
generated dynamically given the symbols defined in E, i. e., the available functions F . The second part of285
the prompt consists of few-shot examples. For this, we make use of a memoryM of coding interaction286
examples, where each entry follows the Python console syntax defined in Section 3.3.M is initialized287
with hand-written prompts, but later extended dynamically as explained in Section 3.5. Given the current288
interaction historyHt, we define a similarity measure S(H,Ht), see below, for eachH ∈M and choose289
the top-k H to become part of the actual prompt. Afterwards,Ht itself is inserted into the prompt to provide290
the LLM with the current context. Finally, the prompt is completed by inserting a syntax trigger for the291
LLM to correctly generate the next command, i. e., “>>>”. An example can be seen on the left of Fig. 5.292

To implement the similarity function S(H,Ht), we assume that examples with comparable natural293
language instructions are helpful. Therefore, we extract all such instructions fromHt and eachH ∈M.294
In our specific Python-console-based representation, this means that we search for function calls that295
trigger user interaction (“ask”, “wait for trigger”), and extract their respective return values. Let Iit296
with i = 1, . . . , N denote the N most recent instructions in Ht (where I1t is the most recent one), and297
IjH with j = 1, . . . ,MH all the MH instructions found in each H ∈ M. We make use of a pretrained298
sentence embedding model (Reimers and Gurevych, 2019) to measure the semantic similarity sim (a, b) =299
E (a) ·E (b) between two natural language sentences a, b by the dot product of their latent space embeddings300
E (·). First, we compute a latent representation ofHt as301

et =
N∑
i=1

γi−1E
(
Iit
)

(6)

where γ = 0.6 is an empirically chosen decay factor. Then, we determine a score αj
H for each instruction302

IjH of each historyH ∈M as given by303

α j
H = et · E

(
IjH

)
(7)

The final similarity score is given by S(H,Ht) = maxj α
j
H, and we pick the top-k suchH as the few-shot304

examples for the prompt.305

3.5 Incremental Prompt Learning306

To enable our system to learn new or improved behavior from user interaction, we propose307
to make M itself dynamic. For this purpose, we introduce a special function Flearn =308
“learn from interaction()”. This function is always “imported” in the base prompt, and there309
are predefined code interaction examples Hlearn ∈ M involving this call. These Hlearn will be selected310
by dynamic prompt construction if semantically similar situations occur. They involve failure situations,311
where the user has to tell the robot what and how to improve, and that it should do better next time. Thus,312
when a mistake occurs and the user complains, these examples will be selected for the prompt and Linteract313
is biased towards invoking Flearn.314

Frontiers 10

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Prompt: I had the following interaction with the robot:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'I want to have some juice'}
>>> list_object_locations(affordance='grasp')
...
>>> move_to(get_location_coordinates('kitchen-counter_0'))
'success'
>>> grasp('multivitamin-juice_0')
'success'
>>> move_to(get_location_coordinates('handover_to_human'))
'success'
>>> say("Here is the multivitamin juice.")
>>> handover_object_to_human('multivitamin-juice_0')
'success'
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'can you also bring me a cup?'}
>>> say('Ok, I will bring you a cup')
... [analogous to the above]
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'Thanks, but next time, '
'can you do this both at once? You have two hands'}

>>> learn_from_interaction()

Prompt: What is the problem in this interaction? Answer with a single
sentence.
LLM: The problem is that the robot is not utilizing both of its hands to

bring the juice and the cup at the same time, resulting in two separate trips.
Prompt: How can the robot do better next time? Answer with a single
explanation sentence, no code.
LLM: Next time, the robot should use both of its hands to grasp the juice
and the cup at the same time, reducing the number of trips and increasing
efficiency.
Prompt: Provide an improved version of the interaction transcript. [...]
LLM:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'I want to have some juice'}
... [LLM lists objects & locations and moves to counter]
>>> grasp('multivitamin-juice_0', 'left') # with left hand
'success'
>>> grasp('cup_large_0', 'right') # with right hand
'success'
>>> move_to(get_location_coordinates('handover_to_human'))
'success'
>>> say("Here is the multivitamin juice and the cup.")
>>> handover_object_to_human('multivitamin-juice_0')
'success'
>>> handover_object_to_human('cup_large_0')
'success'
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'Thanks, that was much quicker'}

Listing 1 Example of the LLM-transcript generated by a “learn from interaction()” call. The
parts starting with LLM are generated by the LLM, while the Prompt parts are fixed prompts (and the
input code snippet to improve). Full prompt including few-shot examples in ??

To implement learning from an erroneous interactionHt, we query Limprove in a CoT-manner to identify315
and fix the problem. Specifically, we provide Ht and first ask for a natural language description of the316
problem in this interaction. Subsequently, we request Limprove to explain what should be improved next317
time. Finally, Limprove is asked for an improved versionH∗

t of the interaction (in the given Python console318
syntax), andH∗

t is added to the memoryM. That way, the next time a similar request occurs,H∗
t will be319

selected by dynamic prompt construction, and Linteract is biased towards not making the same mistake320
again. An example LLM transcript of such Flearn implementation can be found in Listing 1. For robustness,321
there are three cases where we discard the generatedH∗

t : First, we ignore the call to Flearn if it does not322
follow immediately after a user utterance, since we only want to learn from explicit human feedback.323
Second, we abort the learning if the response to the first CoT request is that there is no problem. Third, if324
H∗

t is equal to the input interactionHt, we discard it.325

4 SIMULATED EVALUATION

4.1 Experimental Setup326

To quantitatively assess the performance of our method, we utilize the evaluation protocol from Code as327
Policies (Liang et al., 2023), involving a simulated tabletop environment with a UR5e arm and Robotiq328
2F85 gripper manipulating a set of blocks and bowls of ten different colors. We use their seven seen and six329
unseen instructions (SI/UI), where each instruction is a task with placeholders that are filled with attributes330
(e.g. “pick up the <block> and place it on the <corner>”). The set of possible attribute values is also split331
into seen and unseen attributes (SA/UA). For more details, refer to Liang et al. (2023).332

As our focus is on incremental learning from natural-language interaction, our methodology involves333
human supervision as follows: We first set up a randomly generated scene and pass the instruction to the334
evaluated system. The system generates some code that utilizes the same API as in Liang et al. (2023).335
Specifically, there are “perception” functions (utilizing the ground-truth simulation state) to query all object336
names and positions, and convert normalized to absolute coordinates, as well as one “action” function337
to move an object to another object or position. For details, see ?? or Liang et al. (2023). During code338

Frontiers 11

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

execution, the human observes the robot’s actions by watching the simulation rendering. Each run can339
result in success (goal reached), failure (goal not reached), error (system threw unhandled exception), or340
timeout (e.g. system got stuck in a loop). The latter two lead to immediate termination of the experiment.341
In contrast, when the system yields control normally (after code execution for CaP and on Fwait for our342
method), the resulting world state is checked using scripted ground-truth evaluation functions, leading343
to either success or failure outcome. The human is then presented with this outcome and has the option344
to provide feedback or improvement instructions to the robot, which are again passed to the system. The345
success detection is performed every time the system yields control, and the sequence of states and user346
interactions is recorded. Note that we allow user feedback even when already in success state, as the347
execution might still have been suboptimal and the human may want to provide feedback to learn from for348
next time. Details and example interactions can be found in ??.349

Every task is repeated ten times using randomly generated scenes, and each run is performed in sequence,350
i.e., the interaction memory is not reset between runs in order to allow for incremental learning. To assess351
the results, we compute the following metrics from the execution traces:352

s is the turnout success rate, i.e. the percentage of runs that ended in success state (optionally after user353
interaction that clarifies the goal or helps the system)354

i is the initial success rate, i.e. the percentage of runs that yielded a successful state on the first system355
return, i.e. where no user interaction was required to reach success356

n counts the number of user interactions that were required until the success state was first reached. For357
runs that count into the initial success category, n = 0, while for non-successful runs, n is undefined.358
When aggregating n, we average only over the runs that ended successfully.359

4.2 Baselines & Methods360

CaP: We utilize the prompts provided by Liang et al. (2023). This is equivalent to our system without361
incremental learning and without the interactive console formatting. Specifically, we note that CaP has362
no way of feeding back coding errors to the system, i.e. it fails immediately if the generated code is363
syntactically invalid or throws an exception.364

HELPER: We adapt the code and prompts provided by Sarch et al. (2023) to the simulated tabletop365
evaluation scenario & API. For few-shot example retrieval, we set k = 16 for a fair comparison. Specifically,366
we feed back execution errors to the Self-Reflection & Correction prompt, and user feedback is passed as a367
new command to the PLANNER. HELPER’s few-shot memory is expanded with successful trials. Further368
details can be found in ??.369

Dynamic CaP: To make CaP a more competitive baseline, we add a simple form of learning and top-k370
retrieval and call this method Dynamic CaP. Similar to HELPER and our method, Dynamic Cap uses a371
memory of few-shot samples and stores code transcripts of successful episodes as new samples therein.372
On every request, we fill the prompt with the top-k similar examples retrieved from the memory. Further373
implementation details can be found in ??.374

ours: This is our full system with incremental learning and a value of k = 16 for few-shot sample375
retrieval. We split and translated the 16 samples from the CaP prompts into our interactive console syntax376
to initialize the memory of interaction examples. Furthermore, there are two very short samples that377
demonstrate when to call Flearn.378

Frontiers 12

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

ours w/o learning: This is our system, but without incremental learning. k = 16 means that all samples379
are used, as the interaction examples memory is static.380

ours w/o retrieval: This is our system with incremental learning but a very high value of k = 64 for381
few-shot sample retrieval, which effectively is a system that does not use retrieval. Note that the prompt382
construction is still dynamic as the order of the samples is determined by the similarity to the current383
request (cf. Section 3.4).384

Furthermore, we compare the differently capable LLMs gpt-3.5-turbo-0301 and gpt-4-0613385
of the OpenAI API (OpenAI, 2023a,b). For Limprove, we always use gpt-4. We note that the original386
CaP numbers (Liang et al., 2023) were reported with the codex model (Chen et al., 2021) that is no387
longer available. We reproduce their experiments with the newer models but did not perform further prompt388
tuning, therefore our success rates for CaP are lower than those reported in (Liang et al., 2023). Specifically,389
gpt-3.5 sometimes generates natural language responses instead of code, which causes CaP to fail with390
a SyntaxError.391

4.3 Results392

Table 1 and 2 present the aggregated results of our experiments, while further details can be found in ??.393
From these results, we draw the following main insights:394

Interactive feedback helps to achieve success. For all methods, s is notably above i, which means that395
Linteract effectively uses human feedback to improve its behavior. This effect is less stressed for CaP with396
gpt-3.5, as it often immediately fails with an error, thus not allowing for further interaction.397

Incremental learning reduces necessity of corrective interactions. For many tasks, i is notably398
higher and n lower when comparing systems with learning to systems without learning, indicating that399
the feedback from earlier (failed) attempts is effectively utilized to improve following executions of the400
same task. This effect is also confirmed by ???? in the appendix. While for gpt-4 on seen instructions,401
performance is already on a high level and corrections are rarely necessary, the numbers strongly support402
that incremental learning reduces interactions for unseen instructions, as well as for gpt-3.5 on all403
instructions. Thus, our method for incremental learning is especially useful for “hard” tasks with respect to404
the predefined examples and general capabilities of the used model.405

Incremental learning improves in-task success rate. Our systems with incremental learning also have406
higher s than those without learning. The reason is that our incremental learning method reflects on the407
erroneous behavior and generates a new sample for in-context learning that demonstrates the desired408
behavior. With such nearly identical demonstration, the generalization to new situations is much better,409
thus causing fewer errors that cannot be corrected through interaction.410

Incremental learning generalizes to new tasks. Qualitatively, we observed several cases where a411
correction for one task is useful for another task as well. For instance, gpt-3.5 initially interprets “the412
corner” as some position like (0.1, 0.9). When instructing to “put it right into the corner without any413
margin”, the behavior of using full numbers, e.g. (0, 1), transfers to subsequent different tasks that also414
involve corners. Quantitatively, this effect is entangled with the previous points in higher s and i, especially415
for the later unseen tasks. For a further investigation, see ??.416

Demonstration retrieval improves performance. For both LLMs, our system with retrieval outperforms417
the system that always uses all samples. This is especially true for gpt-3.5, as the system without418
retrieval accumulated to many interaction examples in its memory in the final experiments, thus leading to419

Frontiers 13

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

ours HELPER Dyn. CaP CaP
full w/o retrieval w/o learning

Test s i s i s i s i s i s i

GPT-4
SA SI 100 97.5 97.5 90.0 98.8 90.0 97.5 87.5 88.8 86.2 85.0 71.2
UA SI 100 92.5 98.8 95.0 98.8 92.5 100 93.8 97.5 93.8 96.2 81.2
UA UI 93.3 85.0 91.7 81.7 91.7 78.3 91.7 81.7 63.3 46.7 53.3 35.0

GPT-3.5
SA SI 95.0 87.5 93.8 82.5 85.0 43.8 93.8 77.5 57.5 55.0 53.8 52.5
UA SI 97.5 86.2 96.3 88.8 80.0 45.0 87.5 71.2 65.0 57.5 60.0 58.8
UA UI 85.0 70.0 56.7 51.7 66.7 43.3 80.0 50.0 46.7 36.7 16.7 15.0

Table 1. Evaluation results on simulated tabletop tasks: success rate s and initial success rate i

ours HELPER Dyn. CaP CaP
Test full w/o retrieval w/o learning

GPT-4
SA SI 0.04 0.12 0.37 0.21 0.06 0.26
UA SI 0.14 0.12 0.1 0.1 0.07 0.35
UA UI 0.16 0.18 0.55 0.22 0.62 0.74

GPT-3.5
SA SI 0.14 0.25 1.09 0.31 0.16 0.02
UA SI 0.33 0.15 0.95 0.38 0.23 0.06
UA UI 0.28 0.19 1.29 0.68 0.48 0.07

Table 2. Evaluation results on simulated tabletop tasks: average number of interactions until success n

immediate failure due to exceeding the LLMs token limit. While this is not the case for gpt-4 with its420
much larger context length, the performance of the system with retrieval is still better. We hypothesize that421
this is due to too many irrelevant samples distracting the LLM.422

Better LLMs lead to better performance. This can be clearly seen when comparing the numbers423
for gpt-4 and gpt-3.5. Nonetheless, we emphasize that gpt-3.5’s performance as Linteract is still424
reasonably well, while it is faster and a factor of ten times cheaper. Specifically, the total cost to perform425
the experiments in Table 1 was $ 245.6 for gpt-4 vs. $ 19.8 for gpt-3.5 (which includes the use of426
gpt-4 for Limprove). Our method of incremental learning can thus be seen as a knowledge distillation427
method, with gpt-4 as the expensive teacher model Limprove generating task-specific new prompts for428
the cheaper gpt-3.5 to improve its future behavior as Linteract.429

Comparison with HELPER and Dynamic CaP. As a key difference to our method, HELPER learns430
from successful trials by storing them as an example, while our method only inspects erroneous experiences431
and then stores improved versions thereof. The experimental results show that this strategy is more effective,432
leading to higher s, i and lower n. Furthermore, HELPER cannot see its own previously-generated code433
when responding to errors or feedback, in contrast to our method, which utilizes the interactive Python434
console prompting for this purpose. Thus, HELPER cannot handle feedback such as “slightly more to the435
left” effectively.436

Dynamic CaP improves performance over plain CaP, but cannot compete with HELPER or our method.437
This confirms that our method of interactive Python console prompting is more effective than producing all438
code to solve the task at once. Furthermore, we can observe that learning from successful trials helps with439
seen instructions by reinforcing correct behavior, but does not transfer to unseen instructions. Note that this440
observation also applies to HELPER, but mainly to i since HELPER can better respond to execution errors441

Frontiers 14

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

and user feedback than CaP. We conclude that our proposed method to learn from erroneous interactions is442
more effective than reinforcing successful behavior only.443

Further results. ?? presents two additional experiments: First, we investigate the effect of k by setting444
k = 4 (instead of 16), showing that lower k comes with a higher n and lower i, as potentially relevant445
demonstrations might not be retrieved, thus requiring another user interaction. Second, we change the446
behavior of Flearn to just save the current interaction inM, skipping Limprove. This hurts performance, as447
the erroneous behavior from previous trials is often repeated, despite the prompt containing improvement448
instructions from earlier interactions.449

5 REAL-WORLD DEMONSTRATION

To demonstrate the utility of our proposed prompt-based incremental learning technique, we perform450
experiments on the real-world humanoid robot ARMAR-6 (Asfour et al., 2018). We first provide451
challenging commands which the LLM initially solves incompletely or wrong. Then, the human452
interactively provides feedback and tells the robot how to improve. Afterwards, we not only provide453
the same command again to check for improved behavior, but – in order to study generalization – also try454
similar commands that initially (i. e., before learning) led to similar mistakes. Details on the implementation455
of these experiments, especially on the API exposed to the LLM, can be found in ??. The system is456
connected to a memory-centric cognitive robot architecture where the memory mediates between high-level457
components and low-level abilities (see Fig. 4). Specifically, the API provided to the LLM allows querying458
the robot’s memory with functions to list all objects and location names (opt. with a given affordance),459
query subsymbolic coordinates of objects or locations, or retrieve state information about specific objects.460
The robot’s memory is filled beforehand by the robot’s perception and cognition components. In our461
experiments, we use a mixture of predefined prior knowledge (e.g., about static objects in the scene) and462
online perception (e.g. object pose-detection, self-localization). Further, the API allows to invoke registered463
skills, behaviors and movements of the robot, such as grasping, navigation, object placement, or handing464
objects to a human. However, we do not focus on scenarios where the involved skills themselves fail, but465
rather on high-level semantic problems. Please refer to ?? for further details.466

We present three scenarios: Improving Plans to demonstrate complex improvement of suboptimal or467
unintended performance, Learning User Preferences to show how to adapt to non-generic task constraints,468
and Adapting Low-Level Parameters to demonstrate that our system can learn from vague user instructions.469
Demonstration videos can be found at https://lbaermann.github.io/interactive-incremental-470
robot-behavior-learning/.471

5.1 Improving Plans472

In this scenario, we tell the robot that we want juice. The prior knowledge contains some similar interaction examples, picking473
up a single object and handing it over to the human. Thus, the task of bringing the juice is executed successfully. However, since474
the user needs a cup to drink, we further instruct the robot “can you also bring me a cup?”, which causes the robot to additionally475
hand over a cup. Afterwards, we ask the robot to improve this behavior using “Thanks, but next time, can you do this both at476
once? You have two hands”. Limprove generates an improved interaction example as shown on the right of Listing 1 (simplified,477
cf. ??).478

Afterwards, when giving the same initial command again, the robot uses bimanual behavior to hand over both juice and479
cup. Furthermore, the learned bimanuality generalizes to “can you bring something to drink to the table?”, which does not use480
handover, but places both objects on the table. Unfortunately, a further test with “can I have some milk, please?” shows the481
unimanual behavior again, so we again have to ask for a cup and trigger incremental learning. In the next session, we ask “hey,482
can you serve some drink?”, which correctly generalizes the behavior to use both hands to pick up a different drink and cup, but483

Frontiers 15

https://lbaermann.github.io/interactive-incremental-robot-behavior-learning/
https://lbaermann.github.io/interactive-incremental-robot-behavior-learning/
https://lbaermann.github.io/interactive-incremental-robot-behavior-learning/

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

misinterprets “serve” as doing a handover instead of putting it on the table. However, we can successfully trigger learning again484
by teaching “when I say serve, I mean that you should put it on the table”, and subsequent requests do behave as intended.485

We conclude that our interactive, incremental learning system can flexibly generate complex behavior from concise486
improvement instructions. However, it is still challenging to robustly generalize from a single instruction to all cases a human487
might have intended, as shown by the milk example, where a second correction was necessary for successful generalization.488
Improving this generalization capability should be a focus of future work.489

5.2 Learning User Preferences490

As shown in Fig. 1, in this scenario we ask the robot to assist with cleaning the top of the fridge. The memoryM contains491
predefined comparable examples for cleaning the table and kitchen counter, which guide the LLM to only handing over the492
sponge to the human. However, since the top of the fridge is higher than the table or the kitchen counter, we require a ladder493
to reach it so we additionally ask for it (gpt-4 did, in contrast to gpt-3.5, proactively ask whether it should also bring the494
ladder). The robot then successfully places the ladder in front of the fridge. Eventually, we instruct the robot to always bring the495
ladder when working on high surfaces. The generated improved interaction example correctly brings the ladder after the sponge,496
without further request (details in ??). Afterwards, when we perform a similar request (e. g., “clean on top of the dishwasher”),497
the robot brings both the sponge and the ladder successfully, while for lower surfaces (e. g., kitchen counter) the robot still brings498
only the sponge. The behavior also transfers to different tasks than cleaning, e.g. the robot brings the cereals and the ladder on499
“can you get me the cereals, I want to put it in the topmost shelf”, while it does not bring the ladder when tasked with “I want to500
put the cereals into the shelf”.501

In summary, this example demonstrates that our method can be used to learn task constraints or preferences that a user502
specifies, and this knowledge can be generalized to similar situations.503

5.3 Adapting Low-Level Parameters504

In this scenario, we ask the robot to bring some object from the table to the workbench (details in ??). Subsequently, we say505
“remember that the route from the table to the bench is safe, you can go faster”. Flearn correctly generates a sample that adapts506
the numeric speed factor of the move to function on that route. However, if we test the same task afterwards, Linteract still507
uses the default speed. Annoyed by that, we shout “you forgot that I told you to go faster from the table to the workbench. When508
moving on that route, you should go faster!”, triggering another learning process, generating another correct sample, including509
an explicit comment:510

...

>>> grasp('sponge_0')

'success'

>>> # The user earlier asked me to move faster from the

table to the workbench, so let's do that

... move_to(get_location_coordinates('workbench_0'),

speed_factor=2.0)

'success'

>>> place_object('sponge_0', 'workbench_0')

...

Proceeding requests now behave correctly and increase the speed from the table to the workbench. However, an adversarial test511
shows that Linteract does now dangerously use increased speed from another location to the workbench, too, while routes to512
different places still correctly use the default speed.513

To conclude, our system can successfully learn to adapt low-level API parameters as requested by a user, but ensuring the514
LLM applies learned knowledge in the intended context only is not fully solved yet.515

Frontiers 16

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

6 CONCLUSION & DISCUSSION

We present a system for integrating an LLM as the central part of high-level orchestration of a robot’s behavior in a closed516
interaction loop. Memorizing interaction examples from experience and retrieving them based on the similarity to the current517
user request allows for dynamic construction of prompts and enables the robot to incrementally learn from mistakes by extending518
its episodic memory with interactively improved code snippets. We describe our implementation of the system in the robot519
software framework ArmarX (Vahrenkamp et al., 2015) as well as on the humanoid robot ARMAR-6 (Asfour et al., 2018). The520
usefulness of our approach is evaluated both quantitatively on the tasks from Code as Policies (Ahn et al., 2022) and qualitatively521
on a humanoid robot in the real world.522

While the proposed method, in particular the incremental prompt learning strategy, shows promising results, there are still523
many open questions for real-world deployment. First of all, the performance of LLMs is quite sensitive to wording in the524
prompt, thus sometimes leading to unpredictable behavior despite only slight variations of the input (e. g., adding “please”525
in the user command). This might be solved with more advanced models in the future, as we did observe this issue much526
more often with GPT-3.5 than with GPT-4. Investigating the effect and performance of example retrieval in dynamic prompt527
construction might also contribute to improving robustness. Furthermore, our incremental prompt learning strategy should be528
expanded to involve additional human feedback before saving (potentially wrong) interaction examples to the episodic memory.529
However, this is challenging to accomplish if the user is not familiar with robotics or programming languages. One possible530
approach would be to verbalize the improved interaction example using an LLM, present it to the user, and ask for confirmation.531
Similarly, the improved code could first be executed in a simulation environment to check its validity before saving it in the532
memory of interaction examples. Both approaches have some open challenges, such as ensuring correctness of the verbalization533
or accuracy of the simulation, as there will be a large sim-to-real gap for the type of behaviors considered in our paper. To534
rigorously evaluate our incremental learning method in the real world, future work may want to incorporate a user study with535
non-technical participants. Further work should also focus on abstraction of similar and forgetting of irrelevant learned behavior.536
While our system is limited by the APIs exposed to the LLM, it could be combined with complementary approaches (Parakh537
et al., 2023) to support learning of new low-level skills, which would then be exposed through new functions added to the API.538
Furthermore, designing an API that enables robust yet flexible interactions is a challenge that should be considered in future539
work. In particular, providing the LLM access to subsymbolic parameters (such as positions to navigate to) enables fine-grained540
user corrections (“move a little more to the left”), but can significantly harden the task for the LLM and entails many more541
failure cases. Moreover, although we provide the LLM with access to perception functions and examples of how to use them, it542
sometimes comes up with non-grounded behavior (e. g., referring to non-existing objects or locations). This may be improved543
by adding further levels of feedback to the LLM, or using strategies like Grounded Decoding (Huang et al., 2023). Finally,544
our system inherits biases and other flaws from its LLM (Bender et al., 2021), which may lead to problematic utterances and545
behaviors. In future work, we will try to address some of these challenging questions to further push the boundaries of natural,546
real-world interactions with humanoid robots.547

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial548
relationships that could be construed as a potential conflict of interest.549

AUTHOR CONTRIBUTIONS

LB developed the methods and their implementation and performed the evaluation experiments. LB, RK550
and FP implemented and performed the real-world experiments. The entire work was conceptualized by551
LB, TA and AW and supervised by TA and AW. JN made important suggestions for the experimental552
methodology and reviewed the manuscript. The initial draft of the manuscript was written by LB and553

Frontiers 17

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

revised jointly by LB, RK, FP and TA. All authors listed have made a substantial, direct, and intellectual554
contribution to the work and approved it for publication.555

FUNDING

This work has been supported by the Baden-Württemberg Ministry of Science, Research and the Arts556
(MWK) as part of the state’s “digital@bw” digitization strategy in the context of the Real-World Lab557
“Robotics AI” and by the Carl Zeiss Foundation through the JuBot project.558

REFERENCES

Ahmed, A., Azab, S., and Abdelhamid, Y. (2023). Source-code generation using deep learning: A survey.559
In Progr. Art. Intel. (Springer Nature Switzerland), vol. 14116, 467–482. doi:10.1007/978-3-031-49011-560
8 37561

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., et al. (2022). Do as i can, not as i say:562
Grounding language in robotic affordances. In Annu. Conf. Rob. Learn.563

Asfour, T., Kaul, L., Wächter, M., Ottenhaus, S., Weiner, P., Rader, S., et al. (2018). ARMAR-6: A564
Collaborative Humanoid Robot for Industrial Environments. In IEEE-RAS Int. Conf. Humanoid Robots.565
447–454566

Bao, J., Hong, Z., Tang, H., Cheng, Y., Jia, Y., and Xi, N. (2016). Teach robots understanding new object567
types and attributes through natural language instructions. In IEEE Int. Conf. Robot. Automat. vol. 10568

Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. (2021). On the dangers of stochastic569
parrots: Can language models be too big? In Conf. Fairness, Accountability, Transparency. 610–623570

Birr, T., Pohl, C., Younes, A., and Asfour, T. (2024). Autogpt+p: Affordance-based task planning with571
large language models. arXiv:2402.10778572

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al. (2020). Language models573
are few-shot learners. In Int. Conf. Neural Inf. Process. Syst. vol. 33, 1877–1901574

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., et al. (2021). Evaluating large575
language models trained on code. arXiv:2107.03374576

Dalvi Mishra, B., Tafjord, O., and Clark, P. (2022). Towards teachable reasoning systems: Using a dynamic577
memory of user feedback for continual system improvement. In Conf. Emp. Meth. Nat. Lang. Proc.578
9465–9480579

Dehaerne, E., Dey, B., Halder, S., De Gendt, S., and Meert, W. (2022). Code generation using machine580
learning: A systematic review. IEEE Access 10, 82434–82455. doi:10.1109/ACCESS.2022.3196347581

Fasola, J. and Matarić, M. J. (2013). Using semantic fields to model dynamic spatial relations in a robot582
architecture for natural language instruction of service robots. In IEEE/RSJ Int. Conf. Intel. Rob. Syst.583
143–150584

Forbes, M., Rao, R., Zettlemoyer, L., and Cakmak, M. (2015). Robot Programming by Demonstration585
with Situated Spatial Language Understanding. In IEEE Int. Conf. Robot. Automat. 2014–2020586

Google (2023). Code-chat (Google VertexAI). Online. https://cloud.google.com/vertex-ai/587
generative-ai/docs/model-reference/code-chat588

Guadarrama, S., Riano, L., Golland, D., Göhring, D., Jia, Y., Klein, D., et al. (2013). Grounding Spatial589
Relations for Human-Robot Interaction. In IEEE/RSJ Int. Conf. Intel. Rob. Syst. 1640–1647590

Haluptzok, P., Bowers, M., and Kalai, A. T. (2023). Language models can teach themselves to program591
better. In Int. Conf. Learn. Repr.592

Frontiers 18

https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/code-chat
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/code-chat
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/code-chat

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. (2022a). Language models as zero-shot planners:593
Extracting actionable knowledge for embodied agents. In Int. Conf. Mach. Learn. vol. 162, 9118–9147594

Huang, W., Xia, F., Shah, D., Driess, D., Zeng, A., Lu, Y., et al. (2023). Grounded decoding: Guiding text595
generation with grounded models for robot control. arXiv:2303.00855596

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., et al. (2022b). Inner monologue: Embodied597
reasoning through planning with language models. In Annu. Conf. Rob. Learn.598

Kartmann, R. and Asfour, T. (2023). Interactive and Incremental Learning of Spatial Object Relations from599
Human Demonstrations. Frontiers in Robotics and AI 10600

Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter, F., et al. (2011). Object-Action601
Complexes: Grounded Abstractions of Sensorimotor Processes. Rob. Auton. Sys. 59, 740–757602

Lahiri, S. K., Fakhoury, S., Naik, A., Sakkas, G., Chakraborty, S., Musuvathi, M., et al. (2023). Interactive603
code generation via test-driven user-intent formalization. arXiv:2208.05950604

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi, S. C. H. (2022). CodeRL: Mastering code605
generation through pretrained models and deep reinforcement learning. In Int. Conf. Neural Inf. Process.606
Syst. vol. 35, 21314–21328607

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., et al. (2023). Code As Policies: Language608
Model Programs for Embodied Control. In IEEE Int. Conf. Robot. Automat. 9493–9500609

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen, W. (2022). What makes good in-context610
examples for GPT-3? In Deep Learning Inside Out: Worksh. Knowl. Extr. Integr. Deep Learn. Arch.611
100–114. doi:10.18653/v1/2022.deelio-1.10612

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., et al. (2024). AgentBench: Evaluating LLMs as agents.613
In Int. Conf. Learn. Repr.614

Luo, M., Xu, X., Dai, Z., Pasupat, P., Kazemi, M., Baral, C., et al. (2023). Dr.ICL: Demonstration-retrieved615
in-context learning. arXiv:2305.14128616

Madaan, A., Tandon, N., Clark, P., and Yang, Y. (2022a). Memory-assisted prompt editing to improve617
GPT-3 after deployment. In Conf. Emp. Meth. Nat. Lang. Proc. 2833–2861618

Madaan, A., Zhou, S., Alon, U., Yang, Y., and Neubig, G. (2022b). Language models of code are few-shot619
commonsense learners. In Conf. Emp. Meth. Nat. Lang. Proc. 1384–1403. doi:10.18653/v1/2022.emnlp-620
main.90621

Mialon, G., Dessi, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., et al. (2023). Augmented622
language models: a survey. Trans. Mach. Learn. Research623

Misra, D. K., Sung, J., Lee, K., and Saxena, A. (2016). Tell me Dave: Context-sensitive grounding of624
natural language to manipulation instructions. Int. J. Rob. Research 35, 281–300625

Mohan, S. and Laird, J. (2014). Learning Goal-Oriented Hierarchical Tasks from Situated Interactive626
Instruction. AAAI 28627

Nicolescu, M., Arnold, N., Blankenburg, J., Feil-Seifer, D., Banisetty, S. B., Nicolescu, M., et al. (2019).628
Learning of Complex-Structured Tasks from Verbal Instruction. In IEEE-RAS Int. Conf. Humanoid629
Robots. 770–777630

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., et al. (2023). CodeGen: An open large631
language model for code with multi-turn program synthesis. In Int. Conf. Learn. Repr.632

OpenAI (2023a). ChatGPT. Online. https://openai.com/blog/chatgpt/633

OpenAI (2023b). GPT-4 Technical Report. arXiv:2303.08774634

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., et al. (2022). Training language635
models to follow instructions with human feedback. In Int. Conf. Neural Inf. Process. Syst. vol. 35,636
27730–27744637

Frontiers 19

https://openai.com/blog/chatgpt/

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Parakh, M., Fong, A., Simeonov, A., Gupta, A., Chen, T., and Agrawal, P. (2023). Lifelong robot learning638
with human assisted language planners. In Work. Learn. Eff. Abstr. Plan., CoRL639

Parisi, A., Zhao, Y., and Fiedel, N. (2022). TALM: Tool augmented language models. arXiv:2205.12255640

Peller-Konrad, F., Kartmann, R., Dreher, C. R. G., Meixner, A., Reister, F., Grotz, M., et al. (2023). A641
memory system of a robot cognitive architecture and its implementation in ArmarX. Rob. Auton. Sys.642
164, 20643

Pramanick, P., Barua, H. B., and Sarkar, C. (2020). DeComplex: Task planning from complex natural644
instructions by a collocating robot. In IEEE/RSJ Int. Conf. Intel. Rob. Syst. 8645

Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., et al. (2023). Tool learning with foundation models.646
arXiv:2304.08354647

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-648
networks. In Conf. Emp. Meth. Nat. Lang. Proc. 3982–3992. doi:10.18653/v1/D19-1410649

Ren, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N., et al. (2023). Robots that ask for help:650
Uncertainty alignment for large language model planners. In Annu. Conf. Rob. Learn.651

Sarch, G., Wu, Y., Tarr, M., and Fragkiadaki, K. (2023). Open-ended instructable embodied agents with652
memory-augmented large language models. In Conf. Emp. Meth. Nat. Lang. Proc. 3468–3500653

Shridhar, M., Mittal, D., and Hsu, D. (2020). INGRESS: Interactive visual grounding of referring654
expressions. Int. J. Rob. Research 39, 217–232655

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., et al. (2023). ProgPrompt: Generating656
situated robot task plans using large language models. In IEEE Int. Conf. Robot. Automat. 11523–11530657

Skreta, M., Yoshikawa, N., Arellano-Rubach, S., Ji, Z., Kristensen, L. B., Darvish, K., et al. (2023). Errors658
are useful prompts: Instruction guided task programming with verifier-assisted iterative prompting.659
arXiv:2303.14100660

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao, W.-L., and Su, Y. (2023). LLM-planner:661
Few-shot grounded planning for embodied agents with large language models. In Int. Conf. Comp. Vis.662
2998–3009663

Tellex, S., Gopalan, N., Kress-Gazit, H., and Matuszek, C. (2020). Robots That Use Language: A Survey.664
Annu. Rev. Control Rob. Auton. Sys. 3, 25–55665

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G., Teller, S., et al. (2011). Understanding666
Natural Language Commands for Robotic Navigation and Mobile Manipulation. In AAAI. vol. 25 of 1,667
1507–1514668

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., et al. (2023). LLaMA:669
Open and efficient foundation language models. arXiv:2302.13971670

Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K., and Asfour, T. (2015). The robot software671
framework ArmarX. it - Information Technology 57672

Vemprala, S., Bonatti, R., Bucker, A., and Kapoor, A. (2023). ChatGPT for robotics: Design principles and673
model abilities. Online. https://www .microsoft.com/en-us/research/publication/674
chatgpt-for-robotics-design-principles-and-model-abilities/675

Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., and Ikeuchi, K. (2023). ChatGPT676
empowered long-step robot control in various environments: A case application. Online. https:677
//www .microsoft.com/en-us/research/publication/chatgpt-empowered-678
long-step-robot-control-in-various-environments-a-case-application/679

Walter, M., Hemachandra, S., Homberg, B., Tellex, S., and Teller, S. (2013). Learning semantic maps from680
natural language descriptions. In Rob.: Science and Systems681

Frontiers 20

https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-empowered-long-step-robot-control-in-various-environments-a-case-application/
https://www.microsoft.com/en-us/research/publication/chatgpt-empowered-long-step-robot-control-in-various-environments-a-case-application/
https://www.microsoft.com/en-us/research/publication/chatgpt-empowered-long-step-robot-control-in-various-environments-a-case-application/
https://www.microsoft.com/en-us/research/publication/chatgpt-empowered-long-step-robot-control-in-various-environments-a-case-application/
https://www.microsoft.com/en-us/research/publication/chatgpt-empowered-long-step-robot-control-in-various-environments-a-case-application/

Bärmann et al. Incremental Robot Behavior Learning from Interaction & LLMs

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., et al. (2024a). Voyager: An open-ended682
embodied agent with large language models. Trans. Mach. Learn. Research683

Wang, J. and Chen, Y. (2023). A review on code generation with LLMs: Application and evaluation. In Int.684
Conf. Med. Art. Intel. 284–289. doi:10.1109/MedAI59581.2023.00044685

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H., et al. (2024b). MINT: Evaluating LLMs in686
multi-turn interaction with tools and language feedback. In Int. Conf. Learn. Repr.687

Wang, Z., Zhang, G., Yang, K., Shi, N., Zhou, W., Hao, S., et al. (2023). Interactive natural language688
processing. arXiv:2305.13246689

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., et al. (2022). Chain-of-thought prompting690
elicits reasoning in large language models. In Int. Conf. Neural Inf. Process. Syst.691

Weigelt, S., Steurer, V., Hey, T., and Tichy, W. F. (2020). Programming in Natural Language with fuSE:692
Synthesizing Methods from Spoken Utterances Using Deep Natural Language Understanding. In Annu.693
Meeting Assoc. Comput. Linguistics. 4280–4295694

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song, S., et al. (2023). TidyBot: Personalized robot695
assistance with large language models. arXiv:2305.05658696

Yang, J., Prabhakar, A., Narasimhan, K., and Yao, S. (2023). InterCode: Standardizing and benchmarking697
interactive coding with execution feedback. In Int. Conf. Neural Inf. Process. Syst. vol. 36, 23826–23854698

Yang, K., Liu, J., Wu, J., Yang, C., Fung, Y., Li, S., et al. (2024). If LLM is the wizard, then code is the699
wand: A survey on how code empowers large language models to serve as intelligent agents. In ICLR700
2024 Workshop on LLM Agents701

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K. R., et al. (2023). ReAct: Synergizing702
reasoning and acting in language models. In Int. Conf. Learn. Repr.703

Ye, J., Wu, Z., Feng, J., Yu, T., and Kong, L. (2023). Compositional exemplars for in-context learning.704
arXiv:2302.05698705

Zeng, A., Attarian, M., ichter, b., Choromanski, K. M., Wong, A., Welker, S., et al. (2023). Socratic706
models: Composing zero-shot multimodal reasoning with language. In Int. Conf. Learn. Repr.707

Zha, L., Cui, Y., Lin, L.-H., Kwon, M., Arenas, M. G., Zeng, A., et al. (2023). Distilling and retrieving708
generalizable knowledge for robot manipulation via language corrections. In Work. Lang. Robot Learn.,709
CoRL710

Zheng, Z., Ning, K., Wang, Y., Zhang, J., Zheng, D., Ye, M., et al. (2024). A survey of large language711
models for code: Evolution, benchmarking, and future trends. arXiv:2311.10372712

Frontiers 21

	Introduction
	Related Work
	Understanding and Learning from Natural Language
	Code-Generation and Interaction with LLMs
	Orchestrating Robot Behavior with LLMs
	Dynamic Prompt Creation

	Approach
	Problem Formulation and Concept
	Procedure Overview
	LLM interacting with an Emulated Python Console
	Dynamic Prompt Construction
	Incremental Prompt Learning

	Simulated Evaluation
	Experimental Setup
	Baselines & Methods
	Results

	Real-World Demonstration
	Improving Plans
	Learning User Preferences
	Adapting Low-Level Parameters

	Conclusion & Discussion

