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Abstract— In this paper we extend the line of research
that aims at applying linear optimal control approaches with
quadratic cost (LQR) to the inherently non-linear control prob-
lem of whole-body balancing for push recovery of humanoid
robots. The non-linearity of the system is addressed in the
controller design by optimization in the weight-space of the
cost function in order to maximize balancing performance. We
use stochastic sampling-based, gradient-free optimization over
the large design parameter space of the whole-body controller
to efficiently cope with the unknown relation between the cost
function and the balancing performance. We further investigate
three different linear ground contact models and evaluate their
influence on the overall controller performance. We demon-
strate that parameter optimization and novel ground contact
models can be used to design a linear balancing controller that
produces human-like whole-body motions in physics simulation-
based push recovery experiments, simultaneously considering
joint angles, center of mass and angular momentum.

I. INTRODUCTION

Balancing a humanoid robot by means of whole-body
motions (postural balancing) is a challenging control task
due to the high number of Degrees of Freedom (DoF) and
the inherent non-linearity of the control problem. State-of-
the-art solutions mainly rely on run-time optimizations (e. g.
QP-based controllers) that are computationally expensive and
therefore require very capable on-board computing hardware.
An alternative approach is to use a linear controller which
is able to control the non-linear plant over a substantial
portion of the state space. Once a linear controller (such
as an LQR) is optimized off-line, it has the advantage of
very low computational demands at run-time. This in turn
ensures fast execution times, real-time capability, and allows
for the use of cost efficient control hardware. By encoding
the whole-body balance objective as Center of Mass (CoM)
position and angular momentum in the LQR cost function,
a whole-body balance controller can be realized.

The main research question is how to enable the linear
controller to effectively control the movement of a complex
system such as a humanoid robot. In this paper we investigate
two aspects of the answer to this question: One is to
appropriately linearize the system model used for controller
synthesis, in particular the ground contact model. We propose
two novel models of contact modeling and evaluate them
in the context of linear controller design for whole-body
balancing. The second aspect is to carefully select the design
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Fig. 1: Simulation of the ARMAR-4 humanoid robot using linear
whole-body balance control to recover from a push applied from
the front.

weights in the LQR cost function. We show that they have a
significant effect on controller performance and demonstrate
a way to systematically optimize them based on data gathered
in dynamics simulation.

A. Related Work

The problem of dynamic balancing in complex humanoid
robots can be formulated as constrained optimization prob-
lem with quadratic cost (QP): The weighted objectives can
be a state-dependent notion of stability (e. g. the center
of pressure, center of mass, zero moment point, angular
momentum) together with a desired body pose or trajectory.
The constraints are typically consistency with the non-
linear equations of motion, the maximum admissible fric-
tion forces in the ground contact (friction cone) as well
as angle and torque limits on joint level. Solving such a
QP in discrete time steps produces desired acceleration or
torque values for the robot joints that fulfill the objectives
while complying with the constraints. This approach received
significant attention over the last years and was extensively
covered in the respective literature (e. g. [1], [2], [3], [4]).
Besides the careful choice and formulation of objectives and
constraints, the main downside of QP-based approaches for
balancing is the very high computational demand of real-



time capable QP solvers. Formulating these problems in an
efficient-to-solve way as well as efficient solvers themselves
are therefore research topics in their own right [5]. More
complex frameworks integrating motion planning and QP
motion control have also been proposed [6], [7]. Such inte-
grated approaches often internally use an LQR formulation
based on simplified CoM dynamics (e. g. point mass model).
Simplified abstractions of the robot dynamics such as the
Divegent Component of Motion (DCM) [8], the Capture
Point (CP) [9] or the Linear Inverted Pendulum (LIPM) [10]
are the basis of several methods for balancing. In contrast, the
approach we are using in this paper formulates the LQR over
the full dynamics model of the robot, taking into account all
joints that significantly contribute to balancing (i. e. the legs,
the torso and the shoulders).

Another approach to online trajectory optimization is to
use model predictive control (MPC) on simplified [11], [12]
or more complex models, where promising results have been
reported for the use of Differential Dynamic Programming
(or variants thereof), albeit often at the cost of very high
computational cost for complex humanoid models [13].

Full-body balancing and locomotion control has recently
also been addressed with methods relying on data-driven
Deep Reinforcement Learning (DRL). Rather than accurately
modeling the robot and carefully considering its physical
constraints, motion strategies and feedback controllers are
iteratively learned and automatically modeled with a deep
neural network from data generated in dynamic simula-
tions [14]. This line of research is still in its early stages and
needs to show its applicability to actual robotic balancing
tasks, but it represents another promising approach to the
complex problem of dynamic stability control for biped
robots.

Alongside the development of balance control techniques
formulated and treated as constrained non-linear real-time
optimization problems, differential dynamic program, deep
neural networks and other methods, it has been researched
whether the problem of whole-body balancing can be ad-
dressed solely with linear optimal control theory, mainly mo-
tivated by the conceptual simplicity and low computational
requirements. The work presented in [15] showed promising
results for the application of full dynamics LQR control
to bipedal balancing under the influence of disturbances
while standing and while tracking a squatting motion. The
paper also highlights how the LQR-formalism automatically
exploits the dynamic coupling of the different limbs and
how this is reflected in the composition of the state-feedback
gain matrix. One of the key findings was that the use of the
linearized model yields a linear controller that is even valid
when the robot state deviates significantly from the state of
linearization. Balancing with the lower body of a humanoid
was achieved with only one system linearization over the
entire range of a squatting motion. Different control objec-
tives were represented in the cost function: Joint position
tracking (’LQR’) and additionally tracking of the system’s
linear and angular momentum (’LQR-momentum’), where
the momentum is expressed as linearly dependent on the

system state. While it is reported that LQR-momentum was
’much easier to tune’, the performance remains comparable
to the generic whole-body LQR.

A follow-up study extended this work by adding the ability
to switch contact situations (from double to single support
and back), as is necessary for walking [16]. Only one system
linearization and state feedback controller were necessary
per contact situation during static walking motions, again
suggesting that LQR control can achieve its stabilizing effect
over a wide range within the state space. Gain matrices for
the different contact situations reveal a coupling of the stance
leg joints and largely independent position control of the
swing leg. Experiments were conducted with the lower body
of a torque-controlled robot and a 1DoF torso mock-up.

In both cases not much was reported on the tuning process
of the LQR, where tuning means an optimal design choice
of the weight matrices in the LQR cost function. For more
complex control problems, bringing together LQR control
and non-linear system dynamics requires systematic tuning
of these weights.

A recent study on automatic LQR tuning for a robotic
application has shown that tuning in the weight space of
the LQR cost function can significantly improve controller
performance for non-linear control systems [17]. The authors
use weight matrices parameterized by a set of hyperparame-
ters θn for the controller design (’design weights’) and exper-
imentally evaluate the actual cost using fixed weight matrices
(’performance weights’). They use Entropy Search (ES) to
efficiently search over the space of hyperparameters for a
controller with minimal actual cost. The control problem they
are looking at is essentially a planar inverted pendulum with
a single input (linear acceleration of the base). While this is
a compelling showcase for the feasibility of the method, it is
a significantly simpler problem and the parameter space to
optimize over is far smaller than in the setting of whole-body
humanoid balancing that we are considering.

B. Contribution

In this work we seek to further leverage the capabilities
of LQR whole-body control by finding optimal controllers in
the space of entries of the weight matrices used to synthesize
the controller (the design weight space). We explore new
linearized models for the ground contact that improve LQR
performance. We use a simplified four-link humanoid model,
and a dynamic model of the ARMAR-4 humanoid robot [18]
with actuated legs, arms and torso, considering the task of
stabilizing the robot after a push along the sagittal plane.
While the controller is synthesized based on the linearized
robot and contact dynamics, the optimization objective is to
find a controller that prevents the robot from falling under
the largest possible push in a non-linear, accurate physics
simulation.

II. APPROACH

A. Linear ground contact modeling

Whereas the dynamic equations of motions formulated in
the joint angles of the robot are relatively straight-forward to



linearize around a specific set-point (the nominal posture),
the ground contact is more challenging to handle in linear
LQR controller design. The real ground contact is unilateral,
meaning that it cannot exert forces that pull the robot down.
Horizontally, legged robots need to stay within the regime of
static friction to prevent the feet from sliding. This requires
the ground-contact force vector to remain within the friction
cone, the opening angle of which is a variable of the foot
and ground materials. Mathematically, this translates to a
geometric inequality constraint, adding to the degree of
contact non-linearity.

Since neither the unilaterality nor the friction cone con-
straint can be represented in a linear model required for
LQR design, we need to find linear representations for these
conditions. As modeling is the first part of the LQR design
process, these consideration need to be made early on.

(a) Clamped (b) High Inertia (c) Springs

Fig. 2: Three different ground contact modeling approaches: (a)
clamped to the ground, (b) high foot inertia and (c) springs.

We consider three different linear models for LQR design:
1) Clamped to the ground: The most straight-forward way

of representing the ground contact is by having the feet
clamped to the ground. This prevents any relative motion
of the feet in the linear model but also allows the controller
to apply arbitrarily high moments around the ankles without
consequences. The so generated controllers therefore tend
to rely on the ’ankle strategy’, where the ankle joints are
primarily used for balancing rather than developing coordi-
nated whole-body motions that account for torque limits that,
in reality, are imposed by the finite size of the feet.

2) High inertia feet: Another method that we are inves-
tigating here is to model the reaction forces between the
ground and the robot at the foot contact as inertia forces
acting on a very heavy foot. By increasing the weight of
the foot, the inertia forces can become high enough to
sufficiently prevent foot motion over one simulation time-
step, even if the robot exchanges significant interaction forces
and moments with the ground. To compensate gravity, we
add appropriate constant vertical forces acting on each foot.

3) Springs: The third modeling method that we consider
is to attach the robot’s feet to the ground by means of
springs along the three translational and around the three
rotational axes. Those springs hold the feet in place and

can naturally be modeled as linear components. Every
translation or rotation of the foot results in proportional
forces or moments.

The latter two methods have one major conceptual ad-
vantage over the clamped contact model in the context
of modeling for LQR design: The LQR state vector in
general does not include forces and torques, which means
that the controller cannot take them into account during
execution. By allowing the feet to actually move in the
spring and inertia formulation, their displacement and the
associated forces (from stiffness or inertia) are implicitly
known to the controller and can be penalized. The high
inertia model furthermore greatly simplifies the modeling
for more than one ground contact (which simply requires
assigning large weights and gravity-opposing forces to the
end-effectors), which is a significant challenge in the case of
the clamped model where the robot and the ground form a
closed kinematic chain.

B. Design weight optimization

1) LQR design weights: An LQR full state feedback
controller takes on the very elegant form of

u(t) = −K(x(t)− x0) (1)

where u is the computed input (the vector of joint torques
in our case), K is the feedback gain matrix, x the system
state (joint positions and velocities in our case) and x0 the
point of linearization. The matrix K is designed in such a
way that both the input and the state space trajectory of the
linear system minimize a cost J with

J =

∫ ∞

0

xT (t)Qx(t) + uT (t)Ru(t)dt (2)

for the infinite horizon case, where Q and R are matrices
containing the optimization weights used in the design
process and will henceforth be called design weights. This
underlying optimization can be solved by the solution of
the (discrete) algebraic Riccati equation (DARE) and makes
any so designed controller an optimal controller (for the
linear system). For complex systems, the gain matrix K
encodes the generally non-intuitive coupling terms between
the multiple degrees of freedom, which makes it difficult to
directly improve K. In contrast, the design weight matrices
Q and R are much more approachable: It is common to set
them up as diagonal matrices, so that every non-zero entry in
Q directly corresponds to the penalization of a deviation from
a specific desired state, and every entry in R penalizes the
control effort of a specific input. Similar to [17] we therefore
chose to optimize the entries of Q and R (design weight
optimization) rather than the entries of K.

2) Domain-specific cost function: In a mechanical system
with the state x containing joint positions and velocities, a
controller as presented in Equation 1 designed with diagonal
Q is an optimal state-feedback controller, but not necessarily
a good balancing controller. We therefore need to adapt the
state cost Q to give the controller a notion of stability.



We compose the state cost Q of three contributions: A
diagonal matrix QA that motivates the controller to keep
its initial pose (posture cost), a center of mass (CoM)
matrix QB that motivates it to keep the CoM over its feet
for static stability (CoM cost) and an angular momentum
matrix QC , challenging the controller to minimize angular
momentum for dynamic stability (momentum cost). Each
of these matrices contains its own diagonal design weight
matrices Q1, Q2 and Q3 and together they form the overall
state cost Q:

QA = Q1 (3)

QB = TT
CoMQ2TCoM (4)

QC = TT
HQ3TH (5)

Q = QA +QB +QC (6)

TCoM and TH are the linearized mappings from the system
state to the CoM position and the angular momentum around
the CoM, respectively.

III. EXPERIMENTAL SETUP

To enable the LQR-controller to regulate the highly non-
linear system with the state cost computed from Equation 6
we optimize over a sub-space of the design weight space
spanned by the entries of Q and R, or more precisely by the
entries of Q1, Q2, Q3 and R. The goal is to have the robot
withstand the largest possible push.

A. Stochastic optimization

For each controller generated with the current design
weights, this goal is evaluated and discretely quantified in a
dynamics simulation that accurately reproduces the robot and
contact non-linearities. The vertical contact force is produced
by a virtual damped spring with a stiffness of 105N

m and a
damping coefficient of 104Ns

m that is only active when the
foot is in ground contact, and only exerts repulsive forces.
Horizontal friction forces are generated by viscous damping
of 1.5× 103Ns

m when the foot is in ground contact.
The robot model initially stands in a statically stable pose

and the torques computed by the LQR controller as well
as gravity compensating torques are applied to its joints. It
is then pushed from the front at hip height with a constant
force for a fixed duration (0.5 s for the simplified model,
0.25 s for the ARMAR-4 simulation model). By varying this
force we can vary the transmitted push impulse which we
use as the defining parameter of the push. To evaluate the ob-
jective function of the maximization we perform successive
simulations with iteratively increased push impulses (0.5 Ns
for the simplified model, 5 Ns for the ARMAR-4 model)
until the robot falls, taking the greatest impulse withstood
by the robot as the current performance. While 0.5 Ns (or
5 Ns, respectively) is a comparatively coarse performance
quantization, it allows us to run many evaluations to optimize
over a wide range of the parameter space in a reasonable time
span.

The optimization problem is particularly difficult for three
reasons: (1) Neither the objective function (i. e. the mapping

from design weights to controller performance) nor its gra-
dient are known, but are known (from initial experiments)
to have many local extrema. (2) The parameter space is
so high-dimensional that any sampling in it (that can be
accomplished in an acceptable time-frame) is inevitably
sparse. (3) Sampling the objective function is costly since it
requires running multiple experiments in the dynamic robot
simulations.

These characteristics call for an efficient, sampling-based
global optimization technique. In contrast to [17] where
the cost function is explicitly modeled as Gaussian Process
(GP) we chose a model-free optimization due to the high
dimensionality of the parameter space. A stochastic global
optimization technique that suits the problem at hand is Sim-
ulated Annealing. The optimization cycle is schematically
depicted in Figure 3.

B. Simulated annealing

Simulated annealing is a physically inspired optimization
meta-heuristic that stochastically samples the performance
function over the parameter space, where the sampling
is guided by a monotonously falling temperature parame-
ter [19]. From an initial random location in the parameter
space a new location in a certain distance is chosen and
the performance function there is evaluated. Depending on
whether the performance function in the new location is
better or worse than in the current location, this new location
is accepted as the new initial location. At the initial high
temperature the algorithm is likely to jump to new locations
even when they result in worse performance, to avoid getting
stuck in local optima. As the temperature decreases with
every cycle the algorithm only choses to stay in new locations
that actually increase performance, eventually converging to
a local optimum. To increase the algorithm’s chances to find
the global optimum, re-annealing, where the temperature
is increased after the algorithm has consecutively chosen
sample locations in close proximity to each other (i. e. has
converged), can be applied.

1) Implementation Details: We start at an initial tem-
perature T0 = 600, leading to good initial coverage of
the search space. The temperature T is lowered according
to T [t] = αT [t− 1] with α = 0.95. At each temperature
step, three optimization steps are performed. New design
weights are sampled from a normal distribution around
the current design weights. The admissible range for each
weight parameter is from 1 to 107. Randomly chosen weight
parameters outside this range are discarded, and the normal
distribution is sampled again. If no improvement is made
after 40 consecutive steps, re-annealing is applied.

C. Simplified 2D humanoid model

The simplified 2D model is similar to the human body
in proportions and weight distribution, with a total mass of
7.8 kg. To enhance its balancing capability we derive three
sets of linearized equations of motion (linear models) based
on the three different contact models described in II-A and
synthesize LQR controllers with the domain-specific cost



Fig. 3: Optimization in the LQR design process: The performance
(maximum push impulse that can be recovered from) of the current
controller is evaluated in a non-linear physics simulation. The
performance is input to the optimizer that selects a new set of LQR
design weights. A new controller is synthesized with those weights
and the cycle repeats.

detailed in II-B.2. We chose an 18-dimensional subspace of
the design weight space containing the six diagonal entries
of the position feedback in Q, all six diagonal elements of
R, the 2D position of the CoM, the 1D angular momentum
and the three spring stiffnesses (in case of the spring ground
contact model) as the search space for an optimal parameter
set yielding the most robust controller.

D. Full 3D humanoid model

Considering all 63DoFs of the ARMAR-4 humanoid robot
as well as the additional DoFs of the floating base is not
feasible, as the search space of the optimization would
become intractably large. We therefore limit our controller
to the robot joints that presumably have the largest influence
on the balancing performance, namely all leg joints, the two
torso joints and two shoulder joints per arm. We further
assign the same state cost coefficient to each of the three hip
joints and take advantage of the robots symmetry, assigning
the same coefficient to the left and right instances of the
same joint. The full humanoid model has a total mass of
73.9 kg.

IV. EVALUATION

The goal of the evaluation is twofold: First, we want to
demonstrate that LQR controllers for whole-body balancing
can be improved by optimizing in the design weight space
using Simulated Annealing. Secondly, we want to show that
the linearized representation of the ground contact plays a
major role in the overall controller performance, which is
reflected both in the quantitative and qualitative controller
performance, i. e. the magnitude of pushes that can be with-
stood and the motion characteristics. The evaluation is based
on a simplified 2D model, and the feasibility of the found
approach for balancing the ARMAR-4 full body humanoid
is demonstrated.

A. Simplified 2D humanoid model

From the initial position depicted in the first frame of
Figure 6, the simplified model can be tipped over with a
push of about 1 Ns applied from the front at the pelvis when

all joints are locked in position. We consider this the baseline
performance.

1) Contact model and optimization evaluation: We run
10,000 steps of Simulated Annealing for all three linear
contact models, and evaluate the performance on the non-
linear simulation model at every step. This optimization
takes about two days for each model. Figure 7 shows the
current best performance, measured by the impulse of the
largest withstandable push, for the controllers based on the
three different ground contact models. After 10,000 iterations
the linear model based on the spring ground contact model
yields the push-recovery LQR with the highest performance,
enabling the model to cope with pushes of up to 5.5 Ns,
a more than 500 % improvement in performance over the
baseline. The controllers based on the other two contact
models show similar but slightly worse performance.

From these initial experiments we conclude that ground
contact modeling with springs leads to the highest-
performance controllers. We further conclude that Simulated
Annealing is capable of finding good design weights for the
LQR balance controller despite the difficulties described in
III-A.

2) Independent contact model evaluation: To statistically
evaluate the contact models independently of the optimiza-
tion procedure we randomly pick 10,000 positions in the
design weight space and synthesize and evaluate controllers
based on all three contact models at these locations (es-
sentially replacing the optimizer in Figure 3 by random
selection). Figure 8 shows the accumulated results of these
tests, where performances under 3.5 Ns are not included.
Even under these purely stochastic conditions, controllers
based on the spring contact model show better performance.
The maximum performance level achieved with random
parameters is 5 Ns, less than what could be achieved using
Simulated Annealing.

B. Full 3D humanoid model

Despite its lower performance as compared to the spring
model (see Figure 7) we chose the high inertia ground
contact model for the 3D evaluation. Consistently formu-
lating the spring model for the case of the double contact is
still part of our ongoing work. The high inertia model has
the advantage of straight-forward extension to multi-contact
situations.

1) Controller: Running 10,000 optimization steps of Sim-
ulated Annealing (requiring almost three weeks) leads to a
capable LQR-controller that is able to stabilize the robot
under the occurrence of frontal pushes of up to 29 Ns. A
comparable experiment was presented in [15] where the ”full
humanoid model” withstood a push of 15 Ns, making much
less use of the arms than our controller. The structure of
the gain matrix K is visualized in Figure 9 and reveals the
complex couplings between the different DoFs, represented
by the non-zero off-diagonal elements. Capping the com-
manded joint torques at the robot’s joint torque limits does
neither influence the motion characteristics nor the controller
performance noticeably.



(a) Simulation sequence of the 3D robot model reacting to a push from the front at hip height. It can be seen that the robot bends forward to shift its CoM
and quickly swings its arms to compensate its angular momentum. The robot eventually comes back to its initial position.

(b) Simulation of the 3D robot moodel performing a squat under LQR balance control. No re-linearizations around any other than the initial state were
performed along the trajectory.

Fig. 4: Simulation snapshots of ARMAR-4 balancing (a) under the influence of a push and (b) while performing a squat. The same linear
whole-body controller was used in both experiments. Images from left to right with 0.3 s temporal spacing.

Fig. 5: Center of Pressure during a 30 s balancing experiment in
relative foot coordinates (heel=̂0, toes=̂1). A push is applied at
t = 10 s. The corresponding robot motion after the push is shown
in Figure 4 (a).

Fig. 6: The simplified four-link 2D humanoid model performing
whole-body balancing after being pushed from the front. Consecu-
tive frames are spaced 0.2 s apart.

Fig. 7: Performance evolution over the course of 10.000 optimiza-
tion steps with Simulated Annealing for push-recovery LQRs based
on the three different ground contact models.

Fig. 8: Controller performance based on the three different contact
models evaluated over 10.000 random positions in the parameter
space. Depicted are the accumulated performance evaluations for
each contact model, excluding performances under 3.5 Ns.



Fig. 9: LQR position feedback matrix for the 3D whole-body bal-
ance controller, showing how the torques for the 18 actuated joints
(right) are computed from the position errors of the 24 considered
DoFs (top), including the unactuated floating base. Any non-zero
entries off the diagonal (red) represent the interconnections between
the joints, such as the clearly visible coupling between the shoulder
and the hip joints. The velocity feedback matrix has a very similar
structure.

2) Motion characteristics: Figure 4(a) shows a simulation
experiment in which the humanoid is pushed from the front
and reacts by bending its upper body to change its CoM
position as well as throwing its arms backward to compensate
its angular momentum. We argue that this holistic motion is
a benefit of the way we model the ground contact, as the
controller is given a motivation to apply less torque around
the ankle joints and do more with the upper body. The
position of the center of pressure (CoP) within the feet is
depicted Figure 5: It travels all the way to the heel directly
after the push but is quickly brought back to the center of
the foot by the compensatory motion of the robot.

3) Trajectory tracking: The same controller can be used
to track a squatting motion by commanding a vertical si-
nusoidal pelvis trajectory with an amplitude of 20 cm (see
Figure 4(b)). The only difference to the standing case con-
troller from Equation 1 is that the control error is computed
with respect to the desired joint trajectories xd(t) and not to
the initial, time-invariant nominal posture, yielding

u(t) = −K(x(t)− xd(t)) (7)

The controller can not only track the trajectory but also
compensate significant pushes that are applied during squat-
ting by bending its torso and swinging its arms. No re-
linearization along the squatting trajectories was used.

4) Robustness against model uncertainties: We tested the
ARMAR-4 controller with a simulation model in which
certain links in the legs and arms had increased mass
parameters of up to 10%, that were not accounted for in the
controller optimization. Balance control performance thereby
remained on a comparable level as without alterations, indi-
cating that weight-optimized LQR controllers have a certain
robustness against parameter uncertainties and are suitable

to be transferred from simulation environments (where they
can be optimized without putting the robot at risk) to real
hardware, where the exact model parameters might not be
known.

V. CONCLUSION

We present our work on applying the LQR control method
to the problem of torque-based whole-body balancing for
humanoid robots. We focus on handling the non-linearities
of the robot by developing new linear ground contact models
and by systematically optimizing the LQR design weights.
The two main novelties of this work are (1) the proposition
and evaluation of two new linear ground contact models
(high inertia, springs) and (2) the application of Simulated
Annealing for optimizing the LQR design weights with
respect to the overall controller performance (i. e. resilience
against pushes). We explicitly take into account the arms and
include the CoM position in the control objective, leading to
a balance controller that makes intuitively plausible use of
the robot’s arms to keep its balance (see Figure 4).

We show that the ground contact model used in the con-
troller synthesis has a significant influence on the controller
performance and on the quality of the compensatory motion
in the physically consistent robot simulation, and that our
newly proposed models lead to improved use of the arms
for balancing as compared to comparable methods found in
the literature. We further showed that the application of Sim-
ulated Annealing for tuning the balance LQR in the design
weight space consistently improves performance, for the two
different robot models as well as for the different ground
contact models (see Figure 7 and Figure 8), improving the
whole-body balance performance of the simplified test model
by over 500%.

Our results suggest that LQR control can be an effective
control method for whole-body balancing, and that it can be
improved by better contact models and systematic tuning
with stochastic optimization techniques. Our experiments
on controlling a squatting motion with a controller based
on a single linearization substantiate the suggestion made
in [15], [16] that the region of applicability of a single
LQR balancing controller extends far from the initial point
of linearization, and our experiments with an altered robot
model suggest a certain robustness of the controller against
model uncertainties.

A. Limitations

Owing to its computational simplicity that makes full-
dynamics LQR state-feedback control so attractive, there are
a few relevant limitations in its capabilities in the context of
whole-body balancing. Most notably, joint position limits,
joint torque limits and contact friction constraints cannot be
considered explicitly (other than by limiting the computed
output). They can only be implicitly encoded in the state and
actuation cost. Our proposed ground contact models allow for
a more effective consideration of the friction limits as they
make the contact forces implicitly known to the controller,
and thereby penalizeable in the state cost matrix.



B. Future Work

Future work will aim at quantifying the volume of the
state space in which one linearization and one optimized
controller is applicable. The goal is to find a minimal set
of LQR controllers that can stabilize a robot over its entire
range of (dynamic) motions.
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