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Abstract— Intuitive exoskeleton control is fundamental since
it contributes to improved user acceptance and wearability
comfort. This requires the detection of user’s motion intention
and its incorporation into the exoskeleton control system.
In this work, we propose a classification system based on
Hidden Markov Models (HMMs), which facilitates the online
classification of multi-modal sensor data acquired from a lower-
limb exoskeleton based on previously defined motion patterns.
For classification of these motion patterns at each time step,
we consider the most recent sensor measurements by using a
sliding window approach. We collected a training data set from
a total number of 10 subjects performing 13 different motions
with a passive exoskeleton equipped with 7 3D-force sensors
and 3 inertial measurement units (IMUs). Our evaluation
includes an analysis of the time needed for correct classification
(latency), a validation for a training set containing all subjects
and a leave-one-out validation to assess the generalization
performance of the approach. The results indicate that our
approach can classify motions of subjects included in the
training set with an average accuracy of 92.80% and is able
to achieve a generalization performance of 84.46%. With the
selected parameters an average latency of 368.97 ms is achieved.

I. INTRODUCTION

In recent years, extensive research efforts have been ded-
icated to the area of exoskeletons for augmenting human
performance, especially regarding the question how such
devices can be efficiently controlled. For this purpose, clas-
sifying the current state of the user-exoskeleton system with
machine learning methods has gained increasing importance.
If the current state, especially the currently intended mo-
tion, is known, this knowledge can be used to enhance
exoskeleton control or to predict future states, e.g. subsequent
motions [1], [2]. Various machine learning approaches have
been applied to classify motions with wearable devices. One
possibility is to use time-invariant classifiers based on Hidden
Markov Models (HMMs), support vector machines (SVM),
linear discriminant analysis (LDA), artificial neural networks
(ANN), Bayesian classifiers and neuro-fuzzy classifiers [3].
Those techniques can be applied to sensor signals from
electromyography (EMG), electroencephalography (EEG) or
mechanical sensors (e.g. joint angle encoders). Tsai et al.
[4] use multi-channel EMG signals and SVMs to recog-
nize upper arm motion patterns, aiming at advancements in
the control of exoskeleton robots. Other approaches utilize
Linear Discriminant Analysis (LDA) and Artificial Neural
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Fig. 1: Sensorized passive exoskeleton for the left leg.

Networks (ANN), see [5], or neuro-fuzzy classifiers [6] with
EMG data. EEG-based human robot interfaces are applied
to control lower limb exoskeletons [7], [8], [9] or hand
orthoses [10]. Villa-Parra et al. identified patterns in EEG
and sEMG signals via an ANN and SVM to control the
exoskeleton H2 [11]. Since mechanical sensors such as an-
gular encoders, inertial measurement units (IMUs) or torque
sensors are already integrated in most powered prostheses or
exoskeletons, these sensor modalities can also be used for
motion classification. Varol et al. [12] use a combination of
joint angles and ground contact forces for gait phase and
motion classification of a lower limb prosthesis with LDA.

HMMs are commonly used to represent sequential time
series data, such as human motions, since they have some
degree of invariance to local warping [13]. The models
can be trained with kinematic data [14], [15], [16], [17]
or data of wearable sensors such as foot pressure soles
[18] or accelerometers [19]. HMMs have also been used to
classify motions performed with exoskeletons. Taborri et al.
[20] detect the current gait phase of a lower limb orthosis
by retrieving data of force and IMU sensors. Wang et al.
[21] classify motions with an SVM based on IMU data and
predict possible upcoming motions with HMMs for the Non-
Binding Lower Extremity Exoskeleton (NBLEX). In contrast
to rehabilitation devices, aspects such as versatile motion
types, a minimal training procedure and a robust sensor
setup are crucial requirements for exoskeletons to be able
to reliably augment the user’s motions.



In this paper, we investigate and assess the quality of a
motion classification approach based on multi-modal data
of force sensors and IMUs, which are integrated in the
physical human-robot interface (pHRI) of an exoskeleton.
Key requirements for the acceptance and usability of such
devices are a short setup time, no tedious calibration phase,
intuitive control strategies as well as a sensor system that is
robust against environmental effects and can be worn over
clothing. For this purpose, we build a passive exoskeleton,
which is based on our previous work [22] and is equipped
with 7 3D-force sensors placed at given locations of the
exoskeleton where interaction forces between the human
body and the exoskeleton can be measured in a reliable way.
Additionally, an IMU is attached on each of the 3 segments
(shank, thigh, foot) of the exoskeleton. To classify the human
motion we use continuous Hidden Markov Models (HMMs),
which are trained with the motion recordings of 10 healthy
subjects performing 13 different motion tasks.

The paper is organized as follows. In Section II, we
describe the design and the sensor setup of the passive
exoskeleton. Section III covers the modeling of multi-modal
sensor data and our approach for HMM-based online motion
pattern classification for these sensor modalities. The exper-
imental setup as well as the evaluation of the classification
accuracy and latency are presented in Section IV. Section V
concludes the paper.

II. EXOSKELTON DESIGN AND SENSOR SYSTEM

As stated in Section I, only sensors which are permanently
mounted on an exoskeleton are considered for motion clas-
sification in this work. Therefore, we constructed a device
which should be easy to don and calibrate. It is equipped
with force sensors and IMUs.

A. Exoskeleton Design

The passive exoskeleton for the left leg consists of three basic
aluminum frame parts for the thigh, the shank and the foot
which are connected by orthotic revolute joints1 at the knee
and ankle. Using soft aluminum (EN-AW 5083) allows slight
frame adjustment to inter-subject leg characteristics when
donning the exoskeleton and provides slight compensation
of the missing degrees of freedom at the ankle and knee
joint during operation.

The mechanical coupling between the exoskeleton and its
wearer is achieved by orthotic Velcro straps on the anterior
thigh and shank as well as a sports shoe at the foot. Since the
force sensors should measure the interaction forces between
exoskeleton and user, they are mounted on these Velcro straps
via 3D-printed interfaces (see top zoomed image section in
Fig. 3).

B. Sensor System

Forces in all spatial directions are acquired with seven 3D-
force sensors2 which are placed over relatively big muscles
involved in locomotion, namely m. rectus femoris (Fig. 2 (a)),

1Otto Bock HealthCare; 17B47=20 / 17B57=20
2Optoforce Ltd. OMD-30-SE-100N

Fig. 2: Placement of the 3D-force sensors on the correspond-
ing leg muscles (Figure adopted from [23]).

m. biceps femoris (Fig. 2 (b)), m. gastrocnemius (Fig. 2 (c))
and m. tibialis anterior (Fig. 2 (d)).
Due to the semi-spherical shape of the force sensors (colored
red in Fig. 3), the maximum force, the resolution and the
maximum dome deflection in compression direction (100N,
6.25mN, 3mm) deviates from the aforementioned properties
in shear direction (25N, 7mN, 2.5mm). Data acquisition
units sample the raw analogue data of up to 4 sensors with
a maximum frequency of 100Hz.

The exoskeletons is furthermore equipped with three
IMUs3 which are placed on every segment of the exoskeleton
(colored blue in Fig. 3), namely thigh, shank and foot. Orien-
tations and linear accelerations of every IMU are processed
by a micro-controller4 with a frequency of 80Hz.

Fig. 3: Placement of IMUs (blue) and force sensors (red).

3BNO055 IMU, Robert Bosch GmbH
4SAM3X8E ARM Cortex-M3, Microchip Technology Inc.



Fig. 4: Schematic scheme of the classification process.

III. MOTION MODELING AND CLASSIFICATION

In this work, we do not address the problem of finding a
suitable low-dimensional multi-modal feature combination
for classifying exoskeletons motions, and instead use a
combination of pre-defined features for both the IMU and
force sensors. In future work, we plan to explore the space
of possible feature combinations with the goal of identifying
low-dimensional combinations of these features to be able to
possibly reduce the number of necessary sensors.

A. Modeling of Multi-Modal Motion Data

As stated in Section I, the ability to use the exoskeleton with-
out a tedious calibration phase is crucial. Therefore, and due
to inter-subject characteristics, e.g. different circumference
of the thighs, an equal tightening of the Velcro straps cannot
be guaranteed. This leads to different force values after
every donning process for the same subject. Additionally,
every subject has its own gait style causing different linear
accelerations and orientations when two subjects perform the
same motion type. To overcome this issue, the difference of
two consecutive feature vectors (Ft − Ft−1) composed of
IMU and force values is calculated and used as input for the
HMMs.

The IMUs measure the linear acceleration in all spatial
directions as well as the angular orientation which is rep-
resented by quaternions. Since quaternions are ambiguous
(one angular configuration can be described by two quater-
nions), they are converted to Roll-Pitch-Yaw (RPY) angles.
Therefore, the IMU feature (combination of all three IMUs)
consists of 9 linear accelerations and 9 RPY values leading
to a total dimensionality of 18.

As stated before, each of the seven force sensor measures
the forces in all spatial direction. Combining the seven force
sensors to the force feature leads to a dimensionality of 21.
Hence, the feature vector used in this work, defined as a
combination of IMU and force features, has a total dimen-
sionality of 39. Since the IMU data (80Hz) and the force
data (100Hz) are recorded with a different frequency, the
IMU values are interpolated to 100Hz and the timestamps
are unified.

B. HMM-based Motion Classification
HMMs are used in the context of multi-class classification,
referring to a classification problem where more than two
classes are used. Each sample can only be assigned to one
specific class since all classes are disjunct, meaning that
an unknown observation has to be assigned to one specific
motion class. One possible approach for this problem is to
train one HMM per motion type and to use a classifier to
determine the most probable motion class.

In our work, we trained HMMs using a fully connected
topology and constrain covariance matrices to be diagonal.
Observations are modeled with Gaussian distributions and
the number of states is constant for all HMMs. In context of
augmenting exoskeletons it is crucial that the used algorithm
classifies the performed motion shortly after its beginning
to ensure the support of the human during the motion
execution in real-time (online). More details to HMMs and
their application to time series data can be found in the
existing literature [13], [24].

Fig. 4 presents our classification process for the sensor
data. The feature vectors for every time step (10ms) are
concatenated. To realize an online application, we decided
to use a sliding window approach. For this purpose, the
acquired sensor data stream is split into windows (smaller
slices of the data stream) with a constant window size
(e.g. 300ms). After a certain time (window step time), a
new window is generated leading to an overlapping of the
windows. Such overlap of the windows is necessary in order
to be able to classify motions as fast as possible and to ensure
that a window associated to a motion is not missed, e.g., due
to unfavorable offset between the processed and the training
data.

An unknown observation sequence, in our case a window,
must be assigned to a finite set of classes HMMk. There-
fore, the log-likelihoods p(wn|HMMk) under each HMM
are calculated and the window wn is then assigned to the
HMM (motion class) with the highest log-likelihood. For all
evaluations, the number of states is set to 14 per HMM and a
window step size of 10ms is used. This step size corresponds
to the sensor sample frequency and therefore is the lowest
possible value.



IV. EVALUATION AND RESULTS

A. Data Acquisition

Our data set consists of 10 healthy subjects (5 male, 5 fe-
male) which have been recorded with the passive exoskeleton
described in Section II. Since the exoskeleton does not allow
to adjust the segment lengths of its thigh and shank frame,
only subjects with similar lower limb segment lengths have
been selected for this study to avoid parasitic interaction
forces caused by large kinematic misalignments. Table I
provides an overview of the subject parameters.

TABLE I: Overview of subject parameters. UL denotes
Upper Leg and LL denotes Lower Leg.

Average Std. Dev.

Age 25.10 3.86
Height [m] 1.73 0.03
Weight [kg] 66.00 5.85

BMI [kg/m2] 22.05 1.54
UL Circumference [cm] 55.20 3.20
LL Circumference [cm] 36.75 1.31

UL Length [cm] 42.80 2.63
LL Length [cm] 41.10 2.30

During one recording session, the corresponding subject
was asked to perform a set of 13 different motion tasks
with 10 repetitions each. The total size of the training data
thus amounts up to 1300 trials. The motions have been
chosen to represent basic motions associated with activities
of daily living or working, namely: walking forward (WF),
walking backward (WB), turn left (TL), turn right (TR),
sidesteps right (SR), sidesteps left (SL), going upstairs (GU),
going downstairs backwards (GB), going downstairs (GD),
lift object (LO), drop object (DO), stand up (SU) and sit
down (SD). The motion recordings going upstairs, going
downstairs backwards and going downstairs were conducted
on a 4 step staircase. For the lifting and dropping tasks, a
3 kg box was used.

Each subject was allowed to choose step length and motion
speed arbitrarily but were asked to start locomotion with the
exoskeleton leg (except for TR, SR, LO, DO, SU, SD). The
order of motion tasks remaining unchanged in the order given
above and the subject was standing or sitting still at the start
and end of each recording. During the recording, only the
actual motion task of the subject was captured while avoiding
phases of no motion at the start and end, as far as practicable.

B. Evaluation

1) Window Sizes and Latency:
The goal of this paper is to perform online motion classifi-
cation with HMMs, meaning that the system should classify
motions as accurate and at the same time as early as possible.
Therefore, the time (latency) until a motion is correctly
classified is an important measure to judge the performance
of such a system. This measure can be applied both for
motions at the beginning of the classification process or for
transitions between different motions. In both cases, latencies
depend on the window size, with a small window size being

advantageous for a fast classification. However, for a high
classification accuracy longer windows are advantageous.
Since these requirements represent a trade-off, we investi-
gated the influence of the window size on the classification
accuracy. In our evaluation, we consider a motion to be clas-
sified correctly if 10 consecutive windows of the data stream
are correctly classified to avoid an erroneously classification.

To evaluate the window size and latency, HMMs were
trained with window sizes in a range of 100-600ms (steps
of 100ms) and tested with a stratified 5-fold cross validation
over all subjects and motions. The 5-fold cross validation was
stratified to accommodate the varying number of generated
windows per subject caused by the self-selected motion
speed of subjects influencing the recording lengths. The
second column of Table II shows the accuracies of the
evaluation for different window sizes.

TABLE II: Accuracies of stratified 5-fold cross validation
and latencies for different window sizes over all subjects.

Window Size [ms] Accuracy [%] Latency [ms]

100 82.92 273.99
200 89.16 314.28
300 92.80 368.97
400 95.00 439.49
500 96.46 532.31
600 97.45 594.83

To determine the latency at the start of the classification
process, the whole data set was padded with zero values for
the first second of the motion. This technique was used be-
cause there is the possibility that a motion could be classified
although the window is not completely filled with sensor data
of the corresponding motion. The extended (padded) motion
recordings were tested on the aforementioned models and
their latencies are depicted in the third column of Table II.
Fig. 5 presents the aforementioned accuracies and latencies
for the different window sizes considered in our evaluation.

Given our results, as shown in Fig. 5, a window size of
300ms provides a good trade-off between a high accuracy
(92.80%) combined with an acceptable latency (368.97ms).
For smaller window sizes, the accuracy drops under 90%
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Fig. 5: Accuracies and latencies for different window sizes.



and window sizes over 400ms could be disadvantageous for
controlling exoskeleton devices.

2) Latency for Individual Motions:
After the window size was analyzed, we individually evalu-
ated the latencies for all motions tasks at a window size of
300ms. Fig. 6 shows the mean latency for each motion with
the same zero padding as described above.
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Fig. 6: Latencies of individual motion tasks.

For most motions (9/13) the latency is within the range
of 300-400ms. For walking forward, turn left and going
downstairs backwards the latency increases to over 400ms.
Going upstairs has a value of 14.57ms meaning that the
motion is classified although the window is not fully filled
with sensor data of a going upstairs motion. It could be
observed that, as soon as sensor data of a motion and not
only zeros (from zero padding) occur in a window, going
upstairs is classified until there is enough data to classify the
actual motion correctly, indicating that the HMM for going
upstairs is learned to serve as some kind of ‘fall-back class’
in the underlying classification problem.

After evaluating the latency for motions at the beginning
of the classification process, the same analysis was con-
ducted for motion transitions. For this purpose, two motion
recordings of one subject were randomly concatenated to
simulate a motion transition. Only motion transitions with
the same start and end position were concatenated, e.g. stand
up with walking forward. Motion combinations such as sit
down with walking forward were not considered. In total,
859 combined motions of all subjects were used to repeat
the aforementioned evaluation with a window size of 300ms.
The results of this evaluation (red bars) are depicted in Fig. 7
in comparison with the results when using zero padded data
(black bars). For the combined motions, the x-axis labels
correspond to the second motion task which was appended
when concatenating the data.

In general, there is no tendency towards a shorter classi-
fication latency for motion transitions compared to motions
at the start of the classification process. The mean latency
increases to 384.23ms, however in contrast to the zero
padded data there are 3 motions classified in less than 300ms
(turn left, turn right, lift object). This indicates that in the
case of concatenated motion data a correct classification is
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Fig. 7: Comparison of latencies for zero padded (black bars)
and combined (red bars) motions.

possible although the window is not completely filled with
sensor data and that the latency depends on the previously
performed motion task.

3) Leave-One-Out Validation:
As stated before, short setup and calibration times are impor-
tant if the device is to be used for augmenting applications.
Therefore, we want to investigate how well the trained
classification system generalizes to motion data observed
from a subject not part of the training set. For that reason a
leave-one-out analysis was conducted.

We trained our HMMs with 9 subjects with the same
hyper-parameters mentioned before and tested the HMMs
with the remaining subject of our data set. The results are
shown in Table III. The first column lists the test subjects for
the leave-one-out validation. The accuracy of the stratified 5-
fold cross validation (CV accuracy) when testing with the 9
subjects used to train the model is depicted in the second
column. The third column lists the accuracy when actually
testing the data with the left out subject (LO accuracy).
The average accuracy when training and testing with strati-
fied 5-fold cross validation is 93.15% (±0.37). When test-
ing with the left out subject, the average accuracy drops
to 84.46% and the standard deviation increases (±3.33).
This analysis shows that our approach is able to achieve
a comparable generalization performance when applied to
subjects not contained in the training set.

TABLE III: Results of leave-one-out validation.

Test Subject CV Acc. [%] LO Acc. [%]

1 92.87 88.76
2 92.53 86.47
3 92.71 83.71
4 93.39 82.42
5 92.97 84.84
6 93.43 87.95
7 93.70 82.28
8 93.14 79.82
9 93.34 88.28
10 93.42 80.04

Average ∅93.15 ∅84.46
Std. Dev. 0.37 3.33



V. CONCLUSION

In this paper, we investigated the quality of motion classi-
fication with Hidden Markov Models (HMMs) for a lower
limb exoskeleton based on multi-modal sensor data, with the
ultimate goal of improving intuitive control of such exoskele-
tons. In our approach, we use sliding windows to enable an
online (during operation) classification. To acquire a data
set for training and testing, experiments with 10 subjects
performing 13 different motion tasks were conducted with
a passive exoskeleton equipped with seven 3D-force sensors
and three IMUs.

Our first evaluation focused on determining a window
size which provides a reasonable trade-off between a high
accuracy and a good latency. For this purpose, different
window sizes were investigated with a stratified 5-fold cross
validation. After comparing the resulting accuracies with the
latencies, we determined a window size of 300ms yielding
to an average accuracy of 92.80% and an average latency of
368.97ms.

In our second evaluation, we considered the latencies for
each motion individually using a window size of 300ms. For
this purpose, a zero padded data set (motions at the beginning
of the classification process) and a data set consisting of
randomly concatenated motions (motion transitions) have
been tested. Comparing both data sets revealed no significant
difference between motions at the beginning of the classifi-
cation process and motion transitions.

These evaluations were followed by a leave-one-out val-
idation to investigate the generalization of our approach,
leading to an average accuracy of 84.46% for observations
from subjects not part of the training set.

Based on these results, we will conduct deeper analysis of
the latencies for different motion transitions. Currently our
approach assumes that the subject is always performing a
motion, leading to incorrect classification results if the sub-
ject stands still. It might be possible to avoid this behavior by
adding additional HMMs for standing still motions (idling).
Furthermore, we will perform a systematic exploration of the
feature space in order to identify which of the features are
relevant, with the goal of simplifying the sensor setup.
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