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Abstract—In order for humanoid robots to enter human-
centered environments, it is indispensable to equip them with the
ability to recognize and classify objects in such an environment.
A promising way to acquire the object models necessary for
object manipulation appears in the supplement of the information
gathered by computer vision techniques with data from haptic
exploration. In this paper we present a framework for haptic
exploration which can be used for both visually guided explo-
ration with a five-fingered humanoid robot hand as well as with a
human hand. We present experiments and results on 2D contour
following and haptic exploration of 3D objects by the human
hand. Volumetric shape data is acquired by a human operator
hand using a data glove. The exploring human hand is located
by a stereo camera system, whereas the finger configuration is
calculated from the glove data.

I. INTRODUCTION

In humans, different types of haptic exploratory procedures
(EPs) for perceiving texture, weight, hardness, contact, size
and the exact shape of a touched object are known [1].
These EPs require the exploring agent to initiate contact with
the object and are therefore also referred to as active touch
sensing.

In this paper, the contour following EP for shape recovery
is subject of interest. A volumetric object model composed
this way delivers a rather high amount of information for
discriminating between objects. Also, volumetric object data
is most suitable for supplementing and verifying geometric
information in multimodal object representations.

Several approaches have been proposed for acquiring object
shape information by robots through haptic exploration. An
early, comprising experimental setup was presented in [2]:
Here, the Utah/MIT dextrous robot hand, one of the first of
its kind, was mounted to a manipulator arm and used for
performing shape recovering, haptic exploratory procedures
on unknown objects. The hand probed contact by closing
around the object at predefined positions. The points of contact
between fingers and object were calculated indirectly from
proprioceptive information, i.e. joint angle position combined
with crossing of a force limit from the tendon force readings.
The resulting sparse point clouds were fitted to superquadric
models defined by a set of five shape parameters. In addition,
spatial rotation and translation of the superquadrics were
estimated. The shape parameters were successfully used for
recognizing several convex objects by comparison to a param-

eter database. The used superquadric model could not reflect
non-convex bodies, therefore recognition and representation
was limited to convex bodies in this approach.

In addition to the contact locations, the contact normal
information gathered during haptic exploration was used in [3]
to determine a set of intersecting planes which compose a
polyhedral model as volumetric object representation. For
object recognition the Euclidian distances of the polyhedral
surface points to the borders of a surrounding cubic workspace
box were measured at equidistant coordinates and matched
to those of synthetic models. The approach was evaluated
only in simulation. Object recognition was successful also
for a limited translation of the object within the workspace
box. The method appeared not appropriate for non-convex
bodies. Beside contact probing, several procedures for contour
following of object features have been investigated [4], [5].
Other approaches in active contact sensing utilizing contour
following concentrate on the detection of local surface fea-
tures [6].

In our approach, a framework has been developed that
allows haptic exploration of objects for recovery of the exact
global shape using different types of manipulators equipped
with contact sensing devices. As we are interested to integrate
the framework as basis for haptic exploration in our humanoid
robot system [7] which is eqquiped with two five-fingered
human-like and human-sized hands, we focus in this study
on the application of exploring with five finger hands. In
particular, the developed framework allows us to use the
human hand of an operator as exploring manipulator by
deploying a data glove with attached tactile sensors. This will
also provide interesting possibilities for immediate comparison
of haptic exploration results by a human versus a humanoid
robot hand.

The exploratory process can be used in an unstructured
environment, but it is currently limited by the constraint
that the object being explored is in a fixed pose. Basically
the approach for exploration is not limited to convex bodies
though at this stage of our work results related to non-convex
objects are not given, as we first want to concentrate on basic
properties.

This paper is organized as follows. In the next section
the relevant details and components of our system for haptic
exploration focusing on object shape recovery are described.



This includes a description of the human hand model and the
visual tracking of operator’s hand. In section III we describe
the experiments performed so far for evaluating the system and
report on the results obtained. Finally we give a conclusion
and an outlook on our future work is given in SectionIV.

II. SYSTEM DESCRIPTION

Figure 1 gives a system overview with the components
involved in acquisition of contact points during contour fol-
lowing EP.

Fig. 1. System for acquisition of object shape data from haptic exploration
using a human or a humanoid robot hand as exploring manipulator.

During the haptic exploration with the human hand, the
subject wears a data glove that serves as an input device for
calculating the joint angle configuration of the hand. The data
glove we use is equipped with binary micro switches at the
distal phalanges. When touching an object, the switches are
actuated when local contact force exceeds a given threshold.
The actuation also provides the operator with a mechanical
sensation, the clicking of the switch, that helps to control the
contact pressure during exploration. The data glove is made of
stretch fabric and uses 23 resistive bend sensors that provide
measurement data of all finger joint angle positions and the
orientation of the palm.

Before starting exploration the operator needs to calibrate
the data glove sensors with the forward kinematics of the
underlying hand model. Currently we calibrate all fingers
except for the thumb, but use only the tip of the index finger
for exploration. We use a linear relation for the transformation
from raw data glove sensor readings x to joint angles θ,
following

θ = C · x + B .

For calibration the subject has to form a flat hand shape and
a fist shape with the data glove respectively. From sensor
readings and the corresponding model joint configurations the
transformation matrices C and B can be determined.

Wrist position and orientation are determined in the ref-
erence frame of the camera coordinate system as described
section II-B. During exploration the subject visually guides
the finger tips along the desired contours. When the micro
switch is actuated by touch, the current location of the sensor
in the global reference frame is registered as a point in the
3D object point cloud. The sensor position is calculated using
the forward kinematics of the hand model as described in the
following section.

For exploration with our humanoid robot platform Armar-
III we use a model for the forward kinematics of the robot
hand presented in [8]. The robot is equipped with an advanced
version of this hand with joint angle encoders attached to all
controllable degrees of freedom (DoF).

A. Human hand model

The forward kinematics of the human hand must be modeled
accurately to transform the coordinates of the tactile sensor
locations gathered from the data glove sensor readings to a
global reference frame in which the resulting 3D contact point
cloud is accumulated. Furthermore, the model is required to
cover the entire common configuration space of the human
hand and the data glove, so that the human operator is
preferably not restricted in the choice of hand movements that
can be projected to the model.

A complex hand model deploying 27 DoFs was introduced
in [9] and used in several studies requiring exact models
([10], [11]) for hand pose estimation from sensor input. The
Carpometacarpals joints (CMC) were fixed, assuming the palm
to be a rigid part of the hand. The CMCs are also often
referred to as trapeziometacarpal joints (TM). The fingers
were modeled as serial kinematic chains, attached to the palm
at the metacarpophalangeal joints (MCPs). Interphalangeal
joint(IP), distal interphalangeal joints (DIP) and proximal
interphalangeal joints (PIP) have one DoF for flexion and
extension. All MCPs joints have two DoFs, one for flexion
and extension and one for abduction and adduction. The CMC
joint of the thumb is modeled as a saddle joint. Several variants
of this model exist in the literature (see [12], [13]).

The model is organized hierarchically and consists of fixed
links and joints. The structure is tree-like with the wrist as root.
The position of the wrist is aligned to the origin of the hand
model reference frame. Every link connected to the wrist is
described by a vector in a local reference frame. This scheme
is used recursively to describe the links in lower levels of
the hierarchical structure in their local coordinate system. The
origin of the hand model is aligned in the global reference
frame by the pose estimation of the wristband.

The hand model which we use in the presented framework
is shown in Fig. 2. We have added two modifications to the
basic model to improve the representation of real human hand
kinematics. The first modification affects the modeling of the
thumb’s CMC joint. Following [13], the first metacarpal of the
thumb performs a constrained rotation around a third orthog-
onal axis in the CMC joint, which contrasts the CMCs joint



Fig. 2. The hand model for haptic exploration by a human operator with a
data glove.

model as a two DoF saddle joint. For reasons of simplicity we
model this joint as a three DoF joint.

The second modification is to overcome the inadequate
representation of the palm as a rigid body. As we want to
incorporate the distal phalanges of the ring and little finger
in the exploration process, we have extended the model by
adding one DoF at the CMCs of these fingers respectively. By
doing this the ability of the palm is reflected to fold and curve,
when the little finger is moved towards the thumb across the
palms inner side [14]. It is important to model this behavior
as a human operator will occasionally utilize these types of
movement when touching an object with the whole hand.

The resulting hand model consists of 26 DoFs. The four
fingers have 4 DoFs each at the DIP, 4 DoFs at the PIP and
8 DoFs at the MCPs. The thumb is modeled with 1 DOF
at its IP, its MCP is modeled with 2 DoFs and its CMC, as
mentioned before, with a 3 DoF joint. Additionally we model
the palm with 2 DoFs representing the CMCs of the little and
ring fingers and add 2 DoFs for the wrist movement.

We have used the Open InventorTM1 standard for construct-
ing the hand model. This 3D modeling package allows the
implementation of local reference frames as described before
in a transparent way.

B. Wrist tracking

As mentioned earlier, the absolute position and the ori-
entation of the data glove are determined using vision. In
order to track the data glove in a robust manner, we use a
marker wristband which is attached to the wrist of the subject
wearing the data glove. The wristband color is yellow in the
background, with twelve red squared markers and one green
squared marker overlayed . The red markers are distributed
along two circles in an alternating manner to improve the
stability of the tracker. The green marker is required to register
the wristbands coordinate system. During tactile exploration,
the wristband is tracked with a calibrated stereo camera setup.

1http://oss.sgi.com/projects/inventor/

Fig. 3. The wrist band used for pose estimation of the data glove and
segmentation results of the HSV segmentation for the colors yellow, green,
and red.

The cameras generate color images with 640 × 480 pixels
resolution.

1) Preprocessing: The relevant markers are identified by
color segmentation performed in the current scene. We use
segmentation based on the hue saturation value (HSV) color
model. For each of the colors yellow, red, and green we specify
the corresponding H value, a tolerance in the H channel, and
valid ranges for the S and V channels. Points within the
specified ranges are marked in the corresponding segmentation
masks. Fig. 3 shows the segmentation results for all three
colors.

2) Initialization: Initially, the position and rotation of the
wrist band is unknown. In this case the system will locate
the wristband in the current input images. Once the pose in
the current frame has been calculated, it can be utilized as
input for the tracking algorithm. In order to accomplish the
initialization, an algorithm is required which determines the
wristband pose without any prior knowledge.

(a) Geometry in the plane (b) Coordinate system

Fig. 4. Calculations in the plane of the three markers used for initialization,
and the coordinate system after initialization.

In order to increase the robustness of the initialization
process only red and green markers inside yellow areas are
accepted. This step is performed for left and right image
separately. For all accepted markers the 3D position is cal-
culated by identifying corresponding markers in the left and
right image and recovering the 3D information using the
camera calibration. The epipolar line in the right image for



each marker in the left image is determined using the camera
parameters from the offline calibration of the left and the right
camera. For each marker from the left image the corresponding
marker in the right image, which has the same color and
minimal distance to the epipolar line, is determined. The 2D
centroids of both markers are used to calculate the 3D position
of the marker using the camera calibration.

During initialization, the 3D positions of the green marker
p2 and the second and third closest red markers p1,p3 are
calculated (see Fig. 4(a)). Since these markers lie in the same
plane, the plane normal can be calculated:

d1 = p1 − p2 (1)
d2 = p3 − p2 (2)
n = d1 × d2 (3)

Once the plane normal is determined, the center of the circle
described by the three considered markers can be calculated
for both pairs of markers (p1,p2) and (p2,p3). The radius r
of the wristband is known, which allows to perform calcula-
tions for both pairs separately to retrieve two hypotheses for
the center. For both distances d1,d2 the following calculations
are performed:

l =
√
|d1|2 + r2 (4)

v =
d1 × n
|d1 × n|

∗ l (5)

m =
p1 + p2

2
+ v (6)

where m denotes the center of the circle. Figure 4(a) shows
the geometry in the plane spanned by the three considered
markers. The above calculations are performed for both point
pairs, which results in two centers m1 and m2. We use
the mean value of both centers, if the difference is below
a threshold, otherwise the initialization will return without
success.

The coordinate system deployed in the initialization and
tracking phase is shown in Fig. 4(b). The x-axis (denoted in
red) can be derived from plane normal n and center m. The
y-axis (denoted in green) is calculated from the difference of
the green marker p2 and the center m. The z-axis is calculated
with the cross product of x- and y-axis.

3) Tracking: After initialization, the wristband is tracked
using a particle filter approach [15]. For the particle filter
we use a model of the wristband which comprises all 12
red markers. The configuration of the model is defined by
the 6D pose of the band. In each iteration of the particle
filter algorithm 100 new configurations are generated using
a gaussian distribution with variance σ2 = 0.45. Furthermore
the movement of the model is estimated by taking into account
the movement in the previous frames. In order to retrieve the
estimated 6D pose of the wrist band, the model is projected
into both camera images using the camera calibration. Only
markers are projected which are visible from the specific
camera. The visibility of a marker is calculated by the angle

between principal axis of the camera and normal on the marker
plane.

To validate each particle, a weighting function is used which
compares the segmentation mask for the red colour with the
model. Ideally, the model markers would cover all red pixels
situated inside yellow regions. In order to derive a weight
for each configuration, we count all red pixels inside yellow
regions f and all red pixels, which overlap with the projected
model m. The probability for each particle z and the current
images i can then be formulated in the following way:

p(z|i) ∝ exp

(
λ ∗ m

f

)
(7)

where λ defines the sector of the exponential function which
is used. After all particles have been weighted according to
equation 7, the 6D pose is estimated by the weighted sum of
all configurations.

III. EXPERIMENTS FOR OBJECT SHAPE RECOVERY

For evaluation of the system described above we have
performed related to the exploration by a human subject. The
experimental setup for both experiments is shown in Fig. 5.

Fig. 5. Experimental setup. Here a planar grid structure is subject to contour
following.

The region viewable by the stereo camera system defines
the workspace in which the objects to be explored have to
reside. The human operator wears a data glove with the wrist
marker attached and performs a contour following EP with
the tip of the index finger upon the object, i.e. the human
operator visually guides the contact sensor along the contours.
As mentioned earlier, the micro switch for contact sensing is
also located at the distal phalanx. During the EP the object is
fixed within the workspace. The human operator is allowed to
move hand and fingers arbitrarily within the workspace as long
as the marker bracelet are visually detected and localized. In
case the markers localization fails, the subject needs to move
the hand until it can be detected again.

A. 2D contour following in 3D space

As an initial experiment we chose to follow the visible
contours of a planar structure to verify whether the exploration
system delivers length and angle preserving point clouds.



These properties were inspected visually from the resulting
point cloud data. We calculated the PCA for all points in
the point cloud for quantitative determination of the plane
the planar structures are located in. Further, we determined
the standard deviation of the point locations in respect to this
plane.

As planar shapes we chose a circle, an isoceles triangle
and a 3 × 3 grid. The edge length of the bounding box for
each of these shapes was set to 16cm. The subject followed
the contours of a printout of the respective shape with the
index finger. The resulting point clouds for the triangle and
the grid shape are shown in Fig. 6. The figures show that the
contours of the test shapes are situated in different planes,
which originates from a change in the position of the camera
system between the two explorations. The duration of the
exploration process was 40 seconds for the circle and triangle
shapes and 2 minutes for the grid structure. Exploration speed
was mainly limited by the performance of the wrist tracking
algorithm.

Fig. 6. Resulting point clouds for tactile contour following of planar shapes
and corresponding fitted planes. Red points are situated below the plane, green
points above.

During circle contour following 245 contact points were
acquired, the standard deviation to the fitted plane was cal-
culated to σ = 5.37mm. For the triangle contour following

exploration 259 data points were acquired with σ = 6.02mm.
For the grid exploration finally, 1387 data points were acquired
with σ = 5.86mm.

B. Contour following EP of a 3D object

We further investigated the capability of the system to
explore 3D objects in the workspace. In this experiment the
subject had to track the edges of a rectangular box situated on a
table in the workspace. The EP delivered 1334 data points, the
resulting point cloud is depicted in Fig. 7. The box dimensions
were 150 × 50 × 120mm.

Fig. 7. Resulting point cloud for haptic contour following of a rectangular
box.

IV. CONCLUSION AND FUTURE WORK

In this paper we presented a framework for acquiring
volumetric object models via haptic exploration by contour
following. In a first evaluation results for haptic exploration
of 2D and 3D contours by a human subject wearing a data
glove in an unstructured environment are described.

It could be shown that the standard deviation of the acquired
point clouds for 2D contours towards the estimated plane
is within a constant and reasonable range. As next step we
will extend shape data acquisition to all fingers of the hand
by equipping all data love finger tips with a contact sensor,
which will accelerate the overall exploration process. We will
also address the evaluation of data acquired during contour
following of 3D objects by fitting superquadric functions to
the acquired point clouds [2], [3]. For complex objects this
will also require decomposition of complex 3D structures to
superquadric primitives.

Finally we will address the transfer of the haptic exploration
framework to our humanoid robot platform. The platform
already incorporates the same stereo vision system as used
for the experiments described in this paper. A tactile sensor
system for the robot hand has been developed that provides
more information over the binary switches deployed with
exploration by a human.

The focus of our work will further move to the development
of autonomous and robust visually guided haptic exploration



strategies for shape recovery by a humanoid robot with five-
finged hands.
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