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Abstract—In order for humanoid robots to enter human-
centered environments, it is indispensable to equip them with the
ability to recognize and classify objects in such an environment.
A promising way to acquire the object models necessary for
object manipulation appears in the supplement of the information
gathered by computer vision techniques with data from haptic
exploration. In this paper we present a framework for haptic
exploration which is intended for use with both, a five-finger
humanoid robot hand as well as with a human hand. We
describe experiments and results on haptic exploration and shape
estimation of 2D and 3D objects by the human hand. Volumetric
shape data is acquired by a human operator hand using a data
glove. The exploring human hand is located by a stereo camera
system, whereas the finger configuration is calculated from the
glove data.

I. INTRODUCTION

In humans, different types of haptic exploratory procedures
(EPs) for perceiving texture, weight, rigidity, contact, size and
the exact shape of a touched object are known [1]. These EPs
require the exploring agent to initiate contact with the object
and are therefore also referred to as active touch sensing.

In this paper, the contour following EP for shape recovery
is subject of interest. A volumetric object model composed
this way delivers a rather high amount of information for
discriminating between objects. Also, volumetric object data
is most suitable for supplementing and verifying geometric
information in multimodal object representations.

Several approaches have been proposed for acquiring object
shape information by robots through haptic exploration. An
early, comprising experimental setup was presented in [2],
where a dextrous robot hand was used in conjunction with
a manipulator arm. The hand probed contact by enclosing the
test objects at predefined positions and evaluating joint angle
and force readings. The resulting sparse point clouds were
fitted to superquadric models defined by a set of parameters
describing shape and pose.

In addition to the contact locations, the contact normal
information gathered during haptic exploration was used in [3].
Instead of a superquadric model here a polyhedral model
was chosen as volumetric object representation. For object
recognition the Euclidian distances of the polyhedral surface
points to the borders of a surrounding cubic workspace box
were measured at equidistant intervals and matched to those

of synthetic models. This approach was evaluated only in
simulation.

The basic kinematics of contact and its application in
contour following are presented thoroughly in [4]. Moreover,
several procedures for haptic exploration of object features
have been investigated in [5], [6]. Other approaches in active
contact sensing concentrate on the detection of local surface
features [7].

In our approach, a framework has been developed that
allows haptic exploration of unknown objects for recovery of
the exact global shape using different types of manipulators
equipped with contact sensing devices. This separates our
work from approaches involving model based pose estimation
of known objects as in [8].

As we are interested to integrate the framework as basis for
haptic exploration in our humanoid robot system [9] which
is equipped with two five-finger human-like and human-sized
hands, we focus on the application of exploring with five-
finger hands. In particular, the developed framework allows us
to use the human hand of an operator as exploring manipulator
by deploying a data glove with attached tactile sensors. This
gives us the opportunity to already investigate the EPs of
interest until the humanoid robot hand is fully integrated into
our robot. It also provides rich possibilities for immediate
comparison of haptic exploration results by a human versus a
humanoid robot hand.

Our aim is to establish a robust exploratory process for 3D
shape reconstruction and modeling which can be performed in
an unstructured environment, while only providing observabil-
ity of the hand pose, the finger configuration and the contact
information. Currently we are limited by the constraint that
the object being explored must remain in a fixed pose.

As modeling primitive we chose an extended superquadric
function as in [2] which can represent a variety of cubical and
spherical geometries. In the context of grasp planning this type
of representation has just recently been investigated for model-
ing physical objects by superquadric decomposition [10]. Yet,
in this paper we only address modeling of basic superquadric
shapes. Also, we can not give results related to non-convex
objects at this stage of our work, as those are not reflected
by the chosen model, although the exploration process itself
is not limited to convex objects.

This paper is organized as follows. In the next section



the relevant details and components of our system for haptic
exploration focusing on object shape recovery are described.
This includes a description of the human hand model and
visual tracking of the operator’s hand. In Section III we present
experiments on haptic exploration of 2D and 3D real world
objects. Finally we give a conclusion and an outlook on our
future work in SectionIV.

II. SYSTEM DESCRIPTION

Figure 1 gives a system overview with the components
involved in acquisition of contact points during contour fol-
lowing EP.

Fig. 1. System for acquisition of object shape data from haptic exploration
using a human or a humanoid robot hand as exploring manipulator.

During haptic exploration with the human hand, the subject
wears a data glove that serves as an input device for calculating
the joint angle configuration of the hand. The data glove we
use is equipped with binary micro switches at the distal pha-
langes. When touching an object, the switches are actuated as
local contact force exceeds a given threshold. During actuation
the clicking of the switch also provides the operator with a
mechanical sensation, that helps to control the contact pressure
during exploration. The data glove is made of stretch fabric
and uses 23 resistive bend sensors that provide measurement
data of all finger joint angle positions and the orientation of
the palm.

Before starting exploration the operator needs to calibrate
the data glove sensors with the forward kinematics of the
underlying hand model. Subject to calibration are abduc-
tion/adduction and flexion/extension of all fingers, curvature
of the palm and the thumb motion.

A linear relation is used for projecting glove sensor readings
to joint angles. Calibration is accomplished by engaging posi-
tions which result in minimum and maximum sensor response
in a separate calibration procedure.

Wrist position and orientation are determined visually in the
reference frame of the camera coordinate system as described
in Section II-B. During exploration the subject visually guides
the finger tips following desired paths. When the micro switch

is actuated by touch, the current location of the sensor in the
global reference frame is registered as a point in the 3D object
point cloud. The sensor position is calculated using the forward
kinematics of the hand model as described in the following
section.

For exploration with our humanoid robot platform ARMAR-
III we may later use a model for the forward kinematics of the
robot hand as presented in [11]. The robot is equipped with
an advanced version of this hand with joint angle encoders
attached to all controllable degrees of freedom (DoF) and
tactile sensors at the fingertips.

The data acquired as 3D point coordinates in the haptic
point cloud set is finally used for performing a superquadric
model estimation.

A. Human hand model

The forward kinematics of the human hand must be modeled
accurately to transform the coordinates of the tactile sensor
locations gathered from the data glove sensor readings to a
global reference frame in which the resulting 3D contact point
cloud is accumulated. Furthermore, the model is required to
cover the entire common configuration space of the human
hand and the data glove, so that the human operator is
preferably not restricted in the choice of hand movements that
can be projected to the model.

A complex hand model deploying 27 DoFs was introduced
in [12] and used in several studies requiring exact models
([13], [14]) for hand pose estimation from sensor input.
The Carpometacarpals joints (CMC) were fixed, assuming
the palm to be a rigid part of the hand. The fingers were
modeled as serial kinematic chains, attached to the palm
at the metacarpophalangeal joints (MCPs). Interphalangeal
joint (IP), distal interphalangeal joints (DIP) and proximal
interphalangeal joints (PIP) have one DoF for flexion and
extension. All MCPs joints have two DoFs, one for flexion
and extension and one for abduction and adduction. The CMC
joint of the thumb is modeled as a saddle joint. Several variants
of this model exist in literature (see [15], [16]).

Fig. 2. The used hand model for haptic exploration by a human operator
wearing a data glove.



The hand model we use in the presented framework is
shown in Fig. 2. We have added two modifications to the
basic model to improve the representation of real human hand
kinematics. The first modification affects the modeling of the
thumb’s CMC joint. Following [16], the first metacarpal of the
thumb performs a constrained rotation around a third orthog-
onal axis in the CMC joint, which contrasts the CMCs joint
model as a two DoF saddle joint. For reasons of simplicity we
model this joint as a three DoF joint.

The second modification is to overcome the inadequate
representation of the palm as a rigid body. As we want to
incorporate the distal phalanges of the ring and little finger
in the exploration process, we have extended the model by
adding one DoF at the CMCs of these fingers respectively. By
doing this the ability of the palm is reflected to fold and curve,
when the little finger is moved towards the thumb across the
palms inner side [17]. It is important to model this behavior
as a human operator will occasionally utilize these types of
movement when touching an object with the whole hand.

The resulting hand model consists of 26 DoFs. The four
fingers have 4 DoFs each at the DIP, 4 DoFs at the PIP and
8 DoFs at the MCPs. The thumb is modeled with 1 DOF
at its IP, its MCP is modeled with 2 DoFs and its CMC, as
mentioned before, with a 3 DoF joint. Additionally we model
the palm with 2 DoFs representing the CMCs of the little and
ring fingers and add 2 DoFs for the wrist movement.

We have used the Open InventorTM1 standard for construct-
ing the hand model. This 3D modeling package allows the
implementation of local reference frames as described before
in a transparent way.

B. Wrist tracking

As mentioned earlier, the absolute position and the orien-
tation of the data glove are determined using vision. In order
to track the data glove in a robust manner, we use a marker
bracelet which is attached to the wrist of the subject wearing
the data glove and is tracked using a stereo camera system.
Figure 3 shows the marker bracelet used for our experiments.
The bracelet comprises twelve red markers for tracking and
one green marker for initialization. All markers are printed
on yellow background. The wrist localization consists of two
phases. In the initialization phase, the pose of the wrist is
estimated without the knowledge of past poses. Once an initial
pose has been calculated, a particle filter approach is used to
track the pose of the wrist.

For the initialization, the relevant markers are identified by
HSV color segmentation performed in the current scene. Only
green and red markers inside yellow areas are considered
for color segmentation. With the calibration of the stereo
camera system, the 3D coordinates of the green marker and
the second and third closest red markers are calculated. Since
these markers lie all in the same plane, the plane normal
can be calculated from this information. Given the radius of
the bracelet, the center of the circle described by the three

1http://oss.sgi.com/projects/inventor/

Fig. 3. Bracelet and coordinate system.

considered markers may be calculated. The x-axis of the
coordinate system (denoted red) can be derived from plane
normal and center. The y-axis (denoted green) is calculated
from the difference of the green marker and the center. The
z-axis is calculated as the cross product of x- and y-axis.

After initialization, the bracelet is tracked using a particle
filter [18] based on a model of the bracelet comprising all
12 red markers. The configuration of the model is defined
by the 6D pose of the band. In each iteration of the particle
filter algorithm 100 new configurations are generated using
a gaussian distribution with variance σ2 = 0.45. Furthermore
the movement of the model is estimated by taking into account
the movement in the previous frame. In order to retrieve the
estimated 6D pose of the wrist band, the visible part of the
model is projected into both camera images using the camera
calibration. To validate each particle, a weighting function
is used which compares the segmentation mask for the red
color with the model. In order to derive a weighting function
for each configuration, we count all red pixels inside yellow
regions f and all red pixels, which overlap with the projected
model m. The probability for each particle z and the current
images i can then be formulated in the following way:

p(z|i) ∝ exp
(
λ ∗ m

f

)
where λ defines the sector of the exponential function which
is used. After all particles have been weighted according to
this equation the 6D pose is estimated by the weighted sum
of all configurations.

C. Superquadric fitting for shape estimation

The concept of superquadrics has been introduced in [19]
as a family of parametric 3D shapes, among which the
superellipsoid has become the most popular one and therefore
is often termed as superquadric, a convention we will preserve
here.

A superquadric centered in the origin and with its axes
aligned to the x, y, z coordinate axes can be described with
the following parametric equation

χ(η, ω) =

a1 cosε1(η) cosε2(ω)
a2 cosε1(η) sinε2(ω)

a3 sinε1(η)

 .



The parameters a1, a2, a3 describe the extent of the su-
perquadric along each axis. The exponents ε1, ε2 ε [0..2]
produce a variety of convex shapes and describe the shaping
characteristics from cubic to round in x and y directions.
This way different 3D primitive shapes can be modeled, e.g.
boxes (ε1, ε2 ≈ 0), cylinders (ε1 = 1, ε2 ≈ 0) and ellipsoids
(ε2 = 1).

To locate the superquadric arbitrarily in space, we further
introduce a rotational matrix R and a translation vector x0,
which add 6 more parameters to our model.

As superellipsoids are restricted to symmetric shapes only,
we also add deformation parameters {tx, ty ε [−1..1]} for
modeling tapering in z direction as described in [20]. This
enables our model to also represent wedge resembling shapes.
Applying a scaled tapering deformation function

Dt(x, y, z) =

tx z
a3

+ 1
ty

z
a3

+ 1
1

xy
z


we finally get the model function

m = RDt(χ(η, ω)) + x0 .

To estimate the 11 parameters of our superquadric model
from the 3D contact point data we use the Levenberg-
Marquardt non-linear least-squares algorithm [21] to minimize
the radial Eucledian distance d between the data points and
the superquadric surface

d = ‖x‖
(

1− 1
F (x)

)
.

as proposed in [22]. Here, F (x) is the inside-outside func-
tion of the superquadric, which has a value of 1 for points
x = (x, y, z)> on the surface of the superquadric, while points
inside result in F < 1 and points outside result in F > 1.

III. EXPERIMENTS FOR OBJECT SHAPE RECOVERY

For evaluation of the system described above we have
performed experiments related to the exploration by a human
subject. The experimental setup hereby is shown in Fig. 4.

The region viewable by the stereo camera system defines
the workspace in which the objects to be explored have to

Fig. 4. Experimental setup. Here a planar grid structure is subject to contour
following.

(a) Triangle contour (b) Grid structure contour

Fig. 5. Resulting point clouds for tactile contour following of planar shapes
and corresponding fitted planes. Red points are situated below the plane, green
points above.

reside. The human operator wears a data glove with the wrist
marker attached and performs a contour following EP with
the tip of the index finger upon the object, i.e. the human
operator visually guides the contact sensor along the contours.
As mentioned earlier, the micro switch for contact sensing is
also located at the distal phalanx. During the EP the object is
fixed within the workspace. The human operator is allowed to
move hand and fingers arbitrarily within the workspace as long
as the marker bracelet may be visually detected and localized.
In case the marker localization fails, the subject needs to move
the hand until it can be detected again.

A. 2D contour following in 3D space

As an initial experiment we chose to follow the visible
contours of a planar structure to verify whether the exploration
system delivers length and angle preserving point clouds.
These properties were inspected visually from the resulting
point cloud data. We calculated the PCA for all points in the
point cloud for approximation of the plane the structures are
located in. Further, we determined the standard deviation of
the point locations in respect to this plane.

As planar shapes we chose a circle, an isoceles triangle and
a 3 × 3 grid. The edge length of the bounding box for each
of these shapes was set to 160mm. The subject followed the
contours of a printout of the respective shape with the index
finger. Resulting point clouds for triangle and grid contours are
shown in Fig. 5. The figures show that the contours of the test
shapes are situated in different planes, which originates from
a change in the position of the camera system between the
two explorations. The duration of the exploration process was
40 seconds for the circle and triangle shapes and 2 minutes
for the grid structure. Exploration speed was mainly limited
by the performance of the wrist tracking algorithm.

During circle contour following 245 contact points were
acquired, the standard deviation to the fitted plane was cal-
culated to σ = 5.37mm. For the triangle contour following
exploration 259 data points were acquired with σ = 6.02mm.
For the grid exploration finally, 1387 data points were acquired
with σ = 5.86mm.

B. Edge tracking of a 3D object

In this experiment the subject had to follow the edges of
a rectangular box situated on a table in the workspace. The
exploration procedure delivered 1334 data points, the resulting



Fig. 6. Resulting point cloud for haptic contour following of a rectangular
box.

point cloud is depicted in Fig. 6. The box dimensions were
150×50×120mm and therefore in the range of the dimension
of the human hand itself.

It is not possible to directly fit exploration data to a
superellipsoid which comprises only points from the edges of
an object as the data is ambiguous in describing the adjacent
surfaces without having additional surface normal information.
Yet, we wanted to proof the systems capability to generate
contiguous 3D point clouds of real world objects.

C. Arbitrary touch exploration and superquadric fitting of a
3D object

In a further experiment the exploring subject acquired con-
tact coordinate information by arbitrarily touching all reach-
able surfaces of the objects while no preference was given to
the edges. For exploration a different box and an upside-down
placed salad bowl were chosen. As all fingers were involved
the exploration process could be performed within less than
a minute while acquiring still enough data points. During the
exploration it was considered not to acquire too many data
points as this significantly extends the amount of calculation
time for the superquadric estimate. From the acquired data
approximating superquadric representations were successfully
estimated, as shown in figure 7.

The estimation algorithm could also handle incomplete
surface point data as in case of the box, where it was not
possible to acquire point data from the bottom side on which
it was situated. The acquired data set comprised 176 points.

For the salad bowl the resulting data set comprised 472
points. As the superquadric function involved naturally only
describes convex shapes the approximation of the salad bowl
was rendered in the figure only in the representative range
ω ε [−π..0], which describes one half of the superellipsoid.

In case of the explored objects the extension coefficients
a1, a2, a3 of the superquadric model were in good correspon-
dence to the dimensions of the real object.

It can be seen in the result plots, especially in figure 6 and
7, that the haptic point cloud exhibits basic noise and outliers

Fig. 7. Surface exploration data and superquadric approximation for a box
and a salad bowl.

in some regions. From these experiments we found several
reasons to affect the quality of the resulting point clouds:

1) The parametrization of our human hand model intro-
duces a static error which could be minimized by adapt-
ing the model to the data glove’s basic dimensions. Yet,
hands of different individuals lead to irregular stretching
of the glove fabric and occasionally to misalignment
between finger joints and strain gauge sensors. This
introduces a static model error which is not covered by
the calibration process. We decided not to address this
issue as our final goal is the operation of the system with
a humanoid robot hand, where these problems cease to
apply.

2) The measurement signals of the glove’s strain gauge
sensors are naturally afflicted with background noise
which limits the resolution of physical features. We also
expect this type of measurement noise for the joint angle
sensors of our robot hand.

3) Beside the above, the pose data from visual tracking is
superimposed by anisotropic interference as the estima-



tion of the wrists z-coordinate shows a significant higher
amount of noise level than for the x- and y-coordinates,
which is natural for stereo-camera systems. Also, some
noise arises in the pose estimation, as the bracelet still
has some clearance to move when worn by an individual.
Further, estimation uncertainty increases if only a low
number of markers can be detected in the scene, e.g. due
to lighting conditions. The latter problems will become
diminished when using a robot arm for exploration, as
we can attach the marker band in a stable position and
get additional pose information from joint angle sensors.
This can be used in conjunction with the visual tracking
system using data fusion.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework for acquiring and
estimating volumetric object models via haptic exploration
by contour following. In a first evaluation results for haptic
exploration of 2D and 3D shapes by a human subject wearing
a data glove in an unstructured environment were described.

It could be shown that the underlying human hand model
and the data acquisition process are sufficiently precise enough
to acquire contact position data when exploring the shape of
objects having the magnitude of dimension as the human hand
does, while the exploration process could be performed using
the modeled set of degrees of freedom of the human fingers.
Further we could demonstrate fitting the acquired contact data
to superquadric shapes.

As a next step we will address the transfer of the haptic
exploration framework to our humanoid robot platform. The
platform already incorporates the same stereo vision system
as used for the experiments described in this paper. A tactile
sensor system for the robot hand has been developed that
provides more information over the binary switches deployed
with exploration by a human.

Hence, the focus of our work will move to the development
of autonomous and robust visually guided haptic exploration
strategies for shape recovery by a humanoid robot with five-
finger hands.
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