IPSA - Inventor Physical Modelling API
for Dynamics Simulation in Manipulation

A. Bierbaum, T. Asfour and R. Dillmann
Institute of Computer Science and Engineering
University of Karlsruhe (TH)
Karlsruhe, Germany

{bierbaum, asfour,dillmann}@ira.uka.de

ABSTRACT

A. Introduction

When studying the dynamic, physical interaction of robots
with the environment a generic physics simulator becomes
most important when robot and environment exceed a certain
complexity. Investigation of current problems in robotics,
e.g. in multifingered manipulation or two-legged walking
requires simulations which reflect physical details of the real
robot system in a virtual scene. The development of suitable
control systems for complex manipulators or walking robots
in simulation may save a lot of time, otherwise spent for
operating the system, and prevents unintented damage on
a costly robot system. Further, the application and benefit
of using specific sensors may be investigated by physical
modelling of a robot system, e.g. when investigating the
ideal placement and required resolution of tactile sensors.
Finally, model-based simulation allows to distribute models
of expensive robot system among researchers, which means
saving costs directly. Dynamic simulations have attained
focus much earlier in other domains as in development
of automotive and space vehicles and for creating realistic
computer animations. Consequently, a lot of commercial
and non-commercial dynamic simulation frameworks have
evolved.

A reference multipurpose modelling and simulation system,
not only in robotics, is Matlab/Simulink [1]. By using addi-
tional extensions to Matlab/Simulink such as SimMechanics,
the VR Toolbox or The Robotics Toolbox [2] a lot of
mechanisms are provided for simulating robots, their control
systems and environmental dynamics. Yet, the assembly of a
detailed virtual simulation scene from these building blocks
is cumbersome and often takes a considerable portion of time
compared to the whole investigation period.

Also for the purpose of developing robot controllers in
simulation Microsoft has made its Microsoft Robotics Studio
(MSRS) available to the public [3]. This IDE provides a
comprehensive software framework aiming for rapid devel-
opment of robot control programs with unified interfaces and
deploys the PhysX physics engine by NVIDIA for simulation
of the virtual scene. Although MSRS appears quite powerful,
the construction of a complex scene is not intuitive and
requires different models for the physical and the visual

domain. Further, the usability of the framework is limited
to Microsoft operating systems.

A quite useful robot simulator for developing manipulation
and grasp planning algorithms was introduced with Grasplit!
in [4]. This software provides a robot library with several
robot hand models and a robot arm model. The simulator
may be invoked via an interactive Ul or via a TCP/IP
interface for external applications. For static grasp analysis
a collision detection function and consideration of friction
forces were integrated and used to compute grasp quality
measures. Later in [5] a dynamics simulator was added
for simulation and investigation of dynamic grasping tasks.
Specification of the physics model data such as joint types
and location or inertia matrices must be provided by the user
in addition to the visualization model. But by the authors
practical experience these specifications were hard to tune
to achieve a stable simulation behavior.

B. IPSA - Overview

Inventor Physics API (IPSA) is an extension of the Open
Inventor toolkit with physics objects using the stable and ma-
ture ODE library for simulating rigid body dynamics. IPSA
was originated at the Technical University of Braunschweig,
Germany in 2004 !. We reworked the initial version of IPSA
completely to achieve the goal of the originators, which is
combining the advantages of an object oriented framework
with a hierarchical scenegraph, local reference frames and
a rich file exchange format for easily constructing complex
3D physics scenes.

For 3D visualisation we make use of the Open Inventor
Toolkit, a system independent C++ class library which is
used in a range of scientific and engineering 3D visual-
ization systems 2. Open Inventor provides a fully object
oriented API achieving high performance by building on
top of OpenGL for rendering. The graphic instances in
Open Inventor are 3D Objects which are stored as nodes in
a hierarchical scenegraph. The transformation and various

'The original version of IPSA used an early release of ODE, but is
since then discontinued, see http://www.umi.cs.tu-bs.de/full/
education/practical/ss2004/vmp/ipsa/index.html .

2Qriginated by SGI [6], today the commonly used Open Inventor imple-
mentation is Coin3D, downloadable from www.coin3d.org .


http://www.umi.cs.tu-bs.de/full/education/practical/ss2004/vmp/ipsa/index.html
http://www.umi.cs.tu-bs.de/full/education/practical/ss2004/vmp/ipsa/index.html
www.coin3d.org

Physics Simulation

Open Dynamics Engine

Rendering 3D Visualization <
n
o IPSRV External
Oﬁs:‘fl Open Inventor 3D Toolkit ] Frontend Application
i Topip | (MATLAB, etc)
Scone Daabaso
G
Open \nveg‘t‘zv';l?“lar;temhange C++ API
Fig. 1. Software interrelationship between IPSA, IPSRYV, external libraries

and application.

appearance parameters of an object may be changed in
terms of node parameters. Objects can be inserted to or
removed from the scene at any time. It is worth to mention
that the hierarchical scenegraph concept inherently supports
the transparent specification of complex forward kinematics,
which is most important for robotics modelling. The toolkit
includes dynamic scene functions like object motion and
collision checking. An exchange fileformat for importing and
exporting a scene graph as a binary or ASCII datafile is
provided. The latter allows the specification of a 3D scene as
a textfile with a notation similar to XML. Beside the provided
classes, the Open Inventor toolkit is extendible with new
classes and may thus be customized for special applications
[7].

As indicated before, a lot of physics simulation systems have
been developed in recent time. A comprehensive overview
of publicly available physics engines can be found in [8].
Seven major physics simulation engines have been evaluated
here, comparing in particular the performance of the integra-
tor, friction modelling, constraint stability and the collision
detector. It was found that no engine performs best at all
tasks and thus determining a suitable engine for a specific
application is a complex decision for the developer.

For physics simulation we have chosen Open Dynamics En-
gine (ODE) [9], a freely available physics simulation library
written in the C++ programming language. It has become one
of the most favored open source physical simulation engines,
not only in robotics, as it provides a robust and precise inte-
grator, maintains stable constraints and good documentation.
ODE comes with different collision detection routines and
also supports the integration of external collission detectors
in the simulation loop. For constrained motion various types
of joints are provided. Although having a C++-API, ODE is
not an object oriented framework and does not support local
reference frames, so the development of complex virtual
scenes is not simplified. Also, ODE does not offer a file
exchange format for importing and exporting scene models.
Figure 1 shows the software structure and interrelations
between the different libraries involved in the framework.
The IPSA class extensions for Open inventor wrap the ODE
entities for specifying a physics world in an object oriented

way. For rendering, Open Inventor itself makes use of the
OpenGL library. The IPSA C++-API may be used to develop
a simulation application. Using this API we have created
IPSRV as a standalone physics simulator with a TCP/IP
interface for controlling and analyzing a simulation by an
external application. For most cases in robotics simulation
using IPSRV is the most convenient way to develop a
particular physics simulation, as only a virtual scene file in
the exchange file format must be provided. This scene file
may be edited easily by hand using the Open Inventor file
format syntax. We will describe both ways of using IPSA in
the following sections.

C. Using IPSA

We will present how to use the C++-API for integrating
IPSA in a custom simulation application. Further we will
show how the IPSRV physics simulator application may eas-
ily be used for controlling and analyzing a physics simulation
from Matlab/Simulink via a TCP/IP connection.

D. Physical modelling elements in IPSA

In this section we will present the modelling primitives
in IPSA, i.e. a physics world, physics bodies and joints.
Further we will show how to construct kinematic chains and
other elements in a virtual scene. An example of a virtual
scene is depicted in figure 2. A major advantage of the

Fig. 2. Example of a virtual scene in IPSA: manipulator arm with
anthropomorphic robot hand and objects.

hierarchical scene graph concept using local reference frames
is that description in terms of Denavit-Hartenberg-Parameters
is not required for specifiying serial link kinematic chains.
Rather, a kinematic chain is described as a set of bodies and
joints. Joints are specified by the type, which constrains the
degrees of freedom of a body. The joint anchor location may
be specified in the global or in any local reference frame
which makes modelling of a robot from data given by an
engineering draft very straight forward.



E. Implementing virtual actors and virtual sensors

For practical use of a physics simulation
involving robotics, virtual sensor feedback
is indispensable. We show how to access
force, torque, position and velocity sensing
data in the virtual scene from an external
client using the IPSRV physics simulator. A
visualization example is depicted in figure
3. Also, methods for actuation of joints and ~ Fig- 3. Finger

. . model with dedi-
bodies are described. cated tactile sen-

SOrs.

F. Case studies

In this section we will provide several case studies,
demonstrating the capabilities and ease of use with IPSA. In
particular we will demonstrate constructing a simple physics
scene and a several DoF manipulator arm with a robot hand
equipped with tactile sensors.

ACKNOWLEDGEMENT

The work described in this paper was conducted within
the EU Cognitive Systems project PACO-PLUS (FP6-2004-
IST-4-027657) funded by the European Commission.

REFERENCES

[1] The MathWorks, Inc., Website, The MathWorks - Matlab and Simulink
for Technical Computing, 2008, http://www.mathworks.com.

[2] PI Corke, “A robotics toolbox for matlab,” IEEE Robotics &
Automation Magazine, vol. 3, no. 1, pp. 24-32, 1996.

[3] S. Cherry, “Robots incorporated,” IEEE Spectrum, vol. 44, no. 8, pp.
24-29, 2007.

[4] Andrew T. Miller and Peter K. Allen, “Graspit!: A versatile simulator
for grasp analysis,” in Proceedings ASME International Mechanical
Engineering Congress & Exposition, Orlando, Nov. 2000, pp. 1251—
1258.

[5] A.T. Miller and H.I. Christensen, “Implementation of multi-rigid-
body dynamics within a robotic grasping simulator,” in Proc. IEEE
International Conference on Robotics and Automation ICRA °03, 2003,
vol. 2, pp. 2262-2268 vol.2.

[6] SGI, Open Inventor Standard, 2007,
http://oss.sgi.com/projects/inventor/.

[7] Josie Wernecke, The Inventor Toolmaker: Extending Open Inventor,
Release 2, Addison Wesley, 1994.

[8] Adrian Boeing and Thomas Bréunl, “Evaluation of real-time physics
simulation systems,” in GRAPHITE '07: Proceedings of the 5th inter-
national conference on Computer graphics and interactive techniques
in Australia and Southeast Asia, New York, NY, USA, 2007, pp. 281-
288, ACM.

[9] Russel Smith, Open Dynamics Engine (ODE), Release 0.9,
http://www.ode.org.


http://www.mathworks.com
http://oss.sgi.com/projects/inventor/
http://www.ode.org

	Introduction
	IPSA - Overview
	Using IPSA
	Physical modelling elements in IPSA
	Implementing virtual actors and virtual sensors
	Case studies
	References

