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Abstract— 3D shape reconstruction of objects from tactile
exploration data acquired by a multi-fingered robot hand is an
important skill for a humanoid robot system. Tactile exploration
data captured using current robot technology is naturally sparse
and noisy, therefore a satisfying shape estimate is difficult to
achieve. In this paper we describe a robust approach for 3D
shape recovery using superquadric functions, which makes use
of both contact location and normal information. We present
two quality measures and compare to other relevant estimation
techniques using representative synthetic contact data.

I. INTRODUCTION

Active touch exploration enables human not only to per-
ceive local physical object features as texture or rigidity but
also to sense the exact shape of an object. This sensual input
is a supplement to the information given by visual perception
and stabilizes our internal spatial representation of a real
world object. The integration of haptic sensing has become
an important issue in the field of humanoid robotics and
may be used to complement the pre-dominant sense of vision
in 3D shape reconstruction of unknown or partially known
objects.
A volumetric object model constructed from haptic explo-
ration data delivers a rather high amount of information for
discriminating between objects. Also, volumetric object data
is most suitable for supplementing and verifying geometric
information in multimodal object representations. The con-
cept of superquadrics has been introduced in [1] as a family
of parametric 3D shapes, among which the superellipsoid
has become the most popular one and is often termed
as superquadric, a convention we will preserve here. By
applying estimation techniques, basic 3D point clouds from
cubic or spheric bodies may be represented as superquadrics.
To represent more complex shapes, segmentation and decom-
position methods for point clouds have been presented, e.g.
in [2]. Only recently this algorithm has been applied in the
context of grasp planning for complex 3D objects in [3].
Several approaches have been proposed for acquiring and
modeling object shape information by robots through haptic
exploration. An early, comprising experimental setup was
presented in [4]. Here a dextrous robot hand probed contact
on test objects at predefined positions. The resulting sparse
point clouds were fitted to superquadric models. In addition
to the contact locations, the contact normal information was

used in [5], [6] to construct a polyhedral 3D model from
contact exploration data.
In [7] we have presented a framework for haptic exploration
for both, a human hand wearing a data glove with finger tip
contact sensors and a humanoid robot hand. The resulting 3D
point clouds were fitted to superquadric models. When using
only contact location data, the quality of the fit appeared
quite depending on the distribution of the acquired data
points. A comprehensive haptic exploration process was
required to collect a number of sample points which were
sufficient to give good correspondence between real world
object and estimate. In order to improve robustness and
reduce the number of required data points, we decided to
integrate available contact normal information and use an
enhanced estimation scheme.
Here, we present our results from investigation and eval-
uation of a hybrid estimation technique using a genetic
algorithm (GA) which was originally developed in the
context of range imaging. For applying the algorithm we
created representative synthetic data sets from a virtual haptic
exploration process, as it could be expected when using
tactile and proprioceptive sensors on a multi-fingered robot
hand. For comparison of the results we also developed
specific measures of quality. The development of a dexterous
exploration strategy itself is not part of this work. Yet, this
issue has received very limited amount in literature, some
preliminary work may be found in [8], [6].
This paper is organized as follows. In the next section the
relevant details and properties of superquadric functions are
described alon with applicable estimation techniques for
3D point clouds. In Section III we present the generation
of synthetic contact data from a virtual haptic exploration
procedure and define a measure of quality for evaluation of
the algorithms. Further, we show our results by comparing
the performance of standard and hybrid algorithms applied
to contact data with and without normal information. Finally
we give a conclusion and an outlook on our future work in
Section V.

II. SUPERQUADRIC ESTIMATION TECHNIQUES

A. Definition of Superquadrics

A superquadric centered in the origin and with its axes
aligned to the x, y, z coordinate axes can be described with



the following parametric equation

χ(η, ω) =

a1 cosε1(η) cosε2(ω)
a2 cosε1(η) sinε2(ω)

a3 sinε1(η)

 . (1)

The parameter vector a = (a1, a2, a3)T describes the
extent of the superquadric along each axis. The exponents ε1,
ε2 ε [0..2] produce a variety of convex shapes and describe
the shaping characteristics from cubic to round in x and y
directions. This way different 3D primitive shapes can be
modeled, e.g. boxes (ε1, ε2 ≈ 0), cylinders (ε1 = 1, ε2 ≈ 0)
and ellipsoids (ε1, ε2 = 1).

To locate the superquadric arbitrarily in space, we further
introduce a rotational matrix R and a translation x0, which
add 6 more parameters to our model.

As superellipsoids are restricted to symmetric shapes
only, we add deformation parameters {tx, ty ∈ [−1..1]}
for modeling tapering in z direction as described in [9].
This enables our model to also represent wedge resembling
shapes. Applying a scaled tapering deformation function

Dt(x, y, z) =

tx z
a3

+ 1
ty

z
a3

+ 1
1

xy
z

 (2)

we finally get the model function

x = RDt(χ(η, ω)) + x0 .

The normal vectors of the surface of a superquadric may
be computed via cross product as

n(η, ω) =
∂χ

∂η
× ∂χ

∂ω
. (3)

Applying any superquadric global deformation to the
normal vector results in

nd = det J J−1T n , (4)

where J is the Jacobian matrix of the deformation [10]. For
the final vectors we use the rotation matrix in global space

N = Rdet Jt J
−1T
t n , (5)

where Jt is a Jacobian matrix for tapering deformation
defined in eq. (2).

By rendering a superquadric according to eq. (1), we
emphasize regions exhibiting high curvature (fig. 1). For an
unbiased sample distribution we need to apply equidistant
rendering using spherical angles as introduced by Bardinet
[11],

χ′(η, ω) =

a1 ρ cos(η) cos(ω)
a2 ρ cos(η) sin(ω)

a3 ρ sin(η)

 , (6)

where

(a) Natural parametrization

(b) Uniform parametrization

Fig. 1. Superquadric parametrizations

ρ =
((
|cosω cos η|

2
ε2 + |sinω cos η|

2
ε2

) ε2
ε1

+ |sin(η)|
2

ε1

)−ε1
2

.

Applying (3) and (6) we may compute normal vectors
using uniform parametrization.

B. Superquadric estimation

To estimate superquadric parameters from a given 3D
point set with additional normal information we need to
define an error-of-fit (EOF) measure and search the global
minimum of this function in the valid parameter domain.
Search starts around an initial estimate χ(η, ω)E which is
computed as follows. The initial translation x0,E is calculated
as centroid of the dataset. The elements of the extension
parameter vector aE are set to the maximum extension along
each axis respectively. The rotational matrix RE is initialized
with the principal axes as eigenvectors of the covariance ma-
trix of the data set, see [9] for details. Curvature parameters
are initially set to ε1,E = ε2,E = 1, thus describing an
ellipsoid.

We use metrics based on radial Euclidian distance (fig.
2), combining distance from sample coordinates to the su-
perquadric surface and distance between given and estimated
surface normal vectors. For contact points we use a distance
metric Boult and Gross [12] suggested



Fig. 2. Coordinate and normal vectors for original primitive and estimate.

D
(1)
i = ‖pi‖

(
1− 1

F (pi)

)
, (7)

where F (pi) is the inside-outside function of the su-
perquadric [9]. For surface orientation vector distance we
compute

D
(2)
i =

∥∥∥∥ ni

‖ni‖
− n′i
‖n′i‖

∥∥∥∥2

(8)

for each input normal vector ni and corresponding surface
orientation n′i. The final EOF is defined as

D =
1
p

p∑
i=1

(∣∣∣D(1)
i

∣∣∣+ λσD
(2)
i

)2

(9)

for p contact points with normal information, where σ =
(a1 + a + a3)/3 is a normalizing factor adjusting the vector
distance to the size of the superquadric and λ is a weighting
factor for surface orientation in the final error function [13].

Many superquadric recovery approaches [9], [11] use
nonlinear least-squares minimization (NLLSM) techniques
to find parameters for best approximation of a point cloud
[14]. In general these methods are afflicted with the problem
of terminating in a local minimum in the parameter space
around the initial estimate. By adding a surface orientation
component to the EOF we increase the number of local
minima, also in the immediate neighbourhood of the global
minimum. Some studies used simulated annealing to over-
come the locality problem of the NLLSM [13], [15]. Also,
this method requires a good initial estimate to converge to
the optimum solution.

In case of sparse data the number of local minima in-
creases and even more scatters throughout parameter space.
The quality of the initial guess is not equally guaranteed. It
is often required to rotate and resize a considerable amount
from the intial estimate to approach the global minimum.
Working on sparse and noisy data as exhibited by contact
data from haptic exploration the estimation method has to
overcome flat and deep local minima. In our experiments
we used a genetic algorithm (GA) in a hybrid approach, first
introduced in [16], as a combination of GA with NLLSM.

C. Genetic Algorithms for superquadric estimation

A GA explores several regions of parameter space simul-
taneously. The iterative process evolves a population of pos-
sible solutions according to Darwinian theory of evolution.
A GA is characterized by

• an encoding of a possible solution, so called chromo-
some,

• a population pool of chromosomes,
• a fitness function for parent selection,
• and chromosome reproduction applying several genetic

operations.
The chromosomes of the actual population pool are evalu-

ated during each iteration step. The parents for reproduction
are randomly selected, prefering the individuals with highest
fitness. In a next step genetic operations are randomly applied
to parents to compute the population pool . The two most
common operations are mutation and crossover. Mutation
randomly changes a part of the chromosome while crossover
randomly combines elements of parents’ chromosomes.

For superquadric fitting we represent a vector of parame-
ters (a, ε, t, R, x0) by a chromosome. For computing fitness
we use the EOF function as defined in eq. (9).

A clear disadvantage in using GA is the low convergence
speed. Once the algorithm finds the parameter space contain-
ing the global minimum, the next goal is to converge to the
global minimum within this space. Aborting GA at this state
and using the intermediate solution as the initial estimate
of the NLLSM algorithm provides faster convergence. This
combination is called a hybrid approach.
The major difficulty is to find an abortion criterium of the
GA part which trades off between accuracy and convergence
speed. In general, GA may be aborted at a small residual
value, on time expiration or after a defined generation count
has passed.

III. ALGORITHM EVALUATION

A. Generation of Synthetic Data
To abstract from physical sensor data we investigated the

performance of different EOF functions and minimization
algorithms applied to synthetic haptic exploration data. We
use convex primitives as objects which may be represented
as single tapered superquadrics. Other approaches [11], [12],
[13], [16], [9], [15] used multiview range images as input
data for the estimator.

To simulate realistic input data from haptic exploration
with a multi-fingered robot hand we generate sparse contact
data patterns of two types:

1) A stripe is represented as a single line in the (η, ω)
space, which is initially rendered for n points. These
points in the (η, ω) space are then rendered equidistant
to the contact points in the Euclidian space and the cor-
responding normal vectors (eq. 6). A stripe represents
the exploration path of a single finger tip of a robot
hand as it results from a contour following task, see
also [17].

2) A randomized patch is represented by a rectangular
region in the (η, ω) space. We randomly select n points
from this region and perform uniform rendering to
the contact points with corresponding normal vectors.
Such a randomly sampled region represents data from a
locally bounded exploration process, as it results from
a local contact of a finger tip sensor on the object.



(a) Unbiased contact data (b) Contact data with 10% gaussian
noise

Fig. 3. Examples of the exploration patterns stripe and patch with point
and normal information.

For modelling the contact data from a haptic exploration
procedure we choose a combination of different data patches
and stripes at distinct locations and along different tra-
jectories and merge these to an exploration dataset. The
datasets are created manually with the goal to emulate real
contact traces of the finger tips of an exploring dexterous
robot hand equipped with finger tip tactile sensors. The
composition process is empirically, following oberservations
of data patterns as seen with our exploration framework
[7]. Natural haptic exploration is always of a local nature
therefore we kept the composed data sparse, as it might
result from a short exploration procedure following an initial
contact. We do not consider temporal characteristics, i.e.
incremental emergence of the data, but create a static data
set. Consistently, we assume the pose of the shape to be
fixed and the object to be stationary throughout generation
of exploration patterns.
To emulate measurement inaccuracy we finally add Gaussian
noise to both contact point coordinates and normal vector
components (fig. 3).

B. Quality measures

Evaluation of different algorithms requires comparative
metrics for estimated superquadrics. Direct comparison of
superquadric parameters with those of the original primitive
is not representative due to ambiguities in the superquadric
representation [9]. The application of weighting factors for
different parameters in the final rating is complex due to
different units of measure. Using the final EOF as metric is
also vague due to random noise.

We use the following two metrics for algorithm evaluation:

• To determine the minimization quality of the algorithm
we define

ϑ =
D(Se)

D(Ss) + 1
, (10)

where D is the EOF defined in (9) and Se, Ss are
the estimated and synthetic superquadrics (for contact
points only we can define ϑ(1) over D(1) ). Presuming
that the global minimum EOF is less than D(Ss),
ϑ > 1 means that the parameters of the estimated
superquadric do not minimize the EOF function to the
optimum. Further, ϑ � 1 implies that the synthetic
object is far from the global minimum described by

the 3D point set, so the input data is not representative.
In this case we need more contact points with normal
information for sufficient estimation of shape and pose
parameters.

• The second quality measure is based on the vol-
ume of the intersection of estimated and synthetic
superquadrics. We define α-error or false positives as

α =
V ({p|p ∈ Se ∧ p /∈ Ss})

V (Se)
, (11)

and β-error or false negatives as

β =
V ({p|p ∈ Ss ∧ p /∈ Se})

V (Ss)
. (12)

V represents the volume of a superquadric or part of
a superquadric. The weighting factor of the α- and β-
errors in the final evaluation is scenario specific. We
used ε = α + β as the second quality measure in our
experiments.

IV. SIMULATION RESULTS

We evaluated four schemes for the estimation of su-
perquadric functions from synthetic exploration data:

1) Contact location information with NLLSM (LS).
2) Contact location information with hybrid minimization

(H).
3) Contact location and normal information with NLLSM

(nLS).
4) Contact location and normal information with hybrid

minimization (nH).
In all experiments we used λ = 0.5 in eq. (9). The standard

deviation σN of the generated noise was set to 10% of the
nominal value.
Results are shown in figure 4. The column pictures show (a)
original primitive and data samples, (b) LS fit, (c) H fit, (d)
nLS fit, (e) nH fit. The resulting estimated superquadrics are
coloured orange and superimposed to the original primitive
in blue.
The synthetic data sets comprised 150 contact points and
corresponding normal vectors for each body investigated.
The locations for patch and stripe contact data patterns were
selected empirically in a way that reconstruction with the
given superquadric model must be distinct. For prismatic
shapes we added data from patch exploration at a corner
region of the respective object, covering all adjacent faces.
This way the tapering function Dt is disambiguated. Further,
we added one or more stripe patterns crossing edges and
adjacent faces so that extension a and shape parameters ε1,ε2
may be estimated. As the ellipsoid body does not have edges
we applied only patch contact patterns here, like they may
result from contact probing with thumb and index. In general,
the applied contact pattern sets aimed to imitate simple, short
term exploratory procedures of a multi-fingered hand with
few reconfiguration steps. E.g. one could imagine a thumb
touching the cubes corner while moving three fingers in
parallel across its side face.



(a) (b) (c) (d) (e)

Fig. 4. Fitting results from top to bottom: Tapered Box, Cube, Cylinder, Ellipsoid. Columns show (a) original primitive and data samples, (b) LS fit, (c)
H fit, (d) nLS fit, (e) nH fit. Resulting fits are coloured orange and superimposed to the original primitive (blue).

A question which may arise is how the quality of the fit with
the method proposed would change with different synthetic
data sets as input. Basically, the data must support the shape
features in a distinct way to achieve non-ambiguous results,
which is a characteristic we provided in case of our synthetic
exploratio data, as stated above. Otherwise the fitting process
may result in an estimate not corresponding to the true shape.
For an autonomous system, the optimal selection of contact
regions should be assigned to the exploration strategy, which
is not part of this work.
By sight, our hybrid approach using both contact location
and normal information provides the best shape estimates for
the data. It can be said that the inclusion of contact normal
data seems to improve the results for the mere LS based
method, but not to the same degree as with the hybrid variant.
This is related to GA’s capability of surmounting local
minima while searching the global minimum. Note that due
to our implementation NLLSM performs an average of 20
evaluations for descending per iteration step, while the hybrid
method requires 100 evaluations per iteration to calculate
the next generation. The evaluation count was limited to the
same number for all schemes to allow comparison. In our
implementation running on a Pentium IV (3.0 GHz, 1Gb
RAM) processing time was 500 to 1000 evaluations per
second, depending on load.
Finally we investigated the performance of the algorithms
with different time limitations and noise levels as shown in
figure 5. In case of the hybrid approach, results from 10

estimation runs were averaged, as the GA method introduces
random operations. For comparing quality vs. n a cylinder
primitive was subject to estimation, while for quality vs. σN

a cube primitive was chosen. Note that exploration sample
data noise is regenerated randomly each estimation run.
As can be seen, the volume coverage measure ε indicates
slow and unstable characteristics for NLLSM with increasing
number of evaluations, while the hybrid algorithms converge
more stable and towards adequate minimal values for both
criteria. With increasing noise level the inclusion of contact
normal data stabilizes the estimation results for both LS and
hybrid estimation, but here also the hybrid approach shows
to be superior in terms of robustness and quality of fit.

V. CONCLUSIONS

In this paper we presented a method for estimating
superquadric shape representations from sparse and noisy
contact normal and location data as acquired by haptic
exploration with multi-fingered robot hands using finger tip
tactile sensors. By considering the contact normal informa-
tion and applying a hybrid minimization method utilizing a
genetic algorithm, we could recover superquadric primitives
in a robust and stable manner from synthetic exploration
data. We developed two meaningful measures of quality
and compared our method with the standard least-squares
estimation technique and with a hybrid approach involving
contact point locations only.
Concerning our evaluation we state that more realistic ex-



(a) ε-error % vs. n (b) ϑ, ϑ(1) in % vs. n (c) ε-error in % vs. σN (d) ϑ, ϑ(1) vs. % σN

Fig. 5. Quality vs. evaluation count n and standard deviation σN of the noise level. The latter is plotted in logarithmic scaling.

ploration data could be created by using a more detailed
simulation of the exploration process, which is work in
progress. This also involves development of autonomous
and robust haptic exploration strategies for the robot hand.
Yet, we feel the synthetic exploration data used in the work
presented is more detailed than in previous studies [8], [6].
A basic disadvantage in using a GA for estimation is the
higher amount of computing time compared to NLLSM, but
in our view the superior performance of this method justifies
its application here. Further, we expect this to become a
minor problem when transferring the method to hardware
suited for parallel computing.
As a next step we will move to the acquisition of real
world exploration data by our humanoid robot, which has
two five-finger hands equipped with tactile sensors [18],
and investigate the performance of the developed estimation
technique with this data. For haptic exploration of complex
objects we further plan to integrate decomposition methods
in our estimation scheme which provide the separation of
complex 3D structures into superquadric primitives.
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