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Abstract—Haptic exploration of unknown objects is of great
importance for acquiring multi-modal object representations,
which enable a humanoid robot to autonomously execute grasp-
ing and manipulation tasks. In this paper we present a tactile
exploration strategy to guide an anthropomorphic five-finger
hand along the surface of previously unknown objects and build
a 3D object representation based on acquired tactile point clouds.
The proposed strategy makes use of the dynamic potential field
approach suggested in the context of mobile robot navigation.
To demonstrate the capabilities of this strategy, we conduct
experiments in a detailed physics simulation using a model of
the five-finger hand. Exploration results of several test objects
are given.

I. INTRODUCTION

Active touch exploration enables human not only to perceive
local physical object features as texture or rigidity but also to
sense the exact shape of an object.

The role of exploration is of utmost importance for an
intelligent agent in order to learn control strategies. One can
distinguish between direct and indirect exploration schemes,
where undirected schemes are based on randomness and
directed schemes try to optimize the gain in knowledge
following each exploration step. A lot of such exploration
techniques were developed in the context of mobile robot
navigation, where the purposes are mapping and navigating
in unknown environments while avoiding obstacles, see e.g.
[1]. In the context of tactile exploration a task is to increase
information of the shape of an object or more general, a part
of the environment. For robots and especially for humanoid
robots, tactile perception is supplemental to the information
given by visual perception and may directly be exploited to
augment and stabilize a spatial representation of real world
objects. In the following we will give an overview on the
state of the art achieved in robot tactile exploration and related
approaches.
A directed tactile exploration strategy on the basis of a
polyhedral object model was presented in [2]. The strategy
is based on primitive movement of a single sensor, where
a move becomes selected when it reduces the number of
model interpretations from the exploration data by a maxi-
mum amount. The approach depends on sensing polyhedral
features such as edges and is therefore not suitable for smooth
objects. In [3] different single finger exploration strategies are

presented, where a sensor movement direction is determined
which provides a balance between the maximum decrease in
global model uncertainty and the traveling distance of the
sensor. Then the target region for starting the exploration
process is approached using this direction vector. The results
of a tactile exploration experiment for shape recovery using
a robot finger are described in [4]. Here, a surface tracking
strategy maintaining constant contact force was applied. The
direction of motion on the tangent plane of contact was
determined as the direction of maximum deviation between
contact normal measurement and a second order local surface
approximation. In the research area of dexterous manipulation
of unknown objects various approaches for grasping under
uncertainty have been presented. Especially to mention is the
grasp controller for a multifingered robot hand using contact
force feedback in [5]. Further, approaches for dexterous grasp
control using probabilistic modelling have been presented in
[6] and [7].
All previous approaches in robot tactile exploration for surface
reconstruction did not cover the problem of controlling mul-
tifinger robot hands during the exploration process. Also, real
world constraints such as manipulator limits or robustness over
measurement errors have not been considered. In this paper we
present first results on the application of a dynamic potential
field control technique for guiding a multifinger robot hand
across the surface of an unknown object, which is novel in the
research area of dexterous manipulation. Artificial potential
fields for robot control were introduced in [8]. Here, the
manipulator follows the streamlines of a field where the target
position is modelled by an attractive potential and obstacles
are modelled as repulsive potentials. Potential fields may be
constructed using superposition, therefore the method is cheap
in computation compared to planning methods using explicit
search. On the other hand, the method is vulnerable towards
local minima which is a major caveat opposed to complete
planners, thus precautions must be taken. In [9], a method
for potential field based exploration with mobile robots has
been presented. Here the world is represented in a grid-based
model, where each cell has a certainty value representing
a state in terms of occupied, unexplored or free space. An
activation window around the agent limits the set of cells
considered during each control cycle to those cells within a



certain distance around the agent. From the certainty value
of the cells within this activation window a potential field is
constructed which guides the agent avoiding obstacles while
being attracted from unexplored regions and thus maximizing
knowledge gain.
In our approach we have transferred the idea of potential field
based exploration to tactile exploration for surface recovery
using an anthropomorphic robot hand. As we believe that
robustness and applicability of a tactile exploration strategy
enhancing object model knowledge depends significantly upon
the deployed hardware configuration, we have evaluated our
approach in the framework of a physical simulator, reflecting
non-neglectable physical effects such as manipulator kine-
matics, joint constraints or contact friction. As in related
approaches we initially limit our scope to exploration of static
scenes, which means the objects are fixated during exploration
and may not move during interaction, although we wish later
to develop means of pose estimation and tracking for object
in dynamic scenes.
This paper is organized as follows. In the next two sections
a short introduction to the potential field technique is given
and the relevant details of the robot model are described.
In Section IV we present the structure of the exploration
process for the robot hand. Further, we show our simulation
scenario and exploration results in section V. Finally, we give
a conclusion and an outlook on our future work in Section VI.

II. POTENTIAL FIELD CONTROL

Artificial potential fields have originally been introduced for
the purpose of on-line collision avoidance in the context of
robot path planning [8]. In the original approach, real-time effi-
ciency was emphasized over obtaining a complete planner. The
basic idea is that the robot behaves like a particle influenced
in motion by a force field. The field is generated by artificial
potentials Φi, where obstacles are represented as repulsive
potentials Φr(x) > 0 and goal regions are represented as
attractive potentials Φa(x) < 0. The superposition property
allows to combine potentials in an additive manner,

Φ(x) =
∑

i

Φr,i(x) +
∑

j

Φa,j(x) . (1)

The force vector field or potential field F , which influences a
Robot Control Point (RCP) at position x is defined as

F = −∇Φ(x) .

Thus, the direction of the force vector gives the direction
of steepest descent towards the goal configuration inside the
potential field. A major drawback of potential fields is the
existence of local minima outside the goal configurations in
which the imaginary force exerted on an RCP is zero. By
applying certain potential functions it is possible to construct
potential fields without spurious local minima [10]. Further,
by adding, moving or removing potential sources over time
the potential field may be reconfigured continuously, which
leads to the notion of dynamic potential fields.
While path planning should deliver a trajectory to a specified

Fig. 1. Kinematics of the robot hand with joint axes, contact sensor locations
(grey shaded) with assigned RCPs (black dots) and the TCP.

target using the information of free and collision space, this
may not be the case in an exploration task. Here it may be
the goal to acquire information about free and collision space,
as e.g. in a Simultaneous Localization and Mapping (SLAM)-
Task. This type of problem may be handled using dynamic
potential fields, where regions of interest are assigned to
attractive potentials which are changed neutral after attendance
by the exploring agent. This way the location of the closest
minimum of the potential field is changed so that the agent is
attracted to a new region of interest. Note, that obstacles may
still be modelled by using repulsive potential sources and thus
collision free traveling is possible during exploration.
The notion of mobile robot exploration may not be trans-
ferred immediately to the task of tactile exploration. In tactile
exploration it is not desired to avoid contact between the
manipulator and an unknown object but rather trying to
establish it. Therefore, the goal of the exploration process is
not to determine a collision-free path but to solve a contour
following problem along the surface of an unkown object.

III. ROBOT HAND KINEMATICS, CONTROL AND SENSORS

In our exploration approach we consider a setup comprising
a 6-DoF manipulator arm with a five finger robot hand
attached to its Tool Center Point (TCP). The manipulator arm
was modelled according to the Mitsubishi RM-501 five axis
small-scale industrial manipulator, which is currently used as
research platform for dexterous haptic exploration in our lab.
The model was augmented with a sixth DoF before the TCP
to provide a larger configuration space. In our exploration
control scheme we apply controller outputs to a set of five
RCPs, located at the fingertips of the robot hand and to the
TCP of the manipulator. The kinematic model of the robot
hand is shown in Fig. 1. The hand model provides nine
degrees of freedom and is modelled according to the FRH-
4 Hand presented in [11]. During haptic exploration we are
interested in controlling the velocity vectors of the RCP’s,
which is a different task compared to trajectory control. In
trajectory control the end-effector is commanded to follow a
desired trajectory with the motion control goal of asymptotic
tracking. Yet, the given exploration task does not induce
specific trajectories due to the uncertainty in the environment.



Therefore, we encode our task by means of a dynamic velocity
field. Velocity field control was introduced in [12] for robot
tasks such as contour following in robot surface inspection
or painting tasks. In our approach we compute the velocity
vector applied to an RCP directly from the dynamic potential
field, which guides the exploration process. For evaluating
our concept in a physics simulation environment it was not
required to develop a solution to the multipoint end effector
inverse kinematic problem. Instead we chose to take advantage
of the physical model of the robot system and directly specify
velocity vectors to the RCPs by using a virtual actuator which
is commonly available in physics simulation frameworks. This
way the joint angles are determined by solving the constrained
rigid body system and a stable and consistent configuration
of the robot hand is maintained. In general, this approach is
known as Virtual Model Control (VMC), which is described
in detail in [13]. In our case we specify joint constraints and
joint friction for the robot model for achieving an appropriate
force distribution over the joint serial paths, while we do not
model a compliant behavior.
During exploration we control the velocity of the TCP with the
VMC scheme, while we use a geometric solution of the inverse
kinematics during the initialization phase of the system. In
this phase the TCP is moved to a suitable initial configuration
for starting the exploration process, which states a trajectory
control problem.
For haptic exploration contact sensors are required which
we have modelled in our physics simulation. Of course the
simulation environment itself may be regarded as omniscient
and therefore it is possible to query all contact locations
and force vectors during the interaction of modelled physical
bodies. We restricted contact sensing to dedicated sensor areas
which cover the fingertips and the palm of the robot hand, see
also Fig. 1. Further, we did not consider the contact force
vector but only the contact location on the sensor area to
provide a more realistic sensor model. This complies with
current tactile sensor technology which in general can not
provide both types of information. It is also possible to model
more specific sensor characteristics such as a certain resolution
in contact location or contact force tresholding, which we did
not yet consider in our experiments.
As physics simulator we use a simulation tool based on the
Inventor Physics Modeling API (IPSA) which was introduced
in [14]. This simulator allows easy specification of complex
dynamic and kinematic models using a physics extension of
the Open Inventor 3D Visualization Toolkit1.

IV. DEXTEROUS TACTILE EXPLORATION

The goal of our work is the recovery of an unknown
objects 3D shape by actively touching the object with an
anthropomorphic robot hand and continuously moving the
fingers to new locations on the surface. As prerequisite a
rough initial estimate about the objects position, orientation
and dimension is required. In simulation we introduce this

1http://oss.sgi.com/projects/inventor/

information to the system, while this information is provided
by a stereo camera system in the real application.

A. Potential field initalisation
During exploration we hold information about the envi-

ronment in different structures. From an initial estimation,
a global set of attractive potential sources Pa = {!pi} is
constructed as a uniform grid around the estimated location
of the exploration object, where !pi = (x, y, z)T denote the
source locations. We call the region occupied by this Pa the
exploration space. A global set of repulsive potential sources
Pr = {!pi} is initialized to ∅. The state of Pa and Pr will
change during exploration, when the sensors detect contacts.

B. Object model generation and dynamic potential field
We update the potential sources according to the contact

informations we obtain from the finger and the palm sensors.
Whenever a sensor detects a contact inside the exploration
space, we add a repulsive potential source !pc to Pr at the
contact position.

An attractive potential source !p ∈ Pa is deleted, when
the distance d = ‖!p− !pf‖ to a fingers position is below
a threshold dmin. We choose dmin to be somewhat larger
than the fingertip dimension. Therefore, the deletion of an
element in Pa implies that its immediate neighborhood has
been explored.

Applying this scheme we obtain an object representation in
Pr in terms of contact locations and automatically adjust the
regions of interest represented by Pa.

From the two sets Pa and Pr we compute the potential
field and the local gradient for each RPC of the robot hand.
Therefore, we create a grid window of dimension N3 for each
RCP which is centered at its position !prcp = (x, y, z)T and
calculate the potential at each grid point !pg according to eq.
1, where Φa = ca · Ψa(!prcp) and Φr = cr · Ψr(!prcp).

For Ψa(!p) and Ψr(!p) we apply a harmonic function as pro-
posed in [10]. Using a harmonic function results in a monotone
potential function which overall decreases the number of local
minima during exploration.

To keep the potential field bounded we alter only the source
distribution and preserve the field energy, which is expressed
by

ca =
Ca

|Pa|
, cr =

−Cr

|Pr|
.

Further we maintain a certain balance between attractive
and repelling sources by defining Cr as

Cr = kP Ca, 0 < kP < 1.

For computational reasons we perform a clustering of Pr in
Euclidean space.

C. Velocity generation
Let Φ denote the potential grid window surrounding an

RCP. Given this potential grid window we are now able to
calculate the gradient vector for each RCP from which we
directly obtain an imaginary velocity vector !v



!v = −kv∇Φ, (2)

where kv scales the velocity to our needs.

Fig. 2. RCP velocity computation during non-contact state.

As the RCPs’ movements are constrained to their respective
configuration space, each velocity vector !vi is decomposed
into a portion !vcs situated in the plane containing the projec-
tion of the fingers configuration space onto the workspace and
its orthogonal component !vcs. This decomposition is depicted
in Fig. 2. The decomposed vector components are used to
control the velocity of the TCP as

!vtcp = [Vcs|Vcs] !kc ,

where

Vcs =
[
!vcs
1 · · ·!vcs

|RCP |

]
, Vcs =

[
!vcs
1 · · ·!vcs

|RCP |

]
.

Here, the elements of !kc = [kcs, kcs]
T control the contribu-

tion of an RCPs’ velocity to the velocity applied to the TCP.
E.g. we consider index, middle finger and thumb to provide a
greater proportion in guidance to the TCP during exploration
than pinky and ring finger.

D. Exploration states
Ideally we want the fingers to follow the object surface

contour. So we distinguish between two exploration states
for each finger: a non-contact and a contact state. We assign
a single contact sensor to each RCP, as shown in Fig. 1.
The palm sensors are only used to detect contacts and do
not provide feedback to an RCP. In case of a multi-contact
situation on a single sensor we only consider the first contact
reported. Self-collision of the robot hand engaging contact
sensors is not handled explicitly but is for most configurations
inhibited by the joint constraints. While a sensor does not
detect a contact the local velocity vector !v is applied to the
assigned RCP according to eq. 2. Otherwise, in case of contact
we project !v onto the plane P characterized by the normal
vector of the contact point.

This is depicted in Fig. 3. The contact normal vector is
estimated as follows. We create a set P s

r ⊆ Pr, which contains
all potential sources that are inside the sphere with radius s
surrounding the actual contact at !pc:

P s
r = {!pr ∈ Pr : ‖!pr − !pc‖ < s}.

Fig. 3. RCP velocity computation in contact state. Here a contact of an RCP
on a sphere is shown.

In case |P s
r | > 4, we are able to compute the convex hull of

P s
r that provides a set CH = {!pr1 × !pr2 × !pr3 : !pri ∈ Pr}

of triangles that constitutes the convex hull. In the event
of !pc being part of the convex hull we can now estimate
its normal vector !nest as the mean vector of all triangles
in CH containing !pc (see Fig. 4). If !pc is not part of the
convex hull we discard this policy and use the primary velocity
vector. Alternatively, we could search for the closest !pr ∈ P s

r

contained by the convex hull and use this vector as initial
value for the normal estimation as well, but in this case !pc

is likely to be near a non convex border of the exploration
object. Using this scheme the RPC follows the estimated object
surface contour in direction of the potential fields gradient
during contact.

E. Reconfiguration policy

Although we may avoid local minima for a pointlike RCP
using harmonic potentials, we can not eliminate deadlock
situations of the complete robot system while interacting with
the environment, i.e. the explored object. Since we do not
model tactile sensors at phalanges distinct from the fingertips,
deadlocks are likely to occur when a finger clings to the
exploration object.

For identification of deadlocks we track the low pass filtered
velocities of the TCP νtcp and the mean RCPs’ velocity
νrcp. We assume a deadlock situation once νtcp < νmin

tcp

and νrcp < νmin
rcp . Whenever a deadlock is identified we

change from exploration to a reconfiguration state until νtcp

exceeds an upper threshold νmax
tcp . Similar we introduce a

second threshold νmin
rcp,2. If νrcp < νmin

rcp,2 a large configuration
to the systems initial configuration is initiated. The values for
νmin

tcp , νmin
rcp , νmin

rcp,2 and νmax
tcp are determined empirically from

experiments.
During reconfiguration all attractive potential sources be-

come inverted to repulsive sources and the obtained new set of
repulsive sources P ′

r = Pr∪Pa is used for the RCPs’ velocity
generation. Furthermore, we directly generate a velocity vector
for the TCP in the same way we do for the RCPs using P ′

r and
an additional attractive source P ′

a = {!ptcp − !pr}, where !ptcp

denotes the TCP’s position and !pr the mean position of the
attractive potential sources in Pa. This way the TCP position



Fig. 4. Estimation of the local surface normal vector.

becomes adjusted towards a previously unexplored goal region
during reconfiguration.

F. Palm reorientation
Up to now only translational velocities have been applied

to RCPs, while rotational motion was forced indirectly via the
joint constraints.

The robot arm model includes two DoF that allow to
control the hands orientation in terms of pitch and roll. These
allow allignment of the palm normal !n to a preferred direction
!m that is calculated as !m = !pw

a −!ptcp, where !pw
a is the center

of mass of all attractive potential sources a(!p) ∈ Pa within
a distance dm of the current TCP position. We set dm to be
in the range of the length of a finger. The palm normal !n
is calculated as the mean of the normal vectors of the two
palm faces around joint axis Θ1. We realize the alignment by
additional force-limited orientation control of the TCP. The
control command is superimposed to the indirect constrained
joint motion. The effect of this modification is that the robot
hand will adjust its orientation towards the center of mass of
all reachable attractive potential sources, which prevents the
potential field control from turning the inner side of the hand
away from the exploration scene.

G. Finger motion coupling
As we use an anthropomorphic hand model, it is desirable

to avoid unnatural finger configurations. Otherwise, the in-
dividual RCP control might lead to a hand configuration in
which fingers stick out of the hand. We achieve a natural,
coupled motion of the finger joints by augmenting the joint
velocity from constrained motion with the output of a force-
limited joint angle controller. Therefore, we calculate the
mean joint angle γ over all finger joint angles γj . The
additional angular joint velocities ωj of the finger joints Θj ,
j ∈ A := {2, ..., 9} ⊆ N are set to

ωj = sgn(ej) · F(|ej |) · ωmax

where the control error ej is calculated using a joint
coupling kj ∈ [0, 1]

ej = kj(γ − γj)/γmax .

We limit the maximum force Fmax allowed to apply by the
controller to

Fmax = F(|d(γj)|) · F0 .

Here, F is a strictly monotone increasing function [0, 1] →
[0, 1]. The joint coupling kj lets us choose to align some joints
more or less to γ than others. For example the joints for the
ring and the little finger are coupled fully with a factor kj = 1
whereas the kj of the middle finger, index and thumb joints are
set to a lesser factor so they may move more flexible during
exploration.

V. SIMULATION RESULTS

We evaluated our potential field based haptic exploration
approach with exemplar virtual scenes using a physics simu-
lator. The virtual scenes were set up with different objects
from which we automatically generated initial estimation
parameters as described in section IV. With these parameters
the exploration space was computed according to the cubical
bounding box of the object. We chose three different objects,
a sphere, a cylinder and a telephone receiver model as a
more complex object. With the current implementation of our
physics simulation the objects have to be nearly convex as
otherwise the collision detection function can not properly de-
tect contacts with non-convex objects engaged. For the sphere
and cylinder objects we varied positions, orientation and size
in the experiments. We limited the exploration duration to
2500 iteration steps of the physics simulation, with step time
T = 0.04s. All control specific parameters and thresholds
as described before were chosen constant and independent of
the object explored for all experiments. The explored scene is
static, i.e. the object explored is fixated so it may not be moved
by the physical interaction during contact. In our experiments
we placed the objects floating above the ground plane in the
simulation, so the robot hand may also explore the bottom side
of the object.
The exploration progress is shown in Fig. 5. The notions
of close and distant object placement are meant relative to
the configuration space of the robot hand. A distant placed
object is more difficult to reach and to establish contact with
all sides. As can be seen, the contact acquisition is conti-
nous, while traversal of unvisited exploration space decreases
over time, because remaining attractive potentials are more
and more situated inside the space occupied by the object.
Also, objects placed in poses difficult to reach require a
significant higher number in reconfigurations. The example
reconfiguration progress plots in Fig. 5(b), 5(d), 5(f) show
the progression of νrcp (blue) and νtcp (red). The horizontal
lines indicate the threshold values νmin

tcp (lower black line),
νmin

rcp (upper black line), νmax
tcp (green), νmin

rcp,2 (blue). The
vertical lines indicate reconfiguration start (turquoise) and end
(black) respectively. We found that reconfiguration occured
more often with decreasing reachability and increasing number
of surface obstacles. With the telephone receiver model the
robot hand happened more often to cling to the sharp edges
of the structure, while this appeared less with the smooth



(a) Sphere of radius r. red: r = 5cm, close placement,|Pa| = 64, Nr = 12.
green: r = 3.2cm, distant placement, |Pa| = 27, Nr = 19. blue: r = 3.2cm,
close placement, |Pa| = 27, Nr = 10.

(b) Reconfiguration progress, sphere.

(c) Cylinder with radius r and length l. red: r = 3cm, l = 9cm, close placement,
hor., |Pa| = 36, Nr = 13. green: r = 3cm, l = 16cm, close placement,
hor., |Pa| = 45, Nr = 25. blue: r = 4cm, l = 4cm, close placement, vert.,
|Pa| = 27, Nr = 22.

(d) Reconfiguration progress, cylinder.

(e) Telephone receiver, |Pa| = 54. red: close placement, hor., Nr = 19. green:
medium far placement, 45◦, Nr = 25. blue: distant placement, vert., Nr = 35.

(f) Reconfiguration progress, telephone
receiver.

Fig. 5. Exploration and reconfiguration progress plots for the test objects. Nr denotes the number of required reconfigurations.

surface of the sphere. Further, we observed that the proposed
reconfiguration method managed to escape upcoming deadlock
situations within one or several cycles in all scenes. So, the
robot hand was guided around the object to establish contacts
from all sides towards the object in the exploration space, if the
object placement permitted the required hand configurations.
The reconfiguration progress plots refer to the scene configu-
ration represented by the first exploration progress plot (red)
Fig. 5(a), 5(c), 5(e) for each object respectively.

Typical 3D contact point clouds resulting from haptic explo-
ration are shown in Fig. 6. In fact, these plots show the final
potential source arrangements after exploration, where the red
dots indicate remainders in Pa and the blue dots are the set
of Pr. The resulting haptic point clouds exhibit spots with
less density especially at locations with sharp edges where the
sensors often lose contact during the surface tracking phase.
Naturally sparse are regions which are situated outside the
fingers configuration space. Such regions are visible e.g in the



Fig. 6. Typical exploration results for the objects sphere, cylinder and phone after 2500 iterations. Red: Pa, Blue: Pr .

plot of the receiver at bottom left and right side.

VI. CONCLUSIONS

In this paper we presented a control scheme for tactile
exploration of unknown objects with an anthropomorphic
multifingered robot hand. Our approach is based on dynamic
potential fields for motion guidance of the fingers. We added
a potential field based reconfiguration strategy to eliminate
deadlock situations which may occur due to local minima in
the configuration space. Finally, we introduced finger joint
motion coupling to provide natural trajectories of the robot
fingers during exploration. We evaluated the complete control
scheme in a detailed physics simulation of the robot system
with test objects and presented the resulting 3D point clouds
of explored objects and gave detailed report on the progress
during exploration. Concluding, we are confident that the
potential field based approach presented may be used for real
world tactile exploration using an anthropomorphic robot hand
as it appears robust enough to autonomously guide the robot
hand over an unknown object providing tactile information
to enhance the object model. We assume that the proposed
scheme is transferable to different manipulator and robot hand
kinematics by adapting parametrization, number of RCPs and
RCP locations. We are planning to extend this approach to
a method of potential field based grasping, which appears
feasible from our observation of the hand and finger motion
under potential field guidance. We regard the approach to be
promising in our eyes and will combine this method with a
vision based object exploration method to obtain a multimodal
object model, which might enable us to extend the concept for
dynamic scenes.
As a next step we will transfer the developed control scheme
based on VMC and dynamic potential fields to our real world
robot system equipped with five-finger hands [15] as soon as
we have low level force and position control available with
our robot hand.
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