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Abstract— In this paper, we address the problem of tactile
exploration and subsequent extraction of grasp hypotheses
for unknown objects with a multi-fingered anthropomorphic
robot hand. We present extensions on our tactile exploration
strategy for unknown objects based on a dynamic potential field
approach resulting in selective exploration in regions of interest.
In the subsequent feature extraction, faces found in the object
model are considered to generate grasp affordances. Candidate
grasps are validated in a four stage filtering pipeline to eliminate
impossible grasps. To evaluate our approach, experiments were
carried out in a detailed physics simulation using models of the
five-finger hand and the test objects.

I. INTRODUCTION

Robotic grasping using multi-fingered hand constitutes a
complex task and introduces challenging problems. For well
known scenes a grasping or other manipulation process
may be pre-programmed when using todays robots. On the
other hand, adaptation of a grasping algorithm to formerly
unknown or only partially known scenes remains a difficult
task, to which different approaches have been investigated.
A classical approach consists in grasp analysis and plan-
ning, based on a geometric scene model. In force based
grasp planning the forces and moments at selected grasping
points are analyzed and matched against a grasp quality
criterion considering e.g. force closure. This approach is
usually independent of the hand kinematics. In contrast mere
geometry based algorithms are tailored to specific gripper
designs, especially in the context of multi-fingered hands.
Comprehensive overviews on grasp planning are given in [1],
[2]. Using grasp planning for previously unknown objects
consequently introduces the difficulty of model building
from sensor data which is delivered by robot perception.
As alternatives to the mere planning approach online control
algorithms driven by tactile information have been devel-
oped, which make use of a priori assumptions on the object
to grasp, and control the grasping process by displacing
robot fingers. Different control goals have been formulated
for grasping convex objects in [3], [4] and later [5], where
contact displacements are calculated in order to minimize a
grasp quality cost function. The function values are computed
using estimation of local surface parameters from haptic
feedback, thus resulting in an online control scheme. A
further extension capable of dealing with concavities on

an object’s surface was presented in [6]. Online grasping
approaches using a discrete set of hand postures or motions
have also been presented [7], [8].
Beside vision based methods tactile exploration may be
used for 3D reconstruction of an unknown object, as tactile
sensing solves some severe limitations of computer vision,
such as sensitivity to illumination and limited perspective.
A reconstructed 3D object model may be used for grasp
planning and execution as shown e.g. in [9].
Single finger tactile exploration strategies for recognizing
polyhedral objects have been presented and evaluated in
simulation, see [10] and [11]. In [12] a method for recon-
structing shape and motion of an unknown convex object
using three sensing fingers is presented. In this approach
friction properties must be known in advance and the surface
is required to be smooth, i.e. it must have no corners or
edges. Further, multiple simultaneous sensor contacts points
are required resulting in additional geometric constraints for
the setup.
In general, previous approaches in robot tactile exploration
for surface reconstruction did not cover the problem of
controlling multi-finger robot hands during the exploration
process. Also, real world constraints such as manipulator
limits or robustness over measurement errors have not been
considered. In [13] we have presented first results on the
application of a dynamic potential field control technique
for guiding a multi-finger robot hand across the surface of
an unknown object and simultaneously building a 3D model
from contact data.
In this paper we extend our approach in tactile exploration
to serve the purpose of extracting grasp affordances for
a previously unknown object. Therefore, we have added
modifications to our exploration strategy which lead to a
homogenous exploration process and prevent sparsely ex-
plored regions in the acquired 3D model. We have added a
grasp planning system based on a comprehensive geometric
reasoning approach as initially reported in [14]. We chose
a geometric reasoning approach here as object modelling
from tactile exploration currently does not deliver the details
required for force analysis and contact modelling, as it is
performed in force-based grasp planners, e.g. [15]. As we
believe that robustness and applicability of tactile exploration



and robotic grasping algorithms depend significantly upon
the deployed hardware configuration, we have evaluated our
approach in the framework of a physical simulator, reflecting
non-neglectable physical effects such as manipulator kine-
matics, joint constraints or contact friction. As in related
approaches we initially limit our scope to the exploration
of static scenes, which means the objects are fixated during
exploration and may not move during interaction, although
we wish later to develop means of pose estimation and
tracking for objects in dynamic scenes.
This paper is organized as follows. In the next section a
short introduction to the potential field technique is given
and the relevant details of the robot model are described.
In Sec. IV-A we present the tactile exploration process and
in Sec. IV-B grasp planning and execution. We give details
on our simulation scenario and exploration results in Sec. V.
Finally, our conclusions and outlook on our future work may
be found in Sec. VI.

II. POTENTIAL FIELD CONTROL

Artificial potential fields have originally been introduced for
the purpose of on-line collision avoidance in the context
of robot path planning [16]. In the original approach, real-
time efficiency was emphasized over obtaining a complete
planner. The basic idea is that the robot behaves like a
particle influenced in motion by a force field. The field is
generated by artificial potentials Φi, where obstacles are
represented as repulsive potentials Φr(x) > 0 and goal
regions are represented as attractive potentials Φa(x) < 0.
The superposition property allows to combine potentials in
an additive manner,

Φ(x) =
∑
i

Φr,i(x) +
∑
j

Φa,j(x) .

The force vector field or potential field F , which influences
a Robot Control Point (RCP) at position x is defined as

F = −∇Φ(x) .

A major drawback of potential fields is the existence of local
minima outside the goal configurations in which the imagi-
nary force exerted on an RCP is zero. By applying harmonic
potential functions it is possible to construct potential fields
without spurious local minima for point-like robots. This is
not the case with robots that can not be approximated by
a point, e.g. a manipulator arm. These are likely to exhibit
structural local minima which need to be treated by dedicated
escaping strategies [17].

III. ROBOT HAND KINEMATICS, CONTROL AND SENSORS

For exploration and grasping we consider a setup comprising
a 6-DoF manipulator arm with a five finger robot hand
attached to its Tool Center Point (TCP). The manipulator
arm was modelled according to the Mitsubishi RM-501 five
axis small-scale industrial manipulator, which is currently
used as a research platform for dexterous haptic exploration
in our lab. The model was augmented with a sixth DoF
before the TCP to provide a larger configuration space. In

Fig. 1. Kinematics of the robot hand with joint axes, contact sensor
locations (grey shaded) with assigned RCPs (black dots) and the TCP.

our exploration control scheme we apply controller outputs
to a set of five RCPs, located at the fingertips of the robot
hand and to the TCP of the manipulator. The kinematic
model of the robot hand is shown in Fig. 1. The hand model
provides nine degrees of freedom and is modelled according
to the FRH-4 anthropomorphic robot hand presented in [18].
During haptic exploration we are interested in controlling

the velocity vectors of the RCP’s, which is a different task
compared to trajectory control. In trajectory control the end-
effector is commanded to follow a desired trajectory with the
motion control goal of asymptotic tracking. Yet, the given
exploration task does not induce specific trajectories due
to the uncertainty in the environment. In our approach we
compute the velocity vector applied to an RCP directly from
the dynamic potential field, which guides the exploration
process. In order to evaluate our concept in a physics
simulation environment it was not required to develop a
solution to the multipoint end effector inverse kinematic
problem. Instead we chose to take advantage of the physical
model of the robot system and directly specify velocity
vectors to the RCPs by using a virtual actuator which is
commonly available in physics simulation frameworks. The
joint angles are then determined by solving the constrained
rigid body system and a stable and consistent configuration
of the robot hand is maintained. In general, this approach is
known as Virtual Model Control (VMC), which is described
in detail in [19]. In our case we specify joint constraints
and joint friction for the robot model for achieving an
appropriate force distribution over the joint serial paths,
while we do not model a compliant behavior. The physics
simulation is solved by using the Inventor Physics Modeling
API (IPSA) which was introduced in [20].
We also make use of the dynamic potential field concept
during initialization and grasp execution by placing attractive
sources at desired target locations.
For haptic exploration and contact sensing during grasping,
tactile sensors are required which we have modelled in our
physics simulation. Of course the simulation environment
itself may be regarded as omniscient and therefore it is



Fig. 2. Overview tactile exploration module.

possible to query all contact locations and force vectors
during the interaction of modelled physical bodies. We have
restricted contact sensing to dedicated sensor areas which
cover the fingertips and the palm of the robot hand, see also
Fig. 1. Further, we did not consider the contact force vector
but only the contact location on the sensor area to provide
a more realistic sensor model. This complies with current
tactile sensor technology which in general can not provide
both types of information. It is also possible to model more
specific sensor characteristics such as a certain resolution in
contact location or contact force tresholding, which we did
not yet consider in our experiments.

IV. EXPLORATION AND GRASPING SYSTEM

The goal of our work is a system enabling a robot with a
multi-fingered hand to explore an unknown object using tac-
tile sensing and subsequentially find suitable grasps. There-
fore, our system comprises a module for tactile exploration
as depicted in Fig. 2. In the following we will describe
the exploration and grasp planning process and transition
between both modes of operation. Tactile exploration is
executed in closed-loop and online in simulation. In contrast,
the extraction of grasp affordances is an offline planning
process executed subsequently to exploration. Please note
that major details of the dextrous tactile exploration process
have been reported in [13]. Therefore we will summarize the
basic concept and point out the improvements to the original
algorithm.

A. Dexterous tactile exploration
As a prerequisite the system requires a rough initial estimate
about the objects position, orientation and dimension. In
simulation we introduce this information to the system,
while this information will be provided by a stereo camera
system in the real application. From this information an
initial potential field containing only attractive sources is
constructed. The trajectories for the RCPs are continuously
calculated from the field gradient, while contact point lo-
cations and normals are sensed and stored as oriented 3D

point set. The normal vectors are estimated by averaging the
finger sensor orientations within a spherical neighborhood
around a contact point. The RCP trajectories are constrained
depending on the contact state of the sensor associated with
each RCP, which aims to produce tangential motion during
contact.
The potential field is updated from the tactile sensor infor-
mation as follows. If a contact is detected, a repelling source
is inserted at the corresponding location in the potential field.
Otherwise, if no contact is found in the circumference of an
attractive source, this source becomes deleted from the field.
The robot system is likely to reach structural minima during
potential field motion. We therefore introduced a recon-
figuration observer which detects when the TCP velocity
and the mean velocity of all RCPs fall below predefined
minimum velocity values. This situation leads to a so called
small reconfiguration which is performed by temporarily
inverting the attractive sources to repulsive sources. This
forces the robot into a new configuration from which pre-
viously unexplored goal regions may be explored. As this
method is not guaranteed to be free of limit cycles we
further perform a large reconfiguration if subsequent small
reconfigurations remain ineffective, i.e. the robot does not
escape the structural minimum. During a large configuration
the robot is moved to its initial configuration.
Our approach to extract grasp affordances relies on iden-
tifying suitable opposite and parallel faces for grasping.
Therefore, we needed to improve the tactile exploration
process as described above to explore the object surface
in a dense scheme and prevent sparsely explored regions.
The faces become extracted after applying a triangulation
algorithm [21] upon the acquired 3D point set. Triangulation
naturally generates large polygons in regions with a low
contact point count. We use this property to introduce new
attractive sources and guide the exploration process to fill
the contact information gaps. Within fixed time step intervals
we execute a full triangulation of the point cloud and rank
the calculated faces by their size of area. We then add an
attractive source at the centers of the ten largest faces. This



leads to preferred exploration of sparsely explored regions,
i.e. regions that need further exploration, and conseqently to
a more reliable estimate for the objects surface.
We apply a similar scheme to isolated contact points, i.e.
contacts that have no further contact points in their imme-
diate neighborhood. We surround these by eight cubically
arranged attractive charges. This leads to the effect that once
an isolated contact is added, the according RCP now explores
its neighborhood instead of being repelled to a more distant
unexplored region.

B. Grasping Phase

As an exemplary application for our exploration procedure
we have implemented a method for identifying grasp affor-
dances from the oriented point set.
We did not choose a traditional force-based grasp planning
algorithm as this would require to calculate a triangulated
geometric object model from the 3D point set. The point
set delivered by tactile exploration is inherently sparse and
irregular and we found that most triangulation algorithms
would fail to produce results in a usable way. Instead we
found that extraction of local features from the point set is
more robust than triangulation. We therefore chose a subset
of a geometric reasoning approach as proposed in [14] in
order to compute grasp affordances based on the acquired
object information.

1) Extraction of grasping features: A grasp affordance
contains a pair of object features from which the grasping
points are determined in subsequent steps. In general, planar
faces, edges and vertices of a polygonal object representation
may be used as object features. We only consider planar faces
in our implementation, as estimation and extraction of planar
faces from the given 3D point set is much more reliable
than that of edges or vertices. Therefore, we investigate the
oriented 3D point set for neighboured contact points with
similar normal vectors. Using a region growing method the
contact points in adequate dense regions are assigned to
faces. The original method is designed for parallel robot grip-
pers therefore the grasp affordances found are consequently
of a parallel type with opposing planar faces for grasping.
We apply a mapping scheme as described below in Sec. IV-
B.3 to compute the five finger tip target locations for the
robot hand within each face.

2) Geometric feature filters: Initially every possible face
pairing is considered as a potential grasp affordance. In a
sequential geometric filtering process all grasps unlikely
to be executed successfully with the given robot hand are
eliminated from the set of all pairings. The filter parameters
are chosen for the FRH-4 hand. We use a four stage filtering
pipeline in our approach. The results of the filter stages
are summed up to a score for each grasp affordance. Each
filter is designed to return a value of 0 when disqualifying
a pairing and value 1 ≤ o ≤ 1.1 for accepting a pairing. As
only grasp affordances with filter score ≥ 4 are considered
valid this automatically implies that valid grasps have to
pass all filter stages successfully.

• Parallelism: This filter tests the two faces for paral-
lelism. Let ~n1 and ~n2 be the normal vectors of the two
faces f1 and f2, φ the angle between ~n1 and ~n2 and
φmax the maximum angle for acceptance. The output o
of the filter is:

o =

{
0, if φ > φmax

1 + (φmax−φ)
φmax

· 0.1, otherwise.

• Minimum Face Size: This filter tests the two faces for
adequate size of area. Let a1 and a2 be the areas of the
faces f1 and f2. The minimum area for acceptance is
amin , ka is a normalization factor. Then the output o
of this filter is:

o =

{
0, if (a1 < amin) ∨ (a2 < amin)
1 + min(min( a1

ka
, a2
ka

), 0.1), otherwise.

• Mutual Visibility: With this filter the two faces are
projected into the grasping plane gp, which is the plane
with the mean normal vector ~ngp situated in the middle
of the two faces f1 and f2. So let f1↓gp and f2↓gp
be the projections of f1 and f2 onto gp. Then, aint is
the intersection area of f1↓gp and f2↓gp. The minimum
intersection area for acceptance is amin , kmv is a
normalization factor. The filter’s output is:

o =

{
0, if aint < amin

1 + min(aint

kmv
, 0.1), otherwise.

• Face Distance: The last filter incorporates the character-
istics of the used manipulator tool, i.e. the robot hand.
The filter checks if the robot hands spreading capability
matches the distance of the faces. Let d be the distance
between the centers of the faces f1 and f2, dmin and
dmax are the minimum respectively maximum admitted
distance values. Then the filters output is

o =

{
0, For d /∈ [dmin, dmax]
1, otherwise.

3) Grasp execution: The grasp affordance with the
highest score is used as the candidate for grasp execution.
In a first step we compute the grasping position ~ptcp,a of
the TCP and the grasping approach direction as depicted in
Fig. 3.

Initially we estimate the centers ~c1, ~c2 of the two faces f1, f2
as the centers of gravity of all contact points assigned to each
face. From this we determine the center point ~gp = ~c1+~c2

2
on the line connecting the centers of the two faces. Then we
analyse the first principle component ~pc of the acquired 3D
point cloud and calculate the grasping position as

~ptcp,a = ~gp+ (~ngp × ~pc) · d,

where d is a distance which considers the fingers length of
the robot hand. The cross product (~ngp × ~pc) becomes the
approach direction. We only consider grasping the object
from top. Therefore, in the case the coordinate ~ptcp,a is below
the object to grasp, we mirror its location across the center



Fig. 3. Calculation of the grasp center point and approach direction.

between c1 and c2 and along the approach direction to a
location above the object. Clearly, we make an assumption
about the object’s extension here. From the face pair of
the grasp affordance finger tip target locations need to
be computed. This is achieved by the following mapping
scheme.
The target for the thumb ~pthumb,a is set to be the center
of the smaller of the two faces. We choose target locations
~pindex,a, ~pmiddle,a, ~pring,a and ~ppinkie,a for the opponent
fingers around the center and in the plane of the larger
of the two faces. The arrangement is chosen, so that it is
perpendicular to the approach direction in the plane of target
face. If the target location of ring finger or pinkie is not
situated within the face area the fingers will not be used
for grasping. This way the number fingers involved during
grasping is automatically adapted.
Motion execution starts with the hand in an initial pose,
as it is always reached after a large reconfiguration. From
here we apply the potential field control to the RCPs and
the TCP. Unlike during the exploration phase, the TCP and
the RCPs share the set of repulsive potential sources while
having individual attractive potential sources as mentioned
above. Repulsive sources located in the target planes become
deleted.
As long as the TCP is distant from its target ~ptcp,a the
potential field velocity control is only applied to the TCP
while the finger joints remain open via direct joint control.
When the TCP is close to its target we additionally apply the
potential field control to the RCPs. If an RCP is not in use
because the finger is not involved in grasping, the associated
finger joints are still kept open. Further, the palm normal
~n is aligned towards ~gp by controlling forces acting on the
hand’s pitch and roll DoFs.
If the RCPs in use have approached the finger target loca-
tions, the fingers are closed and the corresponding sensors
are checked for contact. Once all assigned RCP sensors are
in contact with the object, potential field control is turned off
and the finger joints are closed directly. The virtual fixture of
the object then becomes disabled in the simulation and the
robot arm moves back to its initial position with the object
grasped and lifted.

V. SIMULATION RESULTS

We evaluated our exploration and grasping system in several
virtual scenes using our physics simulator with standard earth
gravity gN = 9.81 applied. For contacts Coulomb friction
with a friction coeefficient µ = 0.5 is considered. The virtual
scenes were set up with different rigid objects of suitable size
for grasping by the hand: a sphere, a telephone receiver and
a rabbit. The objects are placed approximately in the center
of the robots workspace. All objects are fixated floating
above the simulators virtual ground to avoid interference,
as we currently do not differ between contact between the
object of interest and any other obstacle in the workspace.
As described in Sec. IV-A the cubical bounding box of
the object is computed from position and space occupancy
estimates and used to initialize the exploration potential field.
Grasp affordances are extracted after a fixed number of 2000
control time steps, whereby each control time step comprises
ten simulation time steps with a temporal resolution of
T = 0.04s.
Fig. 4 shows typical results. Here figures in column (c) show
the 6 best candidate faces for grasping. The color indicates
score ranking in following order: red, green, blue, magenta,
cyan, yellow. Black dots indicate the center of a face, which
is calculated as mean value of all points in the face. Colored
lines connect corresponding centers of corresponding faces.
In colum (d) the grasp affordance with the highest score
is shown. Purple dots indicate grasping points for index,
middle, ring and pinkie finger. Ring and pinkie grasping
points are only plotted if they are used. The red dot marks
the location of the attractive potential source for the TCP
at start of the approaching phase. Naturally, the algorithm
performs worse with objects exposing curved regions as the
algorithm searches for planar faces. Therefore, only one
grasp affordance was found for the sphere in the given
exploration interval. The exploration of the rabbit shows
similar results. Still, successful grasps can be performed with
the grasp affordances identified.
In contrast, several affordances could be identified with the
model of the telephone receiver consisting of large polygons.
In general, the number of found grasp affordances increases
with exploration time. The video accompanying this paper
shows examples of tactile exploration and grasp execution
for the rabbit.
Beside experiments with different objects we also inves-
tigated performance of the system with objects placed at
different positions and orientations in the workspace. For
the experiments a grasp is considered successful if the
manipulator can grasp and lift the object in simulation.
We believe this is still a good approximation for reality as
the simulator only calculates with rigid body dynamics and
assumes point contacts. In reality such a robot system would
be equipped with deformable rubber finger tips which will
provide a significant larger contact area leading to higher
tangential forces. Therefore we assume that a real robot
system could execute the simulated successful grasps.
In a first experiment we placed the sphere, which is naturally



(a) (b) (c) (d)

Fig. 4. Typical simulation results from top to bottom: Sphere, telephone receiver, rabbit. Column (a) shows a virtual scene snapshot during exploration,(b)
final point cloud, (c) grasp affordances, (d) best grasp and grasping points.

(a) Sphere at different distances (b) Telephone receiver at different orientations

Fig. 5. Number of identified grasp affordances. Blue: successful grasp execution, red: failed grasp execution with best candidate.

invariant to rotations, at different distances ranging from
minimum to maximum reaching distance for the manipulator
arm in the workspace. Fig. 5(a) shows the number of found
grasp affordances after N = 2000 exploration steps. After
generation the grasp affordance with the highest score is
executed as desribed in Sec. IV-B.3. In the figure a red
bar indicates a failed grasp execution, a blue bar indicates
a successful grasp execution, both with the best candidate
grasp applied. The failed grasps may be deduced to the error

between the estimated grasping plane and the local tangential
plane of the sphere in combination with an inappropriate
situation of the sphere within the robots workspace. This
could be improved by increasing the exploration time in
order to collect more contact data points.
In a second experiment we investigated the scheme with the
robot model for sensitivity towards different orientations of
an elongated object as the telephone receiver. Therefore, the
receiver is placed in the scene with different orientations



around the Y-axis (direction of gravity). The initial configu-
ration can be seen in the mid image of Fig. 4(a). The receiver
was situated in the workspace center area of the manipulator
arm. The results are depicted in Fig. 5(b) and indicate that the
receiver provides less features to extract grasp affordances
from with its longer axis pointing toward the manipulator.
The reasons for the failed grasp agree with those from
experiment 1. Note that the receiver is not a symmetric
object, therefore the number of grasping candidates is also
not symmetric over rotation.

VI. CONCLUSIONS

In this paper we have presented a control scheme for tac-
tile exploration and subsequent extraction and execution of
grasp affordances for previously unknown objects using an
anthropomorphic multi-fingered robot hand. Our approach
is based on dynamic potential fields for motion guidance
of the fingers. We have shown that grasp affordances may
be generated from geometric features extracted from the
contact point set resulting from tactile exploration. The
complete control scheme was evaluated in a detailed physics
simulation of the robot system with test objects of different
shape and presented the results of the grasp planner based
on the exploration data. Finally, we tested the best grasp
candidate by executing the grasp within the physics simu-
lation. In further experiments we have reported results for
different object locations and orientations in the manipulator
workspace.
For the future we are working on an extension of the
presented set of geometric filters in order to further improve
the success rate upon grasp execution with our robot hand.
Further we will consider the incorporation of the palm during
grasp execution, which would enable power grasps.
Concluding, we are confident that the dynamic potential field
based approach presented may be used for real world tactile
exploration and grasping with an anthropomorphic robot
hand, as it appears robust enough to autonomously control
interaction of the robot hand with a previously unknown
object using tactile information. We assume that the proposed
scheme is transferable to different manipulator and robot
hand kinematics by adapting filter parameters, number of
RCPs and RCP locations. We further plan to investigate
possibilities of combination with exploration methods based
on sensors of different modalities than haptics, e.g. vision
based object exploration. The developed control scheme
based on VMC and dynamic potential fields is currently
subject to implementation on our real world robot system
equipped with five-finger hands [22].
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