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Abstract— For a robot to perform a grasping and manipu-
lation task, it has to determine possible robot placements in
the workspace, from which target objects or environmental
elements relevant to the given task are reachable. This work
presents a novel approach for finding placements for the mobile
base of a humanoid robot in an unknown environment with
multiple support planes. We propose a novel type of reachability
map – the Oriented Surface Reachability Map – that takes
inclined surfaces in the environment into account and has
the same complexity as reachability maps designed for flat
surfaces. The resulting robot placements are not limited to
SE(2) but can be applied to arbitrarily oriented planes in
3D space. The proposed method was evaluated in simulation
and on the humanoid robot ARMAR-6 in real-world grasping
experiments. The results show that a placement can be found
for over 80% of the poses that are reachable in complicated,
simulated environments, with only a small runtime overhead.

I. INTRODUCTION

Manipulation is a central problem in robotic research. For
a successful execution of manipulation tasks, target poses of
the objects involved have to be reachable from the robot’s
pose. Thus, an integral part of the planning of manipulation
actions of a mobile robot consists of finding a suitable
placement pose for the robot. This is especially important
when robots are used in unstructured environments, where
the exact workspace is unknown and areas to stand on
are sparse. Humans have an intuitive understanding of their
surroundings and can easily estimate, which surfaces provide
a suitable support to manipulate objects. For example, they
intuitively know to utilize the environment (e. g., ramps,
ladders, stairs) to manipulate objects that cannot easily be
reached from the ground. Generally, this is hard to achieve
for mobile robots, as it is not trivial to distinguish between
an obstacle and a plane on the ground that allows the robot
to stand on, especially with noisy sensor data. Additionally,
navigating an unknown environment with different levels of
elevation is generally challenging, as paths that cross steep
edges cannot be detected with classical collision detection.
Therefore, we investigate a vision-based approach for the
mobile base placement of a robot in unknown, nontrivial
terrain, that facilitates the application of 2D collision-based
path planners to partially planar 3D environments.

In our previous work [1] we introduced the concept of
Inverse Reachability Maps (IRM) for the efficient query of
collision-free placement poses of a mobile robot, based on
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Fig. 1: Simulated robot on an inclined ramp grasping an
object with visualized Oriented Surface Reachability Map.

the inversion of pre-computed reachability or manipulability.
Even though this facilitates collision-free mobile manipula-
tion in most indoor environments, there is no straightforward
extension of the approach to uneven terrain. This signifi-
cantly reduces the robot’s versatility in cluttered scenes, as
all parts of the environment with a higher elevation than
the ground level have to be considered as obstacles. While
approaches for robot placement on uneven terrain [2] and
inclined support surfaces [3] exist for legged robots, these
cannot be applied to platform-based robots, which require
sufficiently large placement areas and can only navigate on
continuous surfaces, in a straightforward way.

This work proposes an approach that facilitates the estima-
tion of feasible platform placements for manipulation tasks
that have to be executed by robots with a mobile platform
in unknown and unstructured environments. Possible support
planes are extracted from point clouds using planar region
segmentation that is based on the approach described in [4],
which we extend to be more noise resistant. We combine this
segmentation with an IRM to retrieve the Oriented Surface
Reachability Map (OSRM), which allows the sampling of
possible placement poses in piece-wise planar 3D terrain
efficiently, as it only contains poses that respect the support
constraints of the environment. Finally, the robot has to
navigate to the determined pose, which can be difficult
in situations with multiple levels of elevation. Therefore,
we add obstacles for edges that cannot be traversed to the
obstacle space, so that conventional path planning algorithms
for 2D environments can be used. We implemented our
approach using the robot framework ArmarX [5], evaluated
it in simulation and on the humanoid robot ARMAR-6 [6].



II. RELATED WORK
Most current placement approaches are based on the

concept of reachability maps (RM), which were initially
introduced in [7] under the name Capability Maps as a
representation of the robot’s workspace. RMs represent a
measure of the quality of a pose in the robot’s root frame
in terms of reachability with the robot’s tool center point
(TCP). An Inverse Reachability Map, first introduced in our
previous work [1], represents the reachability of a given TCP
pose w.r.t. the pose of the mobile base given in the frame of
reference of the TCP. In our previous work, we utilized an
IRM for the efficient generation of mobile base poses suitable
for reaching a given TCP pose in a flat environment. Further-
more, in [8], the IRM is extended to bipedal humanoid robots
with the assumption that the environment is flat. The authors
in [9] further extend this concept into the inverse Dynamic
Reachability Map (iDRM) that allows for fast querying of
collision-free poses through an occupancy list that links the
iDRM and the workspace. The iDRM is combined with its
forward version in [2] for the motion planning of the upper
and lower body of the humanoid robot Valkyrie. In [3], this
approach is extended to also include placements on inclined
surfaces. Instead of relying on a position-first-representation
when creating a reachability map, the authors in [10] develop
an orientation-based reachability map, which facilitates the
online replacement of tools. In [11], an implementation of
the IRM as a database, which also stores joint configurations,
instead of a volumetric representation is proposed.

As we address the robot placement problem in un-
known scenes, a suitable representation of the environment
is needed. To represent environments with not exclusively
planar surfaces, heightmaps are often used. For example,
the authors of [12] use a Conditional Random Field for the
spatio-temporal classification of terrain maps based on visual
input. An extended version of elevation maps is introduced
in [13], which classifies grid cells into four categories and
quantifies the uncertainty of the height values with a Kalman
filter. To account for the odometry drift of a quadruped robot,
a robot-centric, probabilistic terrain elevation map that fuses
incoming measurements in the local frame of the robot is
described in [14]. The authors of [15] model the surface of
a point cloud as a set of curved patches of sufficient size
for a foot placement of a humanoid robot and use these for
robot control, as well as localization and mapping.

III. ORIENTED SURFACE REACHABILITY MAPS
For a correct robot placement for platform-based mobile

robots, the following criteria have to be fulfilled: (a) The
robot has to be in steady and even contact with the ground,
so the ground covered by the entire platform has to be planar.
(b) The n target poses T ∈ SE(3)n of the robot’s TCP
have to be reachable from a given placement pose. (c) The
robot should not be in collision with the environment. In
Section III.A, we give a formal definition of the OSRM
that inherently fulfills criterion (a) and describe how we
generate robot placement poses from the OSRM that fulfill
criterion (b) and (c) in Section III.B.

A. Definition of the Oriented Surface Reachability Map

For the criterion (a) concerning the contact with the
ground, the planar region segmentation described in Sec-
tion IV is used. A planar region segmentation decomposes
a given height map h : R2 → R into a set of planar and
non-planar regions. A planar region r = (n, d,W ) is given
by a plane in Hessian normal form nTp + d = 0, where
p ∈ R3 is position, n ∈ R3 is the normal and d ∈ R+

is the shortest distance to the origin of the plane, and a
set of grid cells W ⊂ R2 that belong to the planar region.
Possible robot placement poses at a 2D-position (x, y)T are
constrained to lie on the plane given by the planar region
r that is uniquely defined for (x, y)T . Therefore, the height
z can be determined by the plane of r. Additionally, the
orientation of the robot is constrained by n, as it can only
rotate by γ around the axis facing the direction n and
intersecting the plane given by r in px,y = (x, y, z)T ∈ R3.
Consequently, the pose of the robot is limited to only three
degrees of freedom, which can be described by the tuple
(x, y, γ) ∈ R2 × [0, 2π]. We define the case γ = 0 to be
poses where the projection of the robot root frame’s y-axis
ŷ on R2 is facing the same direction as the global y-axis.
Due to these constraints, ŷ can be uniquely defined in terms
of the components of n.

Now the robot root frame’s x-axis x̂ can be determined
by x̂ = ŷ × n to complete the rotation matrix Rx,y,0 =(
x̂ ŷ n

)
∈ SO(3). The orientation of the robot in the

global frame for (x, y, γ) can be obtained by rotating Rx,y,0

around the local z-axis by γ with Rz,γ :

Rx,y,γ = Rx,y,0 ·Rz,γ ∈ SO(3)

Finally the 6D pose defined by (x, y, γ) is given by

px,y,γ =

(
Rx,y,γ px,y

0 1

)
∈ SE(3).

With this representation of robot poses in an environment
with multiple support planes, the next step is to determine
suitable placements, which ensure the reachability of a given
TCP pose. The IRM is a mapping SE(3)→ R and represents
the reachability of a given TCP pose w.r.t. a given pose of
the mobile base in the frame of reference of the TCP. In
our previous work [1], the intersection of the IRM with the
xy-plane is used to build the Oriented Reachability Map
(ORM). Similarly, we intersect the IRM with robot poses
on the surface S of the environment provided by the planar
region segmentation. The surface S is given by

S = {px,y,γ | (x, y)T ∈Wall, γ ∈ [0, 2π] } ⊂ SE(3) ,

where Wall = {w ∈ W, (n, d,W ) ∈ R } ⊂ R2 is the
set of all points on a planar region and R is the set of
all planar regions in the environment. The result is the
Oriented Surface Reachability Map (OSRM) that maps the
tuple (x, y, γ) to a reachability value. The OSRM is a
three-dimensional distribution like the ORM, which keeps
memory usage and computation time small and improves
the efficiency in sampling possible poses for platform-based
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Fig. 2: Planar region segmentation of the scene with black cells representing non-planar regions and any other color
representing planar regions (a). The OSRM drawn onto the scene where the reachability is summed over all orientations per
position (b). The final robot placement and joint configuration (c).

robots. The algorithm for computing the OSRM is given in
Algorithm 1. Similar to [1], the min() operator can be used
to combine the reachability of multiple TCP poses.

The OSRM does not fully respect the criterion (a), as only
the point of the robot’s platform specified by the base pose
is definitely on the plane. Other parts of the platform could
overlap with the edge of the planar region, which might
result in infeasible or even dangerous robot placements.
Therefore, we approximate the planar region by a polygon
c = (c1, ..., cn), ci ∈ R2, 1 ≤ i ≤ n by applying a
contour detection algorithm described in [16] on the planar
region segmentation. Afterwards, we set the reachability of
all poses, in which the robot’s base is not entirely within c
to zero. The result is an OSRM that contains only placement
poses that fulfill criterion (a).

Algorithm 1: Construction of the OSRM
Input: Set of planar regions R, List of target poses

in global frame T ∈ SE(3)n, Inverse
Reachability Map IRM , Number of discrete
orientations l

Output: OSRM
forall ptarget ∈ T do

IRM ← IRM.setPose(ptarget)
forall r = (n, d,W ) ∈ R do

forall w = (x, y)T ∈W do
forall γ ∈ {0, 2πl , ..., (l − 1) · 2πl } do

OSRM(x, y, γ)←
min(IRM(px,y,γ), OSRM(x, y, γ))

end
end

end
end
return OSRM

B. Generating Feasible Robot Placements

The OSRM can be used to sample possible poses using
different strategies. For all strategies, the absolute value of
the angle between ŷ and the projection of the direction
towards the object on the supporting plane should not exceed
a γmax to preserve a natural orientation towards the target
object. The strategies investigated in this work are:

1) To-Object (TO): Selects a 2D-position randomly within
the OSRM and orients the robot towards the target
object if the summed reachability over all angles is
greater than a defined threshold.

2) Maximum-Reachability (MR): Selects a pose randomly
within the OSRM if its reachability is greater than a
defined threshold.

3) Min-Reachability-To-Object (MRTO): The initial pose
is chosen in the same way as TO. For a given position,
the angle between the robot and the target object is
iteratively incremented in the positive and negative di-
rection, respectively, until the reachability of the OSRM
entry is greater than a threshold.

As the IRM discretizes the workspace into voxels, it only
provides a probability for the pose within a voxel to be
reachable. For this reason, a selected placement pose has to
be verified in order to be in accordance with criterion (b) by
solving the inverse kinematics (IK) problem for the desired
target poses w.r.t a given placement pose.

Finally, to verify criterion (c) we check whether the robot
is in collision with the environment using its OctoMap [17]
representation. A problem of this approach is that with naive
collision checking, the robot is inherently in collision with
the OctoMap, as it is always in contact with the ground.
For this reason, we remove all occupied voxels from the
OctoMap if the grid cell at their center’s xy-position belongs
to a planar region r and their center’s distance to the plane of
r is small enough. The entire algorithm for determining robot
placement poses that meet all criteria is given in Algorithm 2.
A visualization of an OSRM, with low reachability in blue
and high reachability in red, can be seen together with a
successful placement in Figure 2.

IV. PLANAR REGION SEGMENTATION

To obtain the planar regions used by the OSRM, we
propose a segmentation based on the method presented in [4].
In this approach, the environment represented as a height
map h, is segmented into planar regions. The authors use
a region growing algorithm that adds neighboring cells to
a region if their local normals have an inner angle smaller
than a predefined threshold. Nevertheless, the approach tends
to over- or under-segment a noisy scene if planes intersect
smoothly. Especially an under-segmentation, i. e., if two



(a) Scene to Segment (b) Initial planar region estimations (c) Regions after extension step

(d) Regions after merge step (e) Regions after reassignment step (f) Final segmentation
Fig. 3: Processing steps of a planar region segmentation with a resolution of 50mm in a scene with Gaussian noise with a
standard deviation of 25mm added to the height map.

Algorithm 2: Generation of possible placements
Input: Set of target poses in global frame T ,

OctoMap Env, height map h, maximum tries
N, maximum placements M

Output: Set of possible placement poses P
Data: Inverse Reachability Map IRM
R← calculateP lanarRegions(h)
Env ← removeRegionsFromOctomap(Env,R)
OSRM ← calculateOSRM(R, T, IRM)
tries← 0
P ← ∅
while tries < N ∧ |P | < M do

probot ← OSRM.getRandomPose()
for ptarget ∈ T do

q ← solveIK(probot,ptarget, robot)
if !q then

tries← tries+ 1
continue

end
end
if ¬inCollision(probot, q, Env, robot) then

P ← P ∪ probot
end
tries← tries+ 1

end

planes are not correctly separated, poses a problem for our
approach, as it would not allow an accurate estimation of the
supporting planes. Therefore, we propose a modification of
the algorithm to increase its robustness.

Let the distance between a grid cell w = (x, y)T ∈ W
and the plane defined by a planar region r be

dist(r,w) =
∣∣nTo+ d

∣∣
with o = (x, y, h(x, y))T ∈ R3. Our modified procedure
iteratively applies the region growing segmentation with
growing thresholds. This initially leads to over-segmentation,
so the resulting regions have to be seen as initial estimations
for the planes of the planar regions. For the estimations to

be accurate, a region is only accepted if it has a minimum
amount of points. The initial estimations are then grown into
the surrounding non-planar regions in the extension step: A
neighboring cell wn of a non-planar region is added to the
planar region r if dist(r,wn) is smaller than a threshold.
To reduce over-segmentation, a region r is merged with
a neighboring region rn if their normals are similar and
the distance between their centroid and the other plane is
small enough. Additionally, in order to reduce artifacts due
to wrong assignments of grid cells, we apply a reassignment
step . For each grid cell w assigned to r, the cell is reassigned
to a neighboring region rn if dist(rn,w) < dist(r,w). Due
to noise, some outliers may be added to a planar region
using the reassignment step, which can be seen in Figure 3e.
We correct this by first performing a connected component
analysis on the grid of planar regions. We then remove all
grid cells that do not belong to the biggest component of a
region and add them to the closest neighboring region. The
resulting method is computationally more expensive than the
original one, but is more robust to noise and allows an easier
selection of thresholds for the region growing. An example
for the segmentation of a scene with randomly generated
planes can be seen in Figure 3.

V. NAVIGATION USING PLANAR REGIONS

To facilitate the execution of an action from a given
placement, the robot has to first navigate through an un-
known environment with multiple support planes to reach
the desired pose. This can be challenging, as traditional
motion planning in 2D does not address two main issues:
First, if all points in the environment with z > 0 are
considered to be an obstacle, possible placement poses that
are not on the xy-plane cannot be reached. Second, if the
elevation difference between points in the environment is
not considered, a resulting path could require the robot to
traverse a steep edge and lead to a fall of the robot.

In our approach, we use the OctoMap of the environment
as the basis for approximating the obstacle space. To address



Fig. 4: Environment with collision sets (red), robot, path
(blue), and goal pose (blue). The object on the left ramp
is recognized by our algorithm and not seen as part of a
planar region, so the robot navigates around it.

the first issue described above, the method described in
Section III is used to remove all voxels from the OctoMap
that belong to a planar region, as they are not obstacles but
belong to possible support surfaces.

To deal with the second issue, we model the segmentation
in planar regions as a multigraph G = (V,E). In this
graph, a vertex v = (r, c) ∈ V represents a planar region
r ∈ R with the polygon c approximating its contour. An
edge e = ({vi, vj},ps,pe, t) ∈ E represents the adjacency
between the regions represented by vertices vi, vj ∈ V .
It contains the end points ps and pe ∈ R2 of the line
approximating their common boarder and whether it can
be traversed with t ∈ {0, 1}. To build the graph, we use
the polygons approximating the planar regions obtained in
Section III. If the polygons are close enough to each other,
an edge is added between their corresponding vertices. In a
second step, we need to detect all edges between regions
where the height of the environment is continuous, and
thus, can be traversed. This is the case if the planes of the
neighboring regions intersect near their common border.

Finally, all non-traversable edges e can be added to the
obstacle space in form of a thin box from ps to pe. An
example for a path computed with a bidirectional RRT using
the collision set determined by our approach can be seen
in Figure 4. Though a more principled approach would be
to use the planar region graph for a hierarchical navigation
through the scene, our approach has the advantage that it
works with conventional collision-based 2D path planners
without adapting the algorithm.

VI. EVALUATION

The main part of the evaluation is done in simulation using
randomly generated scenes. To incorporate uncertainty we
added Gaussian noise with a standard deviation of 25mm to
the height map. The methods are also tested on the humanoid
robot ARMAR-6 [6] to verify that the segmentation also
works on noisy real-world data.

We use 5×107 random joint configurations to generate the
IRM with a resolution of 50mm in translation and 0.8 rad
in orientation. The OSRM that is constructed has the same

resolution in translation but a resolution of 0.175 rad in
orientation, which translates to 36 discrete orientations per
2D position. The height map used for the segmentation is
generated from an intermediate OctoMap representation of
point clouds from external cameras by setting the z-value
of each grid cell to the highest z-value of a voxel center
within the corresponding grid cell. As the resulting height
map has only discrete z-values, we apply a Gaussian filter for
smoothing. The OctoMap we use has a resolution of 25mm
and the height map has a resolution of 50mm. Furthermore,
we empirically chose the parameters for the planar region
segmentation in a way that resulted in consistent results over
all scenes considered.

A. Simulated Experiments

We evaluate our approach by computing placements for
grasp candidates on randomly placed objects in a box.
Additionally, there were multiple, randomly generated planes
added to the environment. To generate ground truth data and
estimate whether a grasp was reachable from any valid pose
in the environment, we solve the IK problem for poses in a
grid around the box. To reduce the number of calculations,
only poses that are not in collision with generated planes
were checked. For both the reachability estimation and the
placement, a γmax = π

4 is chosen.
For all grasps that are estimated to be reachable,

placements are generated and the times for the OSRM-
construction (tRM ) and the entire query consisting of ta
for all queries and ts for all successful ones is measured.
Furthermore, the timing of the stages for calculating the
robot placements and the reason for a failure to determine a
placement are measured. The results can be seen in Figure 5.

The first set of experiments is done without generating
additional planes to compare our approach to an implemen-
tation that uses the ORM from [1]. This implementation
uses a known environment for collision checking and queries
placements similar to the TO strategy. As seen in Table I, our
approach is marginally less successful in calculating place-
ments using TO but is far better using the MR strategy. As
poses, where the robot is not entirely within a planar region,
are removed during the construction of the OSRM, many
placements that result in collisions with the environment are
already removed, too. This increases the construction time

(a)

(b)

Fig. 5: Failure rates in flat (a) and complex scenarios (b)



(a) (b) (c) (d) (e) (f)
Fig. 6: Experiments on ARMAR-6. (a) shows the planned path in orange, the planar regions in red and the collision set in
grey. (b) - (d) show stages of the executed path. (e) shows the grasp with the placement queried from the OSRM in (f).

of the reachability representation, compared to the ORM
approach, but reduces the query time overall as there are
fewer collision failures, as can be seen in Figure 5a. For
reference, using grid search to find a suitable placement
takes 2672±3278ms, whereas not using an OSRM and just
placing the robot randomly takes 652± 358ms.

For the second set of experiments, a number of scenes
with different complexities is considered. We conducted
experiments in six scenarios and evaluated the approach re-
garding two criteria, the number of generated planes and their
different size: small (1m–1.5m), medium (1.5m–2m) and
large (2m–2.5m). For each class, 10 scenes were randomly
generated and over 500 grasp candidates are used to calculate
placements. For all scenes, we evaluated our segmentation

TABLE I: Performance in flat scenario

Method
Success
Rate [%] tRM [ms] ta [ms] ts [ms]

ORM 89.0 38 ± 17 1816 ± 1415 1788 ± 1319
TO 87.1 398

± 256

724 ± 513 538 ± 196
MR 97.5 515 ± 267 481 ± 151

MRTO 94.6 540 ± 235 495 ± 138

TABLE II: Performance in complex scenarios

Scene Strategy
Success
Rate [%] ta [ms] ts [ms]

Small
2 planes

TO 72.7 1308 ± 750 920 ± 332
MR 87.8 1108 ± 915 924 ± 234

MRTO 84.1 1065 ± 603 857 ± 370

Small
4 planes

TO 55.8 1430 ± 721 870 ± 196
MR 77.9 962 ± 474 850 ± 213

MRTO 80.4 954 ± 454 852 ± 214

Medium
2 planes

TO 74.1 1245 ± 748 815 ± 288
MR 88.5 909 ± 469 752 ± 205

MRTO 87.0 926 ± 436 776 ± 236

Medium
4 planes

TO 64.6 1345 ± 749 818 ± 289
MR 86.1 928± 534 723 ± 240

MRTO 81.8 954 ± 496 755 ± 259

Large
2 planes

TO 67.7 1295 ± 731 783 ± 279
MR 85.8 957 ± 1008 736 ± 194

MRTO 80.3 936 ± 470 725 ± 208
Large

4 planes

TO 61.6 1325 ± 750 667 ± 245
MR 82.3 796 ± 455 610 ± 174

MRTO 80.7 807 ± 380 672 ± 224

method by comparing the orientation of the generated planes
to the estimated ones. Additionally, we checked whether the
plane that lies within a given cell corresponds to the planar
region our method assigned to it. Our improved segmentation
is able to correctly predict the correct plane at a given grid
cell with an accuracy of 97, 8% and an average error in

normal orientation of 0.65°. Our approach finds a suitable
robot placement for more than 80% of the grasps estimated to
be reachable with the best strategy in any scenario. Generally,
as can be seen in Table II, our approach is the least successful
in scenes with high complexity and small planes. There are
two reasons to explain this. One limitation of our approach
is the representation of the environment as a height map
with discrete cells, so the accuracy of the segmentation
depends on the resolution. On the other hand, we make
the assumption that planar regions do not overlap vertically,
as only the highest occupied voxel is used to generate the
height map used for the segmentation. Consequently, in
the experiments, our approach does not find placements, in
which the robot is partially under the box. Furthermore, MR
is more effective than MRTO as it selects placements with
higher reachability. The TO strategy is the least effective –
in failures, computation time, and success rate, as it restricts
possible placements.

B. Validation on ARMAR-6

We validate our approach on ARMAR-6 in a real-world
environment. Therefore, we installed two external static
Azure Kinect cameras and fused their point clouds to gener-
ate the OctoMap. In the experiments, we set up different con-
figurations of the scene with various positions of obstacles.
The results show that obstacles can be avoided in navigation
and placement planning and that the robot can successfully
execute the grasps using the suggested placements as can be
seen in Figure 6. However, we acknowledge a more rigorous
evaluation is necessary, as the experiments on ARMAR-6
were only a first proof-of-concept of the approach.

VII. CONCLUSIONS

In this work, we presented an approach that enables
a mobile robot to find placements suitable for grasping
and manipulation tasks on inclined surfaces in previously
unknown environments based only on visual information.
Our approach was consistently able to find more than 80%
of placements for grasps estimated to be reachable with
a comparable execution time to state-of-the-art approaches
assuming a flat environment. In future work, the segmen-
tation approach can be extended to segment multi-level
surface maps and allow the OSRM to represent vertically
overlapping planar regions. A more rigorous evaluation of
our approach in real outdoor environments, as well as on
other mobile robots should also be conducted.
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“The Robot Software Framework ArmarX,” Information Technology,
vol. 57, pp. 99–111, 01 2015.
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