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Abstract—Recent advances in task planning leverage Large
Language Models (LLMs) to improve generalizability by com-
bining such models with classical planning algorithms to address
their inherent limitations in reasoning capabilities. However,
these approaches face the challenge of dynamically capturing the
initial state of the task planning problem. To alleviate this issue,
we propose AutoGPT+P, a system that combines an affordance-
based scene representation with a planning system. Affordances
are the action possibilities of an agent on the environment and the
objects present in it. Thus, deriving the planning domain from an
affordance-based scene representation allows symbolic planning
with arbitrary objects. AutoGPT+P leverages this representation
to derive and execute a plan for a task specified by the user in
natural language. In addition to solving planning tasks under a
closed-world assumption, AutoGPT+P can also handle planning
with incomplete information, such as tasks with missing objects,
by exploring the scene, suggesting alternatives, or providing a
partial plan. The affordance-based scene representation combines
object detection with an Object Affordance Mapping that is
automatically generated using ChatGPT. The core planning tool
extends existing work by automatically correcting semantic and
syntactic errors leading to a success rate of 98% on the SayCan
instruction set. Furthermore, we evaluated our approach on our
newly created dataset with 150 scenarios covering a wide range
of complex tasks with missing objects, achieving a success rate
of 79%. The dataset and the code are publicly available at
https://git.h2t.iar.kit.edu/sw/autogpt-p.

I. INTRODUCTION

The effectiveness of natural language interaction between
humans and robots has been empirically confirmed as highly
efficient [29]. For example, Kartmann et al. [24, 23] demon-
strate the incremental learning of spatial relationships through
demonstrations and reproducing the learned relationships
through natural language commands, providing an intuitive
way to manipulate scenes semantically. Despite the recent
notable advancements in Natural Language Processing (NLP)
and understanding, particularly with the emergence of Large
Language Models (LLMs), these models still face limitations.
Specifically, LLMs currently lack the ability to directly trans-
late a natural language instruction into a plan for executing
robotic tasks, primarily due to their constrained reasoning
capabilities [38, 1]. Recently, LLM+P [28] demonstrated the
capacity for enhancing the planning capabilities of LLMs by
combining them with classical planners, grounding them with
the planning domain and objects within the scene. However,
the system is restricted by the closed-world assumption of
classical planners. Thus, it can only generate plans if all
objects needed to complete the task are available. Furthermore,
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I want a cup of milk. Sure. Can you open the milk for me?

Can I use a cup instead of a glass?

1 3 4

2

Fig. 1: ARMAR-DE solves the user task given in natural
language by detecting the objects within the scene, reason-
ing about their affordances, planning how to solve the task
including asking for help and finally executing the plan.

LLM+P has no automated error correction and is vulnerable
to contradictory goal definitions of the LLM.

To overcome these restrictions, we introduce AutoGPT+P,
a system that enables users to command robots in natural
language, derive and execute a plan to fulfill the user’s request
even if the objects needed to perform the task are missing
in the immediate environment. AutoGPT+P exhibits dynamic
responsiveness by searching the environment for missing ob-
jects, proposing alternatives, or progressing towards a subgoal
when faced with such constraints.

For instance, if a user requests a glass of milk but no glass
is detected in the scene, AutoGPT+P proposes replacing the
glass with a cup, ensuring task completion by considering
alternative objects suitable for the task. When all task-relevant
objects are accessible, AutoGPT+P can address the closed-
world planning problem by extending the LLM+P approach
with automated semantic and syntactic error correction and
dynamic planning domain generation based on the agents’
capabilities. Moreover, AutoGPT+P endows the robot with
the ability to seek assistance from humans when executing
an action needed to reach the goal surpasses the robot’s
capabilities, such as requesting help with opening a milk box.

To formulate and execute plans effectively, AutoGPT+P
relies on affordances, which represent the action possibilities
that an object or environment offers to an agent [15]. For in-
stance, a knife affords cutting, grasping, or stirring. Leveraging
the concept of affordances enables the dynamic deduction of
viable actions within a given scene, facilitating the formation
of a plan to achieve the user’s objective. Moreover, affordances
allow for reasoning about how to substitute a missing object
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with suitable alternatives based on their functionality within
the given task.

AutoGPT+P consists of two stages: the first involves per-
ceiving the environment as a set of objects and extracting the
scene affordances based on visual data. This is achieved by
combining object detection and an Object Affordance Mapping
(OAM), which describes the relations between object classes
and the set of affordances associated with instances of those
classes. Subsequently, in the second stage, task planning is
conducted based on the established affordance-based scene
representation and the user’s specified goal. Here, AutoGPT+P
utilizes an LLM to select tools that support generating a
plan to accomplish the task. We quantitatively evaluate our
approach in simulation using 180 scenarios with different
goals to accomplish manipulation tasks like picking and
placing, handover, pouring, chopping, heating, and wiping.
Additionally, we performed real-world validation experiments
with a humanoid robot demonstrating a subset of these tasks.

To summarize, the main contributions of this work are:
(i) a novel affordance-based scene representation combining
object detection and automatic Object Affordance Mapping
(OAM) using ChatGPT (ii) a task planning approach based
on the established OAM and an LLM-based tool selection to
generate plans, partial plans, explore and suggest alternatives
in case of missing objects needed to achieve a task goal
specified by the user in natural language, (iii) an extension of
the LLM+P planning approach with automated semantic and
syntactic error correction and dynamic domain generation, and
(iv) real-world validation experiments with a humanoid robot

demonstrating a subset of these tasks
The remainder of this work is structured as follows: First,

we provide a comprehensive review of related work for both
affordances and LLMs in planning tasks in Section II. Then,
in Section III, we describe our proposed scene representation
followed by our planning approach AutoGPT+P in Section IV.
Subsequently, we discuss the results of our quantitative eval-
uation in simulation and our validation experiments on a
humanoid robot.

II. RELATED WORK

A. Affordances in Planning

The use of affordances in PDDL planning domains was
initially proposed by [31] in a limited case study of using
a crane-like robot to trigger switches with toy blocks. They
do not distinguish between objects in their approach but only
identify affordances so that specific objects cannot be selected.
PDDL is a generic planning language used to define planning
domains and problems within those domains. When combined
with a classical planner, this PDDL goal allows generating
a plan using a classical planner. The authors in [9, 10]
expand the principle with a more sophisticated affordance
segmentation approach to define the initial state of their
PDDL problem, which is then solved to generate a plan using
affordances. Their experiments in three real-world manipu-
lation tasks demonstrate the potential of combining detected
affordances to design an affordance-based PDDL domain. The

work of Xu et al. [46] trained an end-to-end model that
learns to generate a PDDL goal, consisting of (action, subject,
object), from an input image and a natural language command,
enabling the model to solve relatively simple tasks using an
off-the-shelf task planner. All previously mentioned works use
an affordance-based PDDL domain, which implicitly allows
them to replace objects with those of the same affordance.
In contrast to classical planning, the acquisition of relational
affordances through probabilistic learning, used alongside a
probabilistic planning algorithm that maximizes the likelihood
of reaching the goal rather than minimizing plan length,
was demonstrated in [32]. Relational affordances present a
generalized affordance representation as a joint probability
distribution over all objects, actions, and effects. The authors
of [40] suggest using the (object, action, effect) relationship
in task learning using reinforcement learning. Using actions
only when the effect is relevant to achieving the goal reduces
the search space and improves task learning in real-world
navigation tasks. The work of [3, 4, 5] focuses mainly on
affordance-based object replacement in planning tasks. Using a
modified Hierarchical Task Network planning algorithm, they
achieve flexible explicit object substitution based on functional
affordances extracted by crawling dictionary definitions.

To the best of our knowledge, our work is the first to
use affordance-based planning in everyday long-horizon tasks
while employing implicit and explicit substitutions in plan-
ning. An overview of the related work can be found in Table I.
For the comparison, we define long-horizon tasks as tasks that
need more than seven actions to be fulfilled, similar to [1].

B. Large Language Models in Task Planning

Recently, LLMs have demonstrated remarkable new capa-
bilities and outperformed humans in various domains. How-
ever, their coherent reasoning skills remain somewhat lacking
[38]. Nevertheless, countless recent examples of using LLMs
in robotic task planning exist. According to the authors of
[35], three general operation modes exist: subtask evaluation
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Planning
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Planner
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Evaluation

Autoregressive
Plan Generation

Full Plan
Generation

Step by Step
Plan Generation

LLM with
Planner

Ours
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[1, 48]

[44, 39, 37, 34, 49, 27] [19, 20, 36, 26, 43, 41, 13, 6]

[45, 28, 30, 17, 8, 12]

Fig. 2: A taxonomy of LLMs in planning tasks with the related
work from this section referenced.



Approach Planning Method # Affordances Substitutions Long-
Horizon

Novel
Classes

Lörken and Hertzberg [31] PDDL + Planner 2 (liftablibility & pushability) implicit no no

Wang et al. [40] Reinforcement Learning 1 (movability) none no yes

Awaad et al. [3, 4, 5] Hierarchical Task Network (not directly listed) explicit yes no

Moldovan et al. [32] Own Algorithm similar to Monte Carlo
Search 2 (tap and push) none no no

Chu et al. [9, 10] PDDL + Planner 7 implicit no yes

Xu et al. [46] PDDL + Planner 4 (grasp, cut, contain, support) implicit no yes

Ours PDDL + Planner / Hybrid with LLM 16 explicit & implicit yes no

TABLE I: Comparison to the state of the art in affordance-based planning.

mode, full autoregressive plan generation, and step-by-step
autoregressive plan generation. However, this classification is
only sufficient when using the LLM as the planner. Recent
studies, exemplified by [28] and [8], introduced a different
paradigm where LLMs are used as symbolic goal generators in
conjunction with a planner, which we call LLM with Planner.
This section aims to distinguish between the different ap-
proaches and their respective categories, for which an overview
is provided in Fig. 2.

1) Subtask Evaluation: In each step of plan generation,
all possible actions are scored partly based on a probability
provided by the LLM. The action with the best score is se-
lected. One of the most well-known works on LLM-based task
planning SayCan [1] utilizes a combination of a Reinforcement
Learning-based affordance function and an LLM to predict
the likelihood of an action. This affordance function describes
the feasibility of an action in the given environment and
differs from the previously described affordances. The plan
is generated incrementally by selecting the action with the
highest score resulting from multiplying the two functions.
SayCan is expanded on in [48] by assessing the next-best
action greedily and performing a tree search. They propose
improving Monte Carlo Tree Search planning by incorporating
an LLM that utilizes the context of the world state in the form
of a common-sense heuristic policy.

2) Full Autoregressive Plan Generation: In this mode, the
entire plan is generated based on the user-specified task. The
works of Wu et al. [44] and Wake et al. [39] provide a straight-
forward grounding method for the LLM by identifying objects
in the scene, eliminating duplicates, and simply appending the
object list to the prompt. The prompt instructs the LLM on
what actions to generate and only permits using the provided
objects when generating the plan. Song et al. [37] improve
on that general idea by utilizing dynamic in-context example
retrieval to enhance performance and enable the LLM to replan
in the event of an error. The authors of [34] reduce problem
complexity by not giving the LLM all objects but filtering out
irrelevant objects by traversing a 3D scene graph via collapsing
and expanding notes before letting the LLM output a plan.
Zhou et al. [49] first translate the problem in natural language
into a PDDL domain and problem using the LLM. Then, based
on this PDDL domain, they let the LLM generate a plan,
which the LLM itself can validate and a more precise external

off-the-shelf PDDL validator. The LLM can then use this
feedback again to correct itself. A hybrid approach between
subtask evaluation and full plan generation is introduced in
[27], combined with a semantic checking of whether the goal
condition is fulfilled. Their approach iteratively attempts to
generate the entire plan. If the goal is not satisfied, a greedy
step is taken to select the best next step according to a mixture
of the LLM score and the skill feasibility.

3) Step-By-Step Autoregressive Plan Generation: In con-
trast to the previous mode, the plan is generated one action
at a time, which allows for feedback from the execution of
the action to improve the planning success rate. Huang et al.
[19] addresses the issue of the LLM not being grounded
in the actual scene and robot capabilities by introducing
a two-step process: Firstly, a planning-LLM generates an
ungrounded plan, which is then translated to the robot’s
abilities by a Translation-LLM. In a follow-up work [20],
they first proposed generating the plan step-by-step with the
LLM and continuously injecting feedback after each step
to enhance the performance. The works of [36, 26, 43, 6]
handle plan generation similarly but take advantage of the
code generation capabilities of LLMs by letting it generate
the plan as Python code. In Progprompt [36], feedback is
injected with Python error messages to correct code that does
not work due to syntactic or semantic errors. Tidybot [43]
additionally enables customization of preferences with a two-
step method where the LLM initially identifies patterns from
prior Python code and then generates new Python code with
those patterns and supplementary instructions. [6] proposes
a system that additionally detects corrections of the plan in
natural language by the human and incrementally learns to
adapt plan generation in future tasks. Wang et al. [41] propose
a 4-step approach: describe, explain, plan, and select, where
the LLM is responsible for the describe and explain steps.
In a feedback loop, the LLM iteratively generates plans that
are executed until a failure occurs. Each time the plan fails,
the descriptor describes the current state of the goal and the
failed action in natural language. The explainer reasons why
the plan failed, which is then fed to the planner, which returns
a corrected plan. The selector prioritizes the actions in the plan
to optimize its execution time. An embodied version of the
LLM PaLM that can output plans in natural language based on
multi-modal sentences is proposed in [13]. They embed visual



data and the robot state as context for the user-specified task
in natural language. Their approach PaLM-E allows embodied
long-horizon task planning that can even handle adversarial
disturbance.

4) LLM with Planner: The authors of [45] introduce the
concept of utilizing a pre-trained LLM to translate natural
language commands into PDDL goals. They argue that while
LLMs are not adept at reasoning, which is essential for proper
planning, they excel at translation. The conversion of natural
language into a PDDL goal can be seen as such a translation
task. They demonstrate that LLMs are proficient in extracting
goals from natural language in commonplace tasks. However,
their accuracy diminishes with increasing task complexity.
LLM+P [28] extends this idea beyond goal generation by
generating the entire problem and using a classical planner
to solve the task. They also improve the success rate by
providing minimal examples for a similar goal state within
the given domain. An extension to LLM+P with scene graphs
to generate the problem’s initial state is presented in [30].
To reduce planning time, the authors decompose the overall
goal into subgoals that can be solved more efficiently. Guan
et al. [17] do not only use the LLM to generate the problem
but also the domain itself using syntactic feedback to correct
errors. Additionally, they propose a hybrid planning approach
that uses plans generated by the LLM as a starting ”heuristic”
to speed up planning with a local search planner. The creators
of AutoTAMP [8] explore a similar direction, but instead of
PDDL, they use Signal Temporal Logic Syntax to define the
goal state. Furthermore, they use an automatic syntactic and
semantic checking loop that verbalizes the error to the LLM
and tells it to correct it. In their case, a semantic error is
defined as the resulting plan not being sufficient to solve the
goal, which the LLM evaluates. In the work of [12], the LLM
is used to expand the domain to be able to handle open
worlds as PDDL problems are specified under the closed-
world assumption. This allows the system to handle situations
not explicitly intended by the domain designer. Using a variety
of prompts, they let the LLM generate augmentations of the
PDDL domain by defining new actions or changing allowed
parameter types of actions like replacing a cup with a bowl
containing water. This is functionally similar to affordance-
based planning, except that in our case, the replacement of
one object with another is implicitly given by their shared
affordance.

Our work can be seen as a hybrid approach combining the
LLM with Planner and the Step-By-Step Autoregressive Plan
Generation paradigms. We extend LLM+P by generating the
initial state of the problem based on visual perception and
the robot’s working memory rather than natural language,
which allows for a more dynamic plan generation. We also
introduce automated syntactic and semantic self-correction for
the generated PDDL goal. Furthermore, LLM+P is limited to
closed-world planning, which cannot handle missing objects.
We overcome this limitation with Step-By-Step Autoregressive
Plan Generation, which iteratively updates the robot’s memory
by suggesting alternatives or exploring the scene until all

necessary objects are found.

III. AFFORDANCE-BASED SCENE REPRESENTATION

The problem we address in this section is to extract an
affordance-based scene representation from RGB images of
the scene. Our task planning approach uses this representation
to generate plans and reason about alternatives to missing
objects. Affordances are particularly helpful in the planning
context as they allow for actions in the planning domain
to be defined by the functionality of the objects involved
and not their class, allowing for a more generic planner
[31]. Additionally, they provide useful information about how
objects can be replaced with objects of the same functionality
[4]. To this end, we represent the scene S symbolically as a
set of object-affordance-pairs pi, where each object has one
or more affordances assigned to it as in Equation 1:

S = {p1, . . . , pn}, with

pi = (oi, ki, ai, bi) ∈ (O× N0 × A× [0, 1]4), (1)

where O is the set of all object classes in the domain and A
is the set of all possible affordances. bi represents the object’s
bounding box in normalized coordinates. Thus, the space of
all scenes can be expressed as S = P(O×N0 ×A× [0, 1]4).
The problem of deriving this representation from the image
of a scene, i. e., Object Affordance Detection (OAD), can be
formalized as in Equation 2:

OAD : I→ S (2)

Our definition of affordances aligns with the representation-
alist view, as discussed in [7]. We do not use Gibson [15] initial
proposal, as we do not factor in the agent’s capabilities or rely
on visual features to identify affordances. Instead, we use a
knowledge-based approach to extract affordances by detecting
object classes. To this end, we detect the affordances of the
object as a whole rather than identifying which specific parts
of the object possess a particular affordance. We separate our
approach into two distinct stages, as seen in Fig. 3. The first
stage is object detection, and the second is the creation of an
Object Affordance Mapping (OAM). In the object detection
stage, the goal, as defined in Equation 3, is to find a set of
object instances ô = (o, k) ∈ O × N0 with their bounding
boxes b ∈ [0, 1]4 in normalized coordinates given an image
I ∈ I.

ObjectDetection : I→ P(O× N0 × [0, 1]4) (3)

The OAM associates object classes with the set of affor-
dances assigned to the instances of those classes, leading to

OAM : O→ P(A) (4)

The OAM can be generated offline and stored in a database
as presented in Section III-A. During inference, the previously
generated OAM can be used. The complete approach can be
expressed by

OAD(I) = {(o, k, a, b) |
a ∈ OAM(o), (o, k, b) ∈ ObjectDetection(I)} (5)



Fig. 3: Overview of Object Affordance Detection(OAD). It uses an RGB image of a scene to detect the objects present in the
scene. In the second step, the Object Affordance Mapping (OAM) maps the objects to their corresponding affordances.

A. Object Affordance Mapping using ChatGPT
LLMs have the ability to reproduce real-world knowledge

when prompted in natural language. This is especially true
for commonsense knowledge ([22]), including interaction pos-
sibilities with everyday objects. We exploit the knowledge
reproduction capabilities by querying the LLM with simple
questions that do not involve complex reasoning or context
understanding. We omit the formatting instructions for the
LLM in the prompts for brevity.

• List-Affordances: In this strategy, we iterate over all
objects we want to get the affordances for and ask the
LLM which affordances the object has. As context, we
give the LLM a list of affordances with a short description
for each affordance. This has the advantage of using only
a few tokens and is relatively fast. However, it lacks
accuracy, possibly because the descriptions of affordances
are sometimes unclear.

• Yes/No-Questions: In this strategy, we define a prompt
formulated as a yes-no question for each affordance. We
then query ChatGPT to answer the question with only
yes or no without an explanation. In contrast to the first
strategy, we can describe precisely what an affordance
means. This improves accuracy as ChatGPT only needs
to generate the answer to a binary question. However, we
need significantly more tokens and time for the task.

• Yes/No-Questions + Logical Combinations: Early ex-
periments showed that ChatGPT cannot handle logical
combinations of questions very well. Therefore, in this
strategy, queries contain multiple questions divided into
atomic prompts, only containing one question each. This
approach has the advantage of being more accurate than
all other approaches. Still, it has the disadvantage of
consuming even more tokens than the yes/no questions,
as it often requires multiple questions per affordance.

IV. AUTOGPT+P
To generate plans from a user command, AutoGPT+P uses

a tool-based architecture. The tools are used to iteratively
update the robot’s memory, which contains the affordance-
based scene representation until a final plan is found. A general
overview of our approach can be seen in Fig. 4.

A. Problem Formulation
In the following, let RS be the set of all possible object

relations in the scene S and Λ be the space of natural language.

The overall planning task can be specified as given a scene
description S ∈ S, object relations R ∈ RS , explorable
locations L, and a task in natural language λ ∈ Λ, the system
should return an action sequence or plan P = (α1, . . . , αn)
that fulfills the task. An action αi ∈ A is defined as the
executed capability c by the agent π with the arguments
ρ = (ρ1, . . . , ρn). Here, A refers to the set of all available
actions, and a capability defines the symbolic parameters of
an action with their logical preconditions and effects. Each
agent has a set of capabilities Cπ that are dynamically loaded
at run-time and are derived from the available skills, which
are the programs for low-level action execution on the robot.
S can be updated during the process by exploring a location
l ∈ L and adding the object-affordance-pairs p̂ = OAD(I) to
S with the image I taken at l.

Two relevant sub-tasks during planning are the closed-world
planning problem and the alternative suggestion problem. The
closed-world planning based on tasks in natural language can
be described as follows: Given the fixed scene representation
S ∈ S, object relations R ∈ RS , and the user-specified task
λ ∈ Λ, we need to generate a plan P = (α1, . . . , αn) that
fulfills the given task. This can be written as

ClosedWorldP lanning : (Λ× S× P(RS))→ AN (6)

An alternative suggestion is the problem of suggesting an
alternative object alt ∈ O, where O is the set of object classes
present in the scene, given a user-specified task λ in natural
language and a missing object class o ∈ O needed to fulfill
that task. This can be written as

AlternativeSuggestion : Λ×O→ O (7)

B. AutoGPT+P Feedback Loop
AutoGPT+P is a hybrid planning approach that combines

two planning paradigms introduced in Section II-B: Step-By-
Step Autoregressive Plan Generation for tool selection and
an LLM with Planner in the Plan Tool (Section IV-D). The
motivation behind this design is to fill the robot’s memory
with information using the main feedback loop as specified
in Algorithm 1 until the closed-world planning problem is
solvable with the Plan Tool, thus making the planning process
more versatile.

The tool selection is the central part of the main feedback
loop of AutoGPT+P. It can be specified as

ToolSelection : Λ×M→ T, (8)



Fig. 4: Overview of the AutoGPT+P feedback loop presented in Section IV-B. Green boxes symbolize inputs and outputs,
while blue boxes symbolize discrete steps of the process. The tool selection process chooses one of the tools in the yellow
Tools box. The numbers on top of the boxes show in which section the aspect of the work is explained.

where M is the space of memory configurations and T =
{t1, . . . tn} is the set of tools. So based on the user prompt λ ∈
Λ and the current memory state M ∈M, the tool selection re-
turns a tool t ∈ T . The memory M = (S,R,L, lΠ, λ̂, Alt, P )
consists of an affordance-based scene representation S, a set
of object relations R, locations L, current agent locations lΠ,
instruction history λ̂, known alternatives Alt ∈ (O × O) and
most recent plan P . With M expressed in natural language,
the LLM chooses from the following tools:

• Plan: solves the problem expressed in Equation 6
• Partial Plan: solves the problem expressed in Equation 6

in the best way possible with the restrictions of S.
• Suggest Alternative: solves the problem expressed in

Equation 7
• Explore: move the robot to an unexplored location l ∈ L,

extracts the object-affodance-pairs from the camera image
and updates the scene representation: S ← S∪OAD(I).

After t is selected, it is executed to update the memory M .
The generated plan is executed if either the Plan or Partial
Plan Tool is selected. The plan execution assumes all actions
are executed successfully and does not replan on failure. These
steps are repeated until a final plan is generated via the Plan
Tool, or no tool is selected, which is interpreted as a failure.

C. Affordance-Based Alternative Suggestion

If an explicitly requested object cannot be found within
the scene, our system should reason whether another object
in the scene can replace it. One of the reasons for choosing
an affordance-based scene representation was that affordances
allow us to reason about the functionality of an object. We
leverage this reasoning for the alternative suggestion task
defined in Equation 7.

Our method uses a handcrafted Chain-of-Thought process
[42] consisting of two main steps, detailed in Algorithm 2.
First, we query the LLM which of the affordances of the
missing object class affm are relevant to the task λ specified
by the user. We can now filter out all objects in the scene that
do not have all these affordances and get the most relevant,

Algorithm 1: AutoGPT+P Feedback Loop

Input: Memory M = (S,R,L, lΠ, λ̂, Alt, P ),
User-specified task λ

while ¬final do
t← ToolSelection(λ,M)
if t then

M,final← ExecuteTool(t,M)
end
else

return
end
if M.p then

executeP lan(M.P )
end

end

which we heuristically assume is the rarest affordance in the
scene a∗. Now, we query the LLM to find out which of the
objects is the most similar to the missing object concerning
this affordance. If no objects have all the affordances, or
the LLM returns an object not present in the scene, the
fallback strategy is to query the LLM to suggest the best
replacement for the missing object without explicit affordance
reasoning. Our evaluation in Section V-C demonstrates that
the use of affordances substantially enhances the accuracy of
the substitution.

D. Affordance-Based Planning using an LLM with Planner

This component of our approach maps user-specified tasks
in natural language to a sequence of parameterized actions αi

under a closed-world assumption as defined in Equation 6. It
is an extension of LLM+P [28], with the key differences being
that our Plan Tool (i) generates the initial state of the PDDL
problem from our affordance-based scene representation and
not from natural language, (ii) dynamically generates the
PDDL domain based on the capabilities of the agents and
the OAM, and (iii) checks for the semantic and syntactic



Algorithm 2: Alternative Suggestion
Output: Suggested Alternative alt ∈ O
Data: Object Affordance Mapping OAM , Large

Language Model LLM
affm ← OAM(m)
affrel ← LLM.askForAffordances(m, affm, λ)
Ofiltered ← {o∗ ∈ O | OAM(o∗) ⊆ affm}
if Ofiltered = ∅ then

return LLM.askForObjectDirect(m,O, i)
end
a∗ ← rarestAffordance(affrel, O)
alt← LLM.askForObject(m, a∗, Ofiltered)
if !(alt ∈ Ofiltered) then

return LLM.askForObjectDirect(m,O, λ)
end
return alt

correctness of the generated goal and lets the LLM correct
its own errors.

Similar to LLM+P, we let the LLM generate the de-
sired goal state Γ in PDDL syntax from the user-specified
task λ. Therefore, we need to generate a PDDL domain
∆ = (Θ,Φ, A) and problem without the desired goal state
Ξ̂ = (ω, ι) as a reference for the LLM as explained in
Section IV-D1. The generated goal Γ is then checked for
semantic and syntactic correctness as seen in Section IV-D2.
If there is an error within the goal, the LLM is fed an error
message error ∈ Λ and queried to correct the goal state. If
the goal is correct, a classical planner is invoked with the
generated domain and problem. This process is repeated until
a plan is found or the maximum number of iterations has
been reached. It is more formally described in Algorithm 3
and visualized in Fig. 5.

We use the method for both the Plan and Partial Plan
Tool. The only difference between the tools is the prompt
used to query the goal state from the LLM, which explicitly
allows for an incomplete goal state. A significant advantage
of this method compared to LLM as Planner is that if
the symbolic goal representation accurately represents the
given user-specified task, the generated plan will be optimal
regarding the number of actions.

1) Dynamic Generation of the Affordance-based Domain
and Problem: For the LLM to generate the desired goal state
based on the user-specified task, it needs a PDDL domain ∆
and problem Ξ without the goal state as context.

In PDDL, types are defined by listing all subtypes of a
given type. Our domain has three top-level types: object, agent,
and location. As it should be possible to navigate to another
agent too, for example, to hand over an object, the agent is
a subtype of location. Let sub(θ) define the set of subtypes
of a given type. To build the type hierarchy, we first need to
declare all affordances as object subtypes, so sub(object) =
A. Afterwards, we need to map all object classes that have a
given affordance to the subtype of that affordance. So for all

Algorithm 3: Planning with Self-Correction with ex-
ternal feedback
Input: User-specified task λ, Scene S, Object

Relations R, Agent Locations lΠ Capability
Sets of Agents CΠ, maximum loops n

Output: Plan P
Data: Large Language Model LLM , Predefined

Predicates Φ, Semantic Conditions Σ, Planner
planner

∆← createDomain(S,CΠ,Φ)
Ξ̂← createProblemInitialState(∆, S,R, lΠ)
loops← 0
while !P & loops < n do

loops← loops+ 1
if error then

Γ← LLM.correctGoal(error)
end
else

Γ← LLM.askForGoal(Φ, Ξ̂)
end
Ξ← (ω, ι,Γ)
error ← checkSyntax(∆,Ξ)
error ← checkSemantics(Γ,Σ)
if !error then

P = planner.plan(∆,Ξ)
end

end
return P

affordances a ∈ A Equation 9 holds.

sub(a) = {o | a ∈ OAM(o), o ∈ O} (9)

To model the different capabilities of agents, we need to define
a type for each capability available, so sub(agent) = CΠ.
Additionally, we make all agents that have a capability c
subtypes of that capability type, so for all capabilities c ∈ CΠ

Equation 10 holds.

sub(c) = {π | c ∈ Cπ } (10)

To allow for human-robot collaboration, we need to define
the different agent types, robot, and human, and dynamically
assign costs to them based on user preference.

The actions can be derived directly from the capabilities by
adding an agent of the corresponding capability type to the
parameters and adding an action effect to increase the total
costs based on the agent type. By associating specific costs for
agents in the initial state specification of the PDDL problem,
we can influence the participation of each agent. For example,
by setting the cost of a human to 1000 and of the robot to 1,
the robot will execute all actions that it can perform with its
capabilities and will only ask the human for help if there is
no other possibility.

To define the problem’s initial state, we add each object
instance with its type to the problem’s object definition. The
initial state can be directly derived from R; only the current



Fig. 5: Overview of the Planning Tool. Rounded boxes represent the input and the output of the components that are represented
as rectangles.

agent locations are given by lπ . Finally, the goal state is
queried from the LLM to complete the problem.

The advantage of using affordances in our domain is that
we only need to define one logical action for all objects with
which the action can be performed. Without affordances, we
would need a place action for all combinations of objects
on which other objects can be placed. This would make the
domain far more complex and thus increase the search time
of the planner.

2) Self-Correction with External Feedback: The work of
[16] demonstrated that conversational agents using LLMs can
correct themselves when an external program gives an expres-
sive error message. We leverage this capability by detecting
syntactic and semantic errors within the goal state and thereby
help ground the LLM. A syntactic error can be a wrong use
of parenthesis, non-existent predicates, non-existing objects, or
predicates with objects of the wrong type or quantity. When
parsing the goal state, those errors can be easily checked by
matching the predicate names and object names and types with
those of the domain and initial state.

We define semantic errors as the occurrence of multiple
predicates that cannot be true at the same time in a real scene.
This contrasts to [8], where a semantic error is defined as
an action sequence that does not fulfill the user-specified task
according to the LLM. For example, the object apple cannot be
on the table and the counter at the same time, so the goal state
and (on apple table) (on apple counter) is semantically
incorrect. We can express those semantic conditions Σ∆ using
predicate logic and check whether a goal matches a semantic
condition in the logic programming language Prolog[11],
which is an implementation of first-order predicate logic.
In the following definition, let the disjunctive normal form
(DNF) of Γ be DNF (Γ) = OR(γ1, . . . , γn) with γi =
AND(φi,1, . . . , φi,mi

). We define a goal state Γ to be suf-
ficient to the set of semantic conditions of the domain Σ∆ if
there exists γi where γi is sufficient to all conditions in Σ∆.

Therefore, in the semantic error check specified in Algo-
rithm 4, we transform the goal state Γ into its DNF and
map all sub-states γi to Prolog predicates. We then evaluate

Algorithm 4: Semantic Error Check
Input: Generated Goal State Γ, Set of semantic

conditions Σ
Output: Unfulfilled Condition σ
dnf ← transformToDNF (Γ)
best← ∅
for γ ∈ dnf do

failed← ∅
for σ ∈ Σ do

if !checkCondition(γ, σ) then
failed← failed ∪ σ

end
end
if |best| > |failed| then

best← failed
end

end
return getMostGeneral(best)

all semantic conditions for these predicates. If no sub-state
matches all semantic conditions, we return the manually
specified error message of the condition of the sub-state with
the fewest errors to the LLM to correct itself.

V. EVALUATION AND VALIDATION

We first evaluate the performance of the automated OAM
on our proposed affordances. Then, we assess the success rate
of our Suggest Alternative Tool against a naive alternative
suggestion. Furthermore, we compare the Plan Tool on its
own against SayCan on the SayCan instruction set and our own
evaluation set before evaluating the whole AutoGPT+P system
with scenarios focused on tool selection. In this evaluation,
GPT-3 refers to the GPT-3.5-turbo-0613 model, and
GPT-4 refers to the GPT-4-0613 model accessed by the
OpenAI API.

The quantitative evaluation is conducted via simulation
wherein a scene is represented through symbolic object re-
lations, and actions are executed by applying their respective
action effects to the scene. For evaluating the Plan Tool, all



objects in the scene are known from the beginning, unlike
AutoGPT+P, where this is not always the case. Exploration
was simulated by changing the robot’s location and adding
all objects designated to the explored location to the robot’s
memory. We use Fast Downward [18] as the planner with a
time limit of 300 seconds.

We designed a collection of evaluation scenarios, each con-
sisting of the user’s task, the formal goal state to be achieved,
and the specifications of the scene, including the objects,
relations, and locations. The primary evaluation criterion was
whether the generated plan achieves the objective that meets
the desired goal state. This can be verified by simulating the
plan’s actions using Prolog, transforming the goal into its DNF,
and assessing whether the set of literals that comprise a sub-
state of the DNF is a subset of the literals that describe the
scene state after executing the plan.

A. Object Affordance Mapping using ChatGPT

To evaluate the OAM, the relevant metrics1 are precision
(prec), recall (rec), and F1-score (F1) with

prec =
TP

TP + FP
, rec =

TP

TP + FN
, F1 = 2× prec× rec

prec + rec

where in our case
• TP is the number of true positives, so object-affordance-

pairs (OAP) that are both in the ground truth (GT) and
were detected

• FP is the number of false positives, so OAPs that were
detected but not the GT

• FN is the number of false negatives, which is the number
of OAPs that are in GT but were not detected

An independent ”training set” of 30 object classes was used
to optimize the prompts. The evaluation involved a test set
comprising 70 object classes, each labeled with their respective
affordances. These were also used to evaluate the Plan and
Suggest Alternative Tool. We examined the metrics for differ-
ent affordance extraction methods listed in Section III-A with
our 40 proposed affordances that can be seen in the appendix.

GPT
List-Affordances Yes/No Logical

prec rec F1 prec rec F1 prec rec F1

3 0.31 0.49 0.38 0.70 0.78 0.74 0.78 0.85 0.81

4 0.59 0.67 0.62 0.78 0.95 0.86 0.87 0.91 0.89

TABLE II: Comparison of ChatGPT OAM methods on our
proposed set of affordances for affordance-based planning with
the best values for precision, recall, and F1-score in bold

As the results in Table II indicate, GPT-4 outperforms GPT-
3 in most cases. The data suggests that the most effective
method is the combination of yes/no questions and logic.
Despite achieving a high level of accuracy in affordance
detection, the uncertainty in affordance estimation is a factor
that should be considered in future work.

1All these metrics fall within the range of 0 to 1, with higher values
indicating better performance.

GPT-3 GPT-4
Naive Ours Naive Ours

simple 0.73 0.87 0.90 0.90
medium 0.63 0.90 0.70 0.83

complex 0.33 0.80 0.67 0.80

TABLE III: Comparison of the success rate of our Suggest
Alternative Tool with a naive approach. The best values for
the success rate are in bold.

B. Suggest Alternative Tool

For the Suggest Alternative Tool, we compare our approach
with a naive alternative suggestion approach. This approach
asks the LLM to determine which object from the scene
can best replace the missing object without any further rea-
soning. We evaluate the performance of both methods using
30 predefined scenarios. Each scenario includes the missing
object, the user-specified task, the objects in the scene, and
a list of allowed alternative objects. The task is considered
accomplished if the method provides one of the permitted
alternatives.

We use 30 scenarios with three difficulty levels, each based
on the number of objects present in the scene. The first level is
simple and involves five objects. The medium level has twenty
objects, whereas the complex level has 70 objects, with one
missing. Our rationale behind this setup is that as the number
of objects in a scene increases, it becomes more challenging to
identify the missing object accurately. Our approach and the
naive approach were assessed using GPT-3 and GPT-4, and
the results are available in Table III.

We found that as the number of objects in the scene
increases, all approaches experience decreased accuracy. How-
ever, compared to the naive approach, which experiences a
significant drop in accuracy from 0.73 to 0.33 for GPT-3
and from 0.9 to 0.67 for GPT-4, our approach has only a
slight drop in accuracy from 0.9 to 0.8 and from 0.87 to 0.8,
respectively. In addition, unlike the naive approach, there is
only a slight difference in accuracy between GPT-3 and GPT-
4 when using our approach. This could be because the LLM is
guided through the replacement process by a directed Chain-
of-Thought process, eliminating incorrect answers.

C. Plan Tool

Our Plan Tool was assessed using two sets of scenarios.
The first set comprised scenarios from SayCan [1], which
was utilized to draw comparisons between our method and
SayCan, a state-of-the-art planning approach using LLMs. We
created the second set of scenarios to find the limitations of
the LLM’s reasoning capabilities for understanding the user’s
intentions. Therefore, we created five subsets of scenarios,
each of them containing 30 prompts with a wide variety of
goal tasks from cutting, heating, cleaning, pouring, opening,
or moving objects. The Simple Task and Simple Goal subsets
contain simple user requests using either a verb to express
the goal or the goal in the form of a state. Complex Scene
contains task similar to Simple Goal but in scenes with 100



instead of around 30 objects like the scenes in all other subsets.
Complex Goal increases complexity compared to Simple Goal
by logically connecting the subgoals with phrases like ”and”,
”or”, ”if”, etc. The other two sets Knowledge and Implicit
contain more difficult-to-understand tasks. Knowledge requires
commonsense knowledge to derive the goal state, while the
Implicit set does not directly contain a task but more implicitly
phrased user intentions like ”I am thirsty”.

As an additional baseline, we compare our approach to a
naive LLM as Planner implementation that generates a plan
based on a textual representation of the initial scene state,
a description of the available actions, and the user-specified
task in natural language. To assess whether the affordance
information alone improves the planning capabilities of the
LLM, we compare it against a second LLM as Planner
implementation that additionally has information about the
objects’ affordances in the prompt.

As can be seen in Table IV, our method outperforms the
naive LLM as Planner implementation for both GPT-3 and
GPT-4, confirming the findings of [28] that the LLM with
Planner paradigm is superior. Contrary to our expectations, the
addition of affordance information decreased the performance
of the LLM as Planner version. This could be explained by
the LLM being overwhelmed by the additional affordance
information, which was responsible for almost half of the
prompt length, and thus lost track of the task at hand. This
shows that directly providing affordance information to the
LLM is not sufficient, but using the affordance information in
a rule-based system like a classical planner – as we do – is a
more effective approach.

Moreover, our method performs equally or better than
SayCan in all categories when using GPT-4 but performs
worse when using GPT-3. Utilizing GPT-4, our approach
outperforms SayCan, especially in the Embodiment and Long-
Horizon instruction categories. The Embodiment category
refers to scenarios where the robot’s current state needs to be
considered, whereas Long-Horizon refers to tasks that need
more than 7 actions to fulfill. This is likely owed to our
method solely creating a goal state from the user’s statement
rather than the entire plan. Thus, instructions that require
knowledge of the robot’s position or current state, or those
that require extensive planning, are not as constrained by
LLM’s limited reasoning capabilities, as the planner generates
the plan in a rule-based manner. It should be clarified that
SayCan is designed to optimize the plan’s execution, not just
the plan itself. Furthermore, we utilize a more recent LLM
as opposed to SayCan’s use of PaLM. Also, as can be seen
by the leap in success rate from GPT-3 to GPT-4, the used
LLM has a significant influence on the performance of our
method. Therefore, it is not possible to directly compare to the
approach of SayCan and make absolute statements about the
superiority of one method over the other as long as different
LLMs are used as a backbone for planning. However, as
PaLM is not publicly available, we are not able to provide
an evaluation that makes a direct comparison possible.

We can see from Table V that the planner performs with-

out failure for the Simple Task and Simple Goal subsets
but has more problems with complex goals and the more
vague tasks in the Knowledge and Implicit subsets. GPT-
3 seems to have even more problems interpreting vague
user instructions to translate them to goals. Additionally,
as the planner always finds the minimal plan for the gen-
erated goal, most of the found plans are also minimal.
The reason for a generated plan not being minimal is
primarily a generated goal that is too restrictive. For ex-
ample, if the task is ”Bring me an apple or a banana”
and the generated goal is inhand apple0 human0 instead
of or (inhand apple0 human0) (inhand banana0 human0),
the generated plan will not be minimal if it requires more
actions to bring the banana than the apple. The average
planning time of our approach in the SayCan set of instructions
was 3.3 seconds with GPT-3 and 15,4 seconds with GPT-
4. The scene complexity had a significant influence on the
planning time of the Fast Downward planner and only a
minor influence on the inference time of the LLM. Comparison
between the Simple Goal and Complex Scene sets show that
increasing the object number from 30 to 100 only marginally
increases the average LLM inference time from 2.7 to 2.8
seconds for GPT-3 and from 19.1 to 21.8 seconds for GPT-4.
The overall planning time increases from 8.4 to 31.6 for GPT-
3 and from 28.0 to 59.4 seconds for GPT-4. This shows that
the bottleneck for the planning time in more complex scenes
is the planner and not the LLM.

The results also show the efficiency of self-correction with
external feedback, which is a central improvement of our work
over LLM+P. The Plan Tool without self-correction can be
seen as an implementation of LLM+P that generates the initial
state of the PDDL problem directly from the environment
representation instead of natural language. It improves the
success rate slightly from 0.32 to 0.49 for GPT-3 and 0.79 to
0.81 for GPT-4. The improvement is rather insignificant on our
dataset, however, on the SayCan instruction set, the difference
between GPT-4 with and without self-correction is far more
significant, showing an improvement from 0.78 to 0.98, as
can be seen in Table IV. It is mostly caused by the Structured
Language instruction family and can be mostly explained by
semantic error correction. For example, for the task ”Pick up
the apple and move it to the trash”, ChatGPT answers with
and (inhand apple0 robot0) (in apple0 trash_can0)

which is recognized by the semantic error detection and
responded with the error message ”There is a logical contra-
diction in the goal. An object that is in the hand of an agent
cannot be in another hand or at another place. Please correct
your answer”. ChatGPT then corrects its answer to

in apple0 trash_can0.
Overall, the results show that even though simple and

explicit tasks can be translated well by GPT-4, it struggles
to correctly interpret the user’s intentions when the goal is
more indirectly stated. Contextual cues from the environment
must be considered to understand the user’s goal, as most
humans would be able to do. In addition, this also shows that
the system as a whole should seek clarification if the user’s



Instruction Family SayCan
(plan)

GPT-3 As
Planner

GPT-3 As
Planner+A

GPT-4 As
Planner

GPT-4 As
Planner+A

GPT-3
Ours

GPT-3 Ours
(Auto)

GPT-4
Ours

GPT-4 Ours
(Auto)

NL Primitive 0.93 0.47 0.53 0.93 0.93 0.73 0.73 1.00 1.00
NL Verb 0.60 0.00 0.00 0.67 0.87 0.27 0.33 0.93 1.00
NL Noun 0.93 0.13 0.07 0.26 0.20 0.27 0.40 0.93 1.00
Structured 0.93 0.20 0.13 0.87 0.60 0.00 0.13 0.20 0.93

Embodiment 0.64 0.09 0.00 0.55 0.55 0.64 0.64 0.82 1.00
Crowd-Sourced 0.73 0.13 0.07 0.93 0.73 0.27 0.33 0.73 0.93
Long-Horizon 0.73 0.00 0.00 0.40 0.33 0.20 0.33 0.80 1.00

Drawer 1.00 0.00 0.00 0.00 0.00 0.66 0.33 1.00 1.00
Average 0.81 0.14 0.12 0.66 0.59 0.34 0.40 0.78 0.98

TABLE IV: Ablation results of the planning success rate with our Plan Tool with different versions of GPT and with(Auto)
or without automatic self-corrections on the SayCan instruction set. GPT-X as Planner refers to the naive baseline of using
the LLM directly as the planner, GPT-X as Planner+A refers to the same planner with additional context information about
affordances added to the prompt.

Subset
GPT-3 GPT-3 Auto GPT-4 GPT-4 Auto

success min success min success min success min

Simple
Task 0.70 0.63 0.70 0.63 0.97 0.97 1.00 1.00

Simple
Goal 0.63 0.60 0.90 0.83 1.00 0.97 1.00 0.93

Complex
Scene 0.17 0.13 0.77 0.53 0.93 0.87 0.97 0.93

Complex
Goal 0.23 0.17 0.33 0.23 0.87 0.70 0.87 0.73

Knowledge 0.10 0.10 0.10 0.10 0.53 0.53 0.57 0.57
Implicit 0.10 0.10 0.13 0.13 0.43 0.40 0.47 0.43
Average 0.32 0.29 0.49 0.42 0.79 0.74 0.81 0.77

TABLE V: Ablation results of planning with our Plan Tool
with different versions of GPT and with or without automatic
self-corrections (Auto) on our instruction set. Success refers
to the success rate, whereas min refers to the rate of plans that
had the minimal length possible for the given goal.

intentions are unclear.

D. AutoGPT+P

As the planning process for AutoGPT+P involves several
steps beyond just planning, using previous scenarios and
metrics alone is inadequate. For this reason, we do not only
evaluate AutoGPT+P against SayCan as the scenarios from
the SayCan set of instructions do not include exploration or
explicit object substitution. A crucial aspect of AutoGPT+P
is selecting the appropriate tool for each situation and only
calling tools other than the Plan Tool if they are not in the
scene. Therefore, we have incorporated an evaluation metric
to determine the optimal number of tools and evaluated the
rate of successful plans that use the optimal number of tools.
This metric is referred to as minimal tools in Table VI.

We designed five scenario sets to assess performance, each
containing 30 scenarios. Four of these sets concentrate on
individual tools, while the final set requires combining all
tools to accomplish complicated tasks. We randomly picked
scenarios from the prior segment for the Plan subset. Mean-

Subset
GPT-3 GPT-4

success minimal minimal
tools success minimal minimal

tools

Plan 0.53 0.50 0.30 0.87 0.80 0.80
Partial
Plan 0.37 0.20 0.23 0.83 0.67 0.13

Explore 0.10 0.03 0.00 0.77 0.23 0.63
Suggest

Alternative 0.13 0.13 0.03 0.77 0.53 0.73

Combined 0.13 0.07 0.10 0.70 0.53 0.47
Average 0.25 0.19 0.13 0.79 0.55 0.55

TABLE VI: Evaluation of AutoGPT+P in the metrics success
rate, minimal plan length, and minimal tool usage rate com-
paring GPT-3 to GPT-4. Best values are written in bold.

while, we crafted entirely new scenarios for the Explore and
Partial Plan subsets. For the Explore set, hints were partially
provided regarding the location of objects, such as ”Bring me
the cucumber from the fridge”. The Suggest Alternative and
Combined sets feature the same scenarios with the exception
that for the Combined set, only the initial location of the robot
is explored. The results can be viewed in Table VI.

As can be seen from the Plan and Partial Plan set,
introducing a prior tool selection process does not make
the performance worse compared to the scenarios from the
planning evaluation. With exploration involved, the success
rate gets slightly worse, with the most common mistake being
planning before having explored all relevant locations. The
Suggest Alternative set also has a similar lowered success
rate, caused mainly by invalid alternative suggestions. This is
expected as the success rate of the medium-sized scenes was
0.83 for the Suggest Alternative Tool. The success rate for
the Combined set is 0.07 lower than the Suggest Alternative
set, which shows that the addition of exploration does lead to
a lower success rate than just using the Suggest Alternative
Tool alone. Reviewing the data, the most common reason for
failure is planning before all necessary objects or replacements
are determined.



What can also be seen is that the tool usage is often minimal
when only one tool needs to be used, with the exception of the
Partial Plan set where the Suggest Alternative Tool is often
called or the tool selection gets stuck in a loop of selecting
Partial Plan. From the Explore scenarios, we can observe that
when given a hint of the location of an item, the tool selection
never fails to explore the correct location. However, when
not given any clues, the tool selection seems to randomly
explore locations even if, from the name of the location, it
can be inferred that the relevant objects are unlikely there.
For example, the system tries to explore the window location
to search for vegetables.

In contrast to GPT-4, GPT-3 mostly fails at the tool selection
task. For Plan and Partial Plan sets, it performs in the same
success range as in the Plan Tool scenarios. However, the
tool selection is not optimal even for those, as seen from the
minimal tools rate. If it needs to use the Explore and Suggest
Alternative tools, it seemingly chooses the tools randomly and
thus has a low success rate.

Overall, the results show the viability of the tool selection
process to solve tasks with missing objects and partially
unexplored scenes. However, issues like preemptive calling of
the Plan Tool or inadequate calls of the Suggest Alternative
Tool remain. Furthermore, as the evaluation set is limited in
scope, the results should be approached with caution.

E. Validation Experiments on ARMAR-6 and ARMAR-DE

To validate the feasibility of our system, we performed
several experiments on the humanoid robots ARMAR-6 [2]
and ARMAR-DE. As our approach primarily focuses on
object affordance detection and planning, we made several
assumptions to ease the integration on the robot. We relied on
predefined object models for manipulation tasks like grasping,
placing, and pouring. Additionally, the locations the robot
could navigate to and the environment model are entirely
known. However, we dynamically detect the locations of all
objects that can be manipulated. Furthermore, to detect liquids
inside containers, we assume a predefined liquid is in every
liquid container. The object relations are estimated based on
the related objects’ affordances, and the spatial relations of
the object poses are estimated by a fine-tuned MegaPose
model [25]. For object detection, we used the yolov5 object
detector [21] that was fine-tuned on a predefined object set
from [47]. For grasping and placing, we used an affordance-
based, memory-centered manipulation framework[33], and for
pouring, we used an affordance keypoint detection method
[14] to detect the opening of the source container and assume
that the target container is symmetric, so moving the object’s
keypoint above the center of the target object is sufficient.
We avoided using real liquids during the experiments to avoid
damage to the robot. We performed four kinds of tasks with
five different formulations of our user requests each. These
included picking and placing, handover, pouring, and wiping
tasks. All of these require different levels of human-robot
collaboration. Whereas the robot needs no help executing the
pick and place and wiping tasks, it needs to ask for help for

the pouring tasks to open the liquid container. In handover
tasks, the human and the robot are equally part of the task. As
shown in the supplementary material, our proposed system,
AutoGPT+P, exhibits proficiency in generating executable
plans on our robot. Out of the 20 real-life scenarios, 15
were planned successfully. Subsequent investigation of failure
cases revealed that most of these cases could be attributed to
false positive detection of objects or the robot’s inability to
accurately grasp the target object. This highlights the limited
resilience of our approach to failures, which needs to be
addressed in future work. A more in-depth evaluation of the
experiments can be found in the supplementary material file.

F. Discussion

The results of our evaluation show the potential of Auto-
GPT+P in real-world scenarios. We show that our system can
handle difficult planning situations, such as missing objects.
Furthermore, our system achieves a high success rate in trans-
forming user-specified tasks into valid plans. For explicitly
stated user goals, it has a planning success rate of nearly
100%. However, when the user-specified task is more vague,
it is mostly limited by its inability to assess the uncertainty in
the user’s intent and ask for clarification. Another limitation of
AutoGPT+P’s application in the real world is that everything
is modeled in a deterministic way, so uncertainties caused
by object recognition, the LLM-generated Object Affordance
Mapping, or the unclear user-specified tasks are not taken into
account. Furthermore, we do not incorporate any feedback
(e. g., about skill failures) from execution into our approach,
which makes it prone to errors when executed in real-world
scenarios. In our evaluation, we also did not consider plans
longer than 20 steps, but [30] provides evidence that LLM+P,
and thus our approach, cannot effectively solve problems that
require longer plans.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose representing objects in the scene
as a set of object-affordance-pairs. The scene representation is
generated through combined object detection and Object Af-
fordance Mapping (OAM), where object classes are associated
with their affordances. Our work demonstrates the utility of
ChatGPT in automatically deriving an OAM for novel classes
based on a fixed set of predefined affordances. On our newly
proposed set of affordances for planning, we achieved an F1-
score of 89%.

We utilized the scene representation in AutoGPT+P, our
proposed planning system, which uses the concept of affor-
dances for planning and alternative suggestions. It consists of
an LLM-based tool selection loop that chooses from one of
four tools to solve the user-specified task: Plan, Partial Plan,
Explore, and Suggest Alternative. The Suggest Alternative Tool
uses the affordances of a missing object to steer the LLM
during the alternative suggestion process. Additionally, the
Plan and Partial Plan Tool utilize the LLM to produce goal
states in an affordance-based planning domain and generate a
plan fulfilling the (partial) goal with a classical planner. The



experiments demonstrate that the Plan Tool vastly outperforms
the naive baseline of a naive LLM as Planner implementation.
The self-correction of semantic and syntactic errors has a
significant influence, raising the success rate from 78% to 98%
when compared to the method without self-correction.

Furthermore, our affordance-guided Suggest Alternative
Tool outperforms a naive approach in scenes with 20 and
70 objects by 13%. When evaluating the system’s overall
performance, we reach an average success rate of 79% on our
dataset containing 150 tasks. Difficulties persist mainly due to
the LLM selecting incorrect tools. Therefore, a reevaluation
of the tool selection process is necessary to address this issue.

Our validation experiments show that the generated plans
can be successfully executed on the robot and that the sym-
bolic representation of objects from the planning domain
can be transferred to the subsymbolic object representations
needed for skill execution, however, our experiments also
showed the low resilience to failures during execution.

In future work, probabilistic aspects should be integrated
for improved accuracy in real-world deployment. This involves
representing the OAM as a probabilistic function that can be
updated incrementally based on user feedback or execution.
Alternatively, direct verbal corrections from the human like
”You cannot use a fork for cutting.” can also be taken into
account to update the probability of a given affordance. The
system should also decide whether to retry a failed action
or generate a different plan instead based on the updated
confidence of the affordance. This could reduce the error rate
during execution. Additionally, a probabilistic representation
of the object-affordance-pairs, which includes the confidence
level from the object detection, can be combined with this. The
resulting probabilistic scene representation can then be used
in conjunction with a planner that optimizes the probability of
a plan’s success rather than just plan length.

Furthermore, a more versatile human-robot interaction
would be beneficial. This involves equipping the system with
the capability to seek clarification if the user’s instruction is
unclear and granting the user the ability to modify or terminate
the plan during execution.
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Santos-Victor, and Luc De Raedt. Relational affordances
for multiple-object manipulation. Autonomous Robots,
42:19–44, 2018.

[33] Christoph Pohl, Fabian Reister, Fabian Peller-Konrad,
and Tamim Asfour. MAkEable: Memory-centered and
Affordance-based Task Execution Framework for Trans-
ferable Mobile Manipulation Skills. arXiv preprint
arXiv:2401.16899, 2024.

[34] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. SayPlan:
Grounding Large Language Models using 3D Scene
Graphs for Scalable Task Planning. arXiv preprint
arXiv:2307.06135, 2023.

[35] Christina Sarkisyan, Alexandr Korchemnyi, Alexey K.
Kovalev, and Aleksandr I. Panov. Evaluation of Pre-
trained Large Language Models in Embodied Planning
Tasks. In Artificial General Intelligence, pages 222–232,
2023.

[36] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. ProgPrompt: Generating
Situated Robot Task Plans using Large Language Mod-
els. In IEEE International Conference on Robotics and
Automation, 2023.

[37] Chan Hee Song, Jiaman Wu, Clayton Washington,

https://doi.org/10.5281/zenodo.7347926


Brian M. Sadler, Wei-Lun Chao, and Yu Su. LLM-
Planner: Few-Shot Grounded Planning for Embodied
Agents with Large Language Models. arXiv preprint
arXiv:2212.04088, 2023.

[38] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. Large Language Models
Still Can’t Plan (A Benchmark for LLMs on Plan-
ning and Reasoning about Change). arXiv preprint
arXiv:2206.10498, 2023.

[39] Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun
Takamatsu, and Katsushi Ikeuchi. ChatGPT Empowered
Long-Step Robot Control in Various Environments: A
Case Application. IEEE Access, 11:95060–95078, 2023.

[40] Chang Wang, Koen V. Hindriks, and Robert Babuska.
Robot learning and use of affordances in goal-directed
tasks. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2288–2294, 2013.

[41] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and
Yitao Liang. Describe, Explain, Plan and Select: In-
teractive Planning with Large Language Models En-
ables Open-World Multi-Task Agents. arXiv preprint
arXiv:2302.01560, 2023.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. arXiv preprint
arXiv:2201.11903, 2023.

[43] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lep-

ert, Andy Zeng, Shuran Song, Jeannette Bohg, Szymon
Rusinkiewicz, and Thomas Funkhouser. TidyBot: Per-
sonalized Robot Assistance with Large Language Mod-
els. arXiv preprint arXiv:2305.05658, 2023.

[44] Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and
Haibin Yan. Embodied Task Planning with Large Lan-
guage Models. arXiv preprint arXiv:2307.01848, 2023.

[45] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. Translating Natural Language to Plan-
ning Goals with Large-Language Models. arXiv preprint
arXiv:2302.05128, 2023.

[46] Ruinian Xu, Hongyi Chen, Yunzhi Lin, and Patricio A.
Vela. SGL: Symbolic Goal Learning in a Hybrid,
Modular Framework for Human Instruction Following.
IEEE Robotics & Automation Letters, 7(4):10375–10382,
2022.

[47] Abdelrahman Younes and Tamim Asfour. KITchen: A
Real-World Benchmark and Dataset for 6D Object Pose
Estimation in Kitchen Environments. arXiv preprint
arXiv:2403.16238, 2024.

[48] Zirui Zhao, Wee Sun Lee, and David Hsu. Large Lan-
guage Models as Commonsense Knowledge for Large-
Scale Task Planning. arXiv preprint arXiv:2305.14078,
2023.

[49] Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu,
and Lei Ma. ISR-LLM: Iterative Self-Refined Large
Language Model for Long-Horizon Sequential Task Plan-
ning. arXiv preprint arXiv:2308.13724, 2023.



APPENDIX

A. Proposed Affordances for Planning

The following table lists all affordances that were detected using our automatic OAM using ChatGPT. Affordances in bold
are used in the planning domain that is used for evaluation.

Affordance Description

grasp The object can be grasped in any way

carry The object can be carried with two hands

assisted-
carry

Two or more people can carry the ob-
ject cooperatively without being in each
other’s way

cut The object can be used to cut other
objects

contain The object is designed to put either ob-
jects or liquids inside of it

liquid-
contain

The object is designed to put liquids
inside of it

enclosed-
contain

The object can be closed so the objects
stored inside it do not fall or leak out
when moving

pour The object can be used to pour liquids

precise-
pour

The object can be used to precisely pour
liquids into small containers like glasses

drink The object is designed to drink from

constrained-
move

The object can only be moved with
restrictions as it is mounted to another
object like a door

rotate The object can be turned

axis-roll The object can be rolled around an axis

free-roll The object can be rolled freely in any
direction as it is approximately sphere-
shaped

push The object can be pushed away from
oneself

pull The object can be pulled towards oneself

open The object can be opened

close The object can be be closed

support The object provides good support for
other objects standing on it

stack The object can be stacked on objects of
the same type

Affordance Description

sturdy-
support

The object supports other objects on it
and it allows to cut objects on top of it

vertical-
support

The object can be leaned against safely

scoop The object can be used to scoop or shove
material like powder or objects

stir The object can be used as a tool to stir

distance-
connect

The object physically connects other ob-
jects without the connected objects need-
ing to be in contact

contact-
connect

The object connects objects together

pierce The object can be used to pierce through
other objects

pick The object can be used to pierce other
objects to pick them up

hit The object can be used to hit other
objects with

pound The object can be swung to pound other
objects

swing The object can be swung to hit other
objects with

dry-swipe The object can be used to wipe dust or
rubble efficiently

wet-swipe The object can be used to swipe other
objects with water

heat The object can be used to make other
objects or liquids warmer

heat-
resistance

The object can be safely exposed to
temperatures over 100 degrees celcius

liquid The object is a liquid

drinkable The object can be safely drunk by a
human

consumable The object can be safely consumed by a
human



B. Description of Experiments on ARMAR-6 and ARMAR-DE

The aim of the experiments is to validate that generated plans can be executed on a real robot. The actually executed actions
are subject to improvement but work as a proof of concept for mapping from symbolic to subsymbolic actions. Failure cases
during the experiments were mostly caused by object detection and object localization. To make the execution process more
straightforward we ignored classes that were often detected as false positives. As the main focus of this work is not object
detection, this should be justifiable. We plan to integrate a more robust object detector and localizer into our approach to be
less prone to errors. When there were no false negatives or positives our method reliably generated valid plans with only a few
failure cases. For example, the goal state for ”Bring me a coffee cup” was generated to be and (in-hand coffee_cup0
robot0) (at robot0 human0). The results are described in the following notation:
Task: Describes the user-specified task in natural language (With other formulations that resulted in the same plan, but are
not shown in the video in brackets)
Locations: Describes known locations that can be explored
Initial State: Describes the initial state unknown to the robot (except for agent locations). Object relations are
discovered by object detection.
Generated Plan: Used Tools with parameters, for the PLAN Tool the generated goal and plan are listed below, for
SUGGEST ALTERNATIVE the suggested alternative to the missing object is listed below in the notation ”missing ->
alternative”
Failures: user-specified tasks that should result in the same plan but do not (due to reasons stated in brackets). We only
describe failure cases due to detection and planning as failure cases due to execution are independent of our approach. For
execution failures we simply restarted the experiment.

1) Pick and Place:
Task: ”Put the sponge next to the screwbox” (”Put the sponge on table1”, ”Put the sponge on the other table”)
Locations: table0, table1
Initial State:

at robot0 table1, on sponge0 table0, on tea_packaging0 table0, on tea_packaging1 table0,
on milk_box0 table0, on coffee_cup0 table0, liquid_in milk0 milk_box0, closed milk_box0, on
screw_box0 table1, on spraybottle0 table1, on grease0 table1, on soap0 table1

Generated Plan:
EXPLORE table0
PLAN (for goal: on sponge0 table1)

grasp robot0 sponge0 table0 left (Robot grasps sponge from table0 with left hand)
move robot0 table0 table1 (Robot moves from table0 to table1)
place robot0 sponge0 table1 left (Robot places sponge on table1 with the left hand)

Failures:
”Put the sponge next to the spraybottle” (due to misdetected spraybottle)
”Put the sponge on the table in front of you” (the PLAN tool does not know the initial position before
exploration, so the wrong table is set as the target)

2) Handover:
Task: ”Give me a glass” (”Fetch me a glass, ”I want to have a glass”, ”Hand me a glass over”)
Locations: table0, human0
Initial State:

at robot0 human0, on coffee_cup0 table0, on milk_box0 table0, liquid_in milk0 milk_box0,
closed milk_box0

Generated Plan:
EXPLORE table0
SUGGEST ALTERNATIVE glass

glass -> coffee_cup

PLAN (for goal: in-hand coffee_cup0 human0)

grasp robot0 coffee_cup0 table0 left (Robot grasps coffee cup from table0 with left hand)
move robot0 table0 human01 (Robot moves from table0 to the human)
handover robot0 human0 coffee_cup left (Robot gives human the coffee cup)

Failures:

”Bring me a glass” (Results in goal state and (in-hand coffee_cup0 robot0) (at robot0 human0))



3) Pouring:
Task: ”I want a glass of water” (”Pour me a glass of water”, ”I want to drink water”, ”I am thirsty”)
Locations: table0
Initial State:

at robot0 table0, at human0 table0, on coffee_cup0 table0, on milk_box0 table0, liquid_in
milk0 milk_box0, closed milk_box0

Generated Plan:
SUGGEST ALTERNATIVE glass

glass -> coffee_cup

SUGGEST ALTERNATIVE water

water -> milk

PLAN (for goal: liquid_in milk0 coffee_cup0)

open human0 milk_box0 left (Robot asks human to open the milk box for it)
grasp robot0 milk_box0 table0 right (Robot grasps milk box from table0 with right hand)
pour robot0 milk_box0 milk0 coffee_cup0 right (Robot pours milk from the milk box to the coffee cup)

Failures:

”I want a cup of water” (LLM keeps calling SUGGEST ALTERNATIVE coffee cup0, this is an entirely
wrong usage of this tool)

4) Wiping:
Task: ”I spilled milk on this table” (”Clean this table”, ”Wipe this table”, ”This table is dirty”)
Locations: table0, table1
Initial State:

at robot0 human0, at human0 table0, on screw_box0 table1, on spraybottle0 table1, on grease0
table1, on soap0 table1, on sponge0 table1

Generated Plan:
EXPLORE table1
PLAN (for goal: clean table0)

grasp robot0 sponge0 table1 left (Robot grasps sponge from table1 with left hand)
move robot0 table1 table0 (Robot moves from table1 to table0)
wipe robot0 table0 sponge left (Robot wipes table0 with sponge in left hand)

Failures:

”I spilled my milk on the table” (LLM generates goal state clean table1, which is clearly not meant as the
human is at table0.)
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