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Abstract—We review the work on data-driven grasp synthesis
and the methodologies for sampling and ranking candidate grasps.
We divide the approaches into three groups based on whether they
synthesize grasps for known, familiar, or unknown objects. This
structure allows us to identify common object representations and
perceptual processes that facilitate the employed data-driven grasp
synthesis technique. In the case of known objects, we concentrate
on the approaches that are based on object recognition and pose
estimation. In the case of familiar objects, the techniques use some
form of a similarity matching to a set of previously encountered
objects. Finally, for the approaches dealing with unknown objects,
the core part is the extraction of specific features that are indicative
of good grasps. Our survey provides an overview of the different
methodologies and discusses open problems in the area of robot
grasping. We also draw a parallel to the classical approaches that
rely on analytic formulations.

Index Terms—Grasp planning, grasp synthesis, object grasp-
ing and manipulation, object recognition and classification, visual
perception, visual representations.

I. INTRODUCTION

G IVEN an object, grasp synthesis refers to the problem of
finding a grasp configuration that satisfies a set of criteria

relevant for the grasping task. Finding a suitable grasp among
the infinite set of candidates is a challenging problem and has
been addressed frequently in the robotics community, resulting
in an abundance of approaches.

In the recent review of Sahbani et al. [1], the authors di-
vide the methodologies into analytic and empirical. Following
Shimoga [2], analytic refers to methods that construct force-
closure grasps with a multifingered robotic hand that are dex-
terous, in equilibrium, stable, and exhibit a certain dynamic
behavior. Grasp synthesis is then usually formulated as a con-
strained optimization problem over criteria that measure one or
several of these four properties. In this case, a grasp is typically
defined by the grasp map that transforms the forces exerted
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12071, Spain (e-mail: Antonio.Morales@uji.es).

T. Asfour is with the Karlsruhe Institute of Technology, Karlsruhe 76131,
Germany (e-mail: asfour@kit.edu).

D. Kragic is with the Centre for Autonomous Systems, Computational Vision
and Active Perception Lab, Royal Institute for Technology, Stockholm 100 44,
Sweden (e-mail: dank@kth.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2013.2289018

at a set of contact points to object wrenches [3]. The criteria
are based on geometric, kinematic, or dynamic formulations.
Analytic formulations toward grasp synthesis have also been
reviewed by Bicchi and Kumar [4].

Empirical or data-driven approaches rely on sampling grasp
candidates for an object and ranking them according to a specific
metric. This process is usually based on some existing grasp
experience that can be a heuristic or is generated in simulation or
on a real robot. Kamon et al. [5] refer to this as the comparative
and Shimoga [2] as the knowledge-based approach. Here, a
grasp is commonly parameterized in [6] and [7]:

1) the grasping point on the object with which the tool center
point should be aligned;

2) the approach vector which describes the 3-D angle with
which the robot hand approaches the grasping point;

3) the wrist orientation of the robotic hand;
4) an initial finger configuration.
Data-driven approaches differ in how the set of grasp candi-

dates is sampled, how the grasp quality is estimated, and how
good grasps are represented for future use. Some methods mea-
sure the grasp quality based on analytic formulations, but more
commonly, they encode, e.g., human demonstrations, perceptual
information, or semantics.

A. Brief Overview of Analytic Approaches

Analytic approaches provide guarantees regarding the crite-
ria that measure the previously mentioned four grasp properties.
However, these are usually based on assumptions such as sim-
plified contact models, Coulomb friction, and rigid body mod-
eling [3], [8]. Although these assumptions render grasp analysis
practical, inconsistencies and ambiguities, especially regarding
the analysis of grasp dynamics are usually attributed to their
approximate nature.

In this context, Bicchi and Kumar [4] identified the problem
of finding an accurate and tractable model of contact compli-
ance as particularly relevant. This is needed to analyze stati-
cally indeterminate grasps in which not all internal forces can
be controlled. This case arises, e.g., for underactuated hands
or grasp synergies, where the number of the controlled degrees
of freedom (DOF) is fewer than the number of contact forces.
Prattichizzo et al. [9] model such a system by introducing a set
of springs at the contacts and joints and show how its dexter-
ity can be analyzed. Rosales et al. [10] adopt the same model
of compliance to synthesize feasible and prehensile grasps. In
this case, only statically determinate grasps are considered. The
problem of finding a suitable hand configuration is casted as
a constrained optimization problem in which a compliance is
introduced to simultaneously address the constraints of contact
reachability, object restraint, and force controllability. As is the

1552-3098 © 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

case with many other analytic approaches toward grasp syn-
thesis, the proposed model is only studied in simulation where
accurate models of the hand kinematics, the object, and their
relative alignment are available.

In practice, systematic and random errors are inherent to a
robotic system and are due to noisy sensors and inaccurate
models of the robot’s kinematics and dynamics, sensors, or of
the object. The relative position of object and hand can therefore
only be known approximately which makes an accurate place-
ment of the fingertips difficult. In 2000, Bicchi and Kumar [4]
identified a lack of approaches toward synthesizing grasps that
are robust to positioning errors. One line of research in this di-
rection explores the concept of independent contact regions as
defined by Nguyen [11]: a set of regions on the object in which
each finger can be independently placed anywhere without the
grasp loosing the force-closure property. Several examples to
compute them are presented by Roa and Suárez [12] or Krug
et al. [13]. Another line of research toward robustness against
inaccurate end-effector positioning makes use of the caging
formulation. Rodriguez et al. [14] found that there are caging
configurations of a three-fingered manipulator around a planar
object that are specifically suited as a waypoint to grasping it.
Once the manipulator is in such a configuration, either opening
or closing the fingers is guaranteed to result in an equilibrium
grasp without the need for accurate positioning of the fingers.
Seo et al. [15] exploited the fact that two-fingered immobilizing
grasps of an object are always preceded by a caging configu-
ration. Full body grasps of planar objects are synthesized by
first finding a two-contact caging configuration and then us-
ing additional contacts to restrain the object. Results have been
presented in simulation and demonstrated on a real robot.

Another assumption commonly made in analytic approaches
is that the precise geometric and physical models of an object are
available to the robot, which is not always the case. In addition,
we may not know the surface properties or friction coefficients,
weight, center of mass, and weight distribution. Some of these
can be retrieved through interaction: Zhang and Trinkle [16]
propose to use a particle filter to simultaneously estimate the
physical parameters of an object and track it while it is being
pushed. The dynamic model of the object is formulated as a
mixed nonlinear complementarity problem. The authors show
that even when the object is occluded and the state estimate
cannot be updated through visual observation, the motion of
the object is accurately predicted over time. Although methods
like this relax some of the assumptions, they are still limited to
simulation [10], [14] or consider 2-D objects [14]–[16].

B. Development of Data-Driven Methods

Up to the year 2000, the field of robotic grasping1 was
clearly dominated by analytic approaches [2], [4], [11], [17].
Apart from, e.g., [5], data-driven grasp synthesis started to be-

1Citation counts for the most influential articles in the field. Extracted from
scholar.google.com in October 2013. [11]: 733. [4]: 490. [17]: 477. [2]: 405. [5]:
77. [18]: 384. [19]: 353. [20]: 100. [21]: 110. [22]: 95. [23]: 96. [24]: 108. [25]:
38. [26]: 156. [27]: 39. [28]: 277. [29]: 75. [30]: 40. [31]: 21. [32]: 43. [33]:
77. [34]: 26. [35]: 191. [36]: 58. [37]: 75. [38]: 39.

come popular with the availability of Graspit! [18] in 2004.
Many highly cited approaches have been developed, analyzed,
and evaluated in this or other simulators [19]–[24]. These ap-
proaches differ in how grasp candidates are sampled from the
infinite space of possibilities. For grasp ranking, they rely on
classical metrics that are based on analytic formulations such as
the widely used ε-metric proposed in Ferrari and Canny [17].
It constructs the grasp wrench space (GWS) by computing the
convex hull over the wrenches at the contact points between the
hand and the object. ε quantifies the quality of a force-closure
grasp by the radius of the maximum sphere still fully contained
in the GWS.

Developing and evaluating approaches in simulation is attrac-
tive because the environment and its attributes can be completely
controlled. A large number of experiments can be efficiently per-
formed without having access to expensive robotics hardware
that would also add a lot of complexity to the evaluation process.
However, it is not clear if the simulated environment resembles
the real world well enough to transfer methods easily. Only re-
cently, several works [24], [39], [40] have analyzed this question
and came to the conclusion that the classic metrics are not good
predictors for grasp success in the real world. They do not seem
to cope well with the challenges arising in unstructured environ-
ments. Diankov [24] claims that in practice grasps synthesized
using these metrics tend to be relatively fragile. Balasubrama-
nian et al. [39] systematically tested a number of grasps in the
real world that were stable according to classical grasp metrics.
Compared with grasps planned by humans and transferred to a
robot by kinesthetic teaching on the same objects, they under-
performed significantly. A similar study has been conducted by
Weisz and Allen [40]. It focuses on the ability of the ε-metric
to predict grasp stability under object pose error. The authors
found that it performs poorly, especially when grasping large
objects.

As pointed out by Bicchi and Kumar [4] and Prattichizzo
and Trinkle [8], grasp closure is often wrongly equated with
stability. Closure states the existence of equilibrium which is a
necessary but not a sufficient condition. Stability can only be
defined when considering the grasp as a dynamical system and in
the context of its behavior when perturbed from an equilibrium.
Seen in this light, the results of the aforementioned studies are
not surprising. However, they suggest that there is a large gap
between reality and the models for grasping that are currently
available and tractable.

For this reason, several researchers [25]–[27] proposed to let
the robot learn how to grasp by experience that is gathered dur-
ing grasp execution. Although collecting examples is extremely
time-consuming, the problem of transferring the learned model
to the real robot is nonexistant. A crucial question is how the
object to be grasped is represented and how the experience is
generalized to novel objects.

Saxena et al. [28] pushed machine learning approaches for
data-driven grasp synthesis even further. A simple logistic re-
gressor was trained on large amounts of synthetic, labeled train-
ing data to predict good grasping points in a monocular image.
The authors demonstrated their method in a household scenario
in which a robot emptied a dishwasher. None of the classical
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principles that are based on analytic formulations were used.
This paper spawned a lot of research [29]–[32] in which es-
sentially one question is addressed: What are the object fea-
tures that are sufficiently discriminative to infer a suitable grasp
configuration?

From 2009, there were further developments in the area
of 3-D sensing. Projected Texture Stereo was proposed by
Konolige [41]. This technology is built into the sensor head
of the PR2 [42], a robot that is available to comparatively many
robotics research labs and running on the OpenSource middle-
ware ROS [43]. In 2010, Microsoft released the Kinect [44], a
highly accurate depth-sensing device that is based on the tech-
nology developed by PrimeSense [45]. Due to its low price
and simple usage, it became a ubiquitous device within the
robotics community. Although the importance of 3-D data to
grasp has been previously recognized, many new approaches
were proposed that operate on real world 3-D data. They are
either heuristics that map structures in this data to grasp config-
urations directly [33], [34] or they try to detect and recognize
objects and estimate their pose [35], [46].

C. Analytic Versus Data-Driven Approaches

Contrary to analytic approaches, methods following the data-
driven paradigm place more weight on the object representation
and the perceptual processing, e.g., feature extraction, similar-
ity metrics, object recognition or classification, and pose esti-
mation. The resulting data is then used to retrieve grasps from
some knowledge base or sample and rank them by comparison
to existing grasp experience. The parameterization of the grasp
is less specific (e.g., an approach vector instead of fingertip posi-
tions) and, therefore, accommodates for uncertainties in percep-
tion and execution. This provides a natural precursor to reactive
grasping [33], [47]–[50], which, given a grasp hypothesis, con-
siders the problem of robustly acquiring it under uncertainty.
Data-driven methods cannot provide guarantees regarding the
aforementioned criteria of dexterity, equilibrium, stability, and
dynamic behavior [2]. They can only be verified empirically.
However, they form the basis for studying grasp dynamics and
further developing analytic models that better resemble reality.

D. Classification of Data-Driven Approaches

Sahbani et al. [1] divide the data-driven methods that are
based on whether they employ object features or observation
of humans during grasping. We believe that this falls short of
capturing the diversity of these approaches especially in terms of
the ability to transfer grasp experience between similar objects
and the role of perception in this process. In this survey, we
propose to group data-driven grasp synthesis approaches based
on what they assume to know a priori about the query object:

1) Known Objects: These approaches assume that the query
object has been encountered before and that grasps have
already been generated for it. Commonly, the robot has
access to a database containing geometric object models
that are associated with a number of good grasps. This
database is usually built offline and, in the following, will
be referred to as an experience database. Once the object

has been recognized, the goal is to estimate its pose and
retrieve a suitable grasp.

2) Familiar Objects: Instead of exact identity, the approaches
in this group assume that the query object is similar to the
previously encountered ones. New objects can be familiar
on different levels. Low-level similarity can be defined in
terms of shape, color, or texture. High-level similarity can
be defined based on the object category. These approaches
assume that new objects similar to old ones can be grasped
in a similar way. The challenge is to find an object rep-
resentation and a similarity metric that allows to transfer
grasp experience.

3) Unknown Objects: Approaches in this group do not as-
sume to have access to object models or any sort of grasp
experience. They focus on identifying the structure or fea-
tures in sensory data for generating and ranking grasp
candidates. These are usually based on local or global
features of the object as perceived by the sensor.

We find the previous classification suitable for surveying the
data-driven approaches since the assumed prior object knowl-
edge determines the necessary perceptual processing and asso-
ciated object representations for generating and ranking grasp
candidates. For known objects, the problems of recognition and
pose estimation have to be addressed. The object is usually
represented by a complete geometric 3-D object model. For fa-
miliar objects, an object representation has to be found that is
suitable for comparing them to already encountered object in
terms of graspability. For unknown objects, heuristics have to
be developed for the directly linking structure in the sensory
data to candidate grasps.

Only a minority of the approaches discussed in this survey
cannot be clearly classified to belong to one of these three
groups. Most of the included papers use sensor data from the
scene to perform data-driven grasp synthesis and are part of a
real robotic system that can execute grasps.

Finally, this classification is well in line with the research
in the field of neuroscience, specifically, with the theory of the
dorsal and ventral stream in human visual processing [51]. The
dorsal pathway processes immediate action-relevant features,
while the ventral pathway extracts context- and scene-relevant
information and is related to object recognition. The visual pro-
cessing in the ventral and dorsal pathways can be related to the
grouping of grasp synthesis for familiar/known and unknown
objects, respectively. The details of such links are out of the
scope of this paper. Extensive and detailed reviews on the neu-
roscience of grasping are offered in [52]–[54].

E. Aspects Influencing the Generation of Grasp Hypotheses

The number of candidate grasps that can be applied to an
object is infinite. To sample some of these candidates and define
a quality metric for selecting a good subset of grasp hypotheses
is the core subject of the approaches reviewed in this survey. In
addition to the prior object knowledge, we identified a number
of other factors that characterize these metrics. Thereby, they
influence which grasp hypotheses are selected by a method.
Fig. 1 shows a mind map that structures these aspects. An
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Fig. 1. We identified a number of aspects that influence how the final set of grasp hypotheses is generated for an object. The most important one is the assumed
prior object knowledge, as discussed in Section I-D. Numerous different object-grasp representations are proposed in the literature that are relying on features of
different modalities such as 2-D or 3-D vision or tactile sensors. Either local object parts or the object as a whole are linked to specific grasp configurations. Grasp
synthesis can either be analytic or data-driven. The latter is further detailed in Fig. 2. Very few approaches explicitly address the task or hand kinematics of the
robot.

important one is how the quality of a candidate grasp depends
on the object, i.e., the object-grasp representation. Some ap-
proaches extract local object attributes (e.g., curvature, contact
area with the hand) around a candidate grasp. Other approaches
take global characteristics (e.g., center of mass, bounding box)
and their relation to a grasp configuration into account. Depen-
dent on the sensor device, object features can be based on 2-D
or 3-D visual data as well as on other modalities. Furthermore,
grasp synthesis can be analytic or data-driven. We further cate-
gorized the latter in Fig. 2; there are methods for learning either
from human demonstrations, labeled examples, or trial and er-
ror. Other methods rely on various heuristics to directly link
the structure in sensory data to candidate grasps. There is rel-
atively little work on task-dependent grasping. In addition, the
applied robotic hand is usually not in the focus of the discussed

approaches. We will therefore not examine these two aspects.
However, we will indicate whether an approach takes the task
into account and whether an approach is developed for a gripper
or for the more complex case of a multifingered hand. Tables I–
III list all the methods in this survey. The table columns follow
the structure proposed in Figs. 1 and 2.

II. GRASPING KNOWN OBJECTS

If the object to be grasped is known and there is already a
database of grasp hypotheses for it, then the problem of finding
a feasible grasp reduces to estimating the object pose and then
filtering the hypotheses by reachability. Table I summarizes all
the approaches discussed in this section.
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Fig. 2. Data-driven grasp synthesis can either be based on heuristics or on
learning from data. The data can either be provided in the form of offline-
generated labeled training data, human demonstration, or through trial and
error.

TABLE I
DATA-DRIVEN APPROACHES FOR GRASPING KNOWN OBJECTS

TABLE II
DATA-DRIVEN APPROACHES FOR GRASPING FAMILIAR OBJECTS

TABLE III
DATA-DRIVEN APPROACHES FOR GRASPING UNKNOWN OBJECTS

Fig. 3. Typical functional flow-chart for a system with offline generation of a
grasp database. In the offline phase, every object model is processed to generate
grasp candidates. Their quality is evaluated for ranking. Finally, the list of grasp
hypotheses is stored with the corresponding object model. In the online phase,
the scene is segmented to search and recognize object models. If the process
succeeds, the associated grasp hypotheses are retrieved, and the unreachable
ones are discarded. Most of the following approaches can be summarized with
this flowchart. Some of them only implement the offline part. [7], [19], [21]–[24],
[39], [56], [57], [59], [60], [65].

A. Offline Generation of a Grasp Experience Database

First, we look at approaches for generating the experi-
ence database. Figs. 3 and 5 summarize the typical functional
flowchart of these type of approaches. Each box represents a
processing step. Note that these figures are abstractions that
summarize the implementations of a number of papers. Most



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 4. Generation of grasp candidates through object shape approximation
with primitives or through sampling. (a) Primitive Shape Decomposition [19].
(b) Box Decomposition [67]. (c) SQ Decomposition [21]. (d) Randomly-
sampled grasp hypotheses. [22]. (e) Green: Centers of a union of spheres. Red:
Centers at a slice through the model [56], [68]. (f) Grasp candidate sampled
based on surface normals and bounding box [69].

reviewed papers focus on a single module. This is also true for
similar figures appearing in Sections III and IV.

1) 3-D Mesh Models and Contact-Level Grasping: Many
approaches in this category assume that a 3-D mesh of the
object is available. The challenge is then to automatically gen-
erate a set of good grasp hypotheses. This involves sampling
the infinite space of possible hand configurations and ranking
the resulting candidate grasps according to some quality metric.
The major part of the approaches discussed in the following
uses force-closure grasps and ranks them according to the pre-
viously discussed ε-metric. They differ mostly in the way the
grasp candidates are sampled. Fig. 3 shows a flowchart of which
specifically the upper part (offline) visualizes the data flow for
the following approaches.

Some of them approximate the object’s shape with a constel-
lation of primitives such as spheres, cones, cylinders, and boxes
as in [19], Hübner and Kragic [67] and Przybylski et al. [56] or
superquadrics (SQ) as in [21]. These shape primitives are then
used to limit the amount of candidate grasps and thus prune
the search tree for finding the best grasp hypotheses. Examples
for these approaches are shown in Fig. 4(a)–(c) and (e). Borst
et al. [22] reduce the number of candidate grasps by randomly
generating a number of them that are dependent on the object

surface and filter them with a simple heuristic. The authors show
that this approach works well if the goal is not to find an optimal
grasp but, instead, a fairly good grasp that works well for “every-
day tasks.” Diankov [24] proposes to sample grasp candidates
dependent on the objects bounding box in conjunction with sur-
face normals. Grasp parameters that are varied are the distance
between the palm of the hand and the grasp point as well as
the wrist orientation. The authors find that usually a relatively
small amount of 30% from all grasp samples is in force closure.
Examples for these sampling approaches are shown in Fig. 4(d)
and (f). Roa et al. [57] present an approach toward synthesizing
power grasps that is not based on evaluating the force-closure
property. Slices through the object model and perpendicular to
the axes of the bounding box are sampled. The ones that best
resemble a circle are chosen for synthesizing a grasp.

All these approaches are developed and evaluated in simu-
lation. As claimed by, e.g., Diankov [24], the biggest criticism
toward ranking grasps based on force closure and the ε-metric
is that relatively fragile grasps might be selected. A common
approach to filter these is to add noise to the grasp parameters
and keep only those grasps in which a certain percentage of
the neighboring candidates also yield force closure. Weisz and
Allen [40] followed a similar approach that focuses in particu-
lar on the ability of the ε-metric to predict grasp stability under
object pose uncertainty. For a set of object models, the authors
used Graspit! [18] to generate a set of grasp candidates in the
force closure. For each object, pose uncertainty is simulated by
perturbing it in three DOF. Each grasp candidate was then reeval-
uated according to the probability of attaining a force-closure
grasp. The authors found that their proposed metric performs in
a superior way, especially on large objects.

Balasubramaniam et al. [39] question classical grasp metrics
in principle. The authors systematically tested a number of task-
specific grasps in the real world that were stable according to
classical grasp metrics. These grasps underperformed signifi-
cantly when compared with grasps planned by humans through
kinesthetic teaching on the same objects and for the same tasks.
The authors found that humans optimize a skewness metric, i.e.,
the divergence of alignment between hand and principal object
axes.

2) Learning From Humans: A different way to generate
grasp hypotheses is to observe how humans grasp an object.
This is usually done offline following the flowchart in Fig. 5.
This process produces an experience database that is exploited
online in a similar fashion as depicted in Fig. 3.

Ciocarlie and Allen [23] exploit results from neuroscience
that showed that a human hand control takes place in a space of
much lower dimension than the hand’s DOF. This finding was
applied to directly reduce the configuration space of a robotic
hand to find pregrasp postures. From these so-called eigen-
grasps, the system searches for stable grasps.

Detry et al. [27] model the object as a constellation of lo-
cal multimodal contour descriptors. Four elementary grasping
actions are associated with specific constellations of these fea-
tures, resulting in an abundance of grasp candidates. They are
modeled as a nonparametric density function in the space of
6-D gripper poses, which are referred to as a bootstrap density.
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Fig. 5. Typical functional flowchart of a system that learns from human
demonstration. The robot observes a human grasping a known object. Two per-
ceptual processed are followed in parallel. On the left, the object is recognized.
On the right, the demonstrated grasp configuration is extracted or recognized.
Finally, object models and grasps are stored together. This process could replace
or complement the offline phase described in Fig. 3. The following approaches
follow this approach: [27], [39], [49], [61], [64], and [66].

Human grasp examples are used to build an object specific
empirical grasp density from which grasp hypotheses can be
sampled. This is visualized in Fig. 8(f) and (g).

Kroemer et al. [64] represent the object with the same fea-
tures as used in [27]. How to grasp specific objects is learned
through a combination of a high-level reinforcement learner
and a low-level reactive grasp controller. The learning process
is bootstrapped through imitation learning in which a demon-
strated reaching trajectory is converted into an initial policy.
Similar initialization of an object-specific grasping policy is
used in [49] and [66].

Romero et al. [61] present a system for observing humans
visually, while they interact with an object. A grasp type and
pose is recognized and mapped to different robotic hands in a
fixed scheme. For validation of the approach in the simulator,
3-D object models are used. This approach has been demon-
strated on a humanoid robot in [70]. The object is not explicitly
modeled. Instead, it is assumed that human and robot act on the
same object in the same pose.

In the method presented by Ekvall and Kragic [6], a human
demonstrator wearing a magnetic-tracking device is observed
while manipulating a specific object. The grasp type is recog-
nized and mapped through a fixed schema to a set of robotic
hands. Given the grasp type and the hand, the best approach
vector is selected from an offline trained experience database.
Unlike Detry et al. [27] and Romero et al. [61], the approach
vector that is used by the demonstrator is not adopted. Ekvall
and Kragic [6] assume that the object pose is known. Experi-
ments are conducted with a simulated pose error. No physical
experiments have been demonstrated. Examples for the afore-
mentioned ways to teach a robot grasping by demonstration are
shown in Fig. 6.

3) Learning Through Trial and Error: Instead of adopting a
fixed set of grasp candidates for a known object, the following
approaches try to refine them by trial and error. In this case,
there is no separation between offline learning and online ex-
ploitation, as can be seen in Fig. 7. Kroemer et al. [64] and
Stulp et al. [66] apply reinforcement learning to improve an
initial human demonstration. Kroemer et al. [64] uses a low-
level reactive controller to perform the grasp that informs the
high-level controller with reward information. Stulp et al. [66]
increase the robustness of their nonreactive grasping strategy
by learning the shape and goal parameters of the motion primi-
tives that are used to model a full grasping action. Through this
approach, the robot learns reaching trajectories and grasps that
are robust against object pose uncertainties. Detry et al. [58]
builds an object-specific empirical grasp density from success-
ful grasping trials. This nonparametric density can then be used
to sample grasp hypotheses.

B. Online Object Pose Estimation

In the previous section, we reviewed different approaches
toward grasping known objects regarding their way to generate
and rank candidate grasps. During online execution, an object
has to be recognized and its pose estimated before the offline
trained grasps can be executed. Furthermore, from the set of
hypotheses, not all grasps might be feasible in the current scene.
They have to be filtered by reachability. The lower part of Fig. 3
visualizes the data flow during grasp execution and how the
offline generated data is employed.

Several of the aforementioned grasp generation methods [27],
[58], [64] use the probabilistic approach toward object repre-
sentation and pose estimation proposed by Detry et al. [72], as
visualized in Fig. 8(e). Grasps are either selected by sampling
from densities [27], [58], or a grasp policy refined from a human
demonstration is applied [64]. Morales et al. [7] use the method
proposed by Azad et al. [73] to recognize an object and estimate
its pose from a monocular image as shown in Fig. 8(a). Given
this information, an appropriate grasp configuration can be se-
lected from a grasp experience database that has been acquired
offline. The whole system is demonstrated on the robotic plat-
form described in [74]. Huebner et al. [59] demonstrate grasping
of known objects on the same humanoid platform and use the
same method for object recognition and pose estimation. The of-
fline selection of grasp hypotheses is based on a decomposition
into boxes, as described in Hübner and Kragic [67]. Task con-
straints are taken into account by reducing the set of box faces
that provide valid approach directions. These constraints are
hard-coded for each task. Ciocarlie et al. [75] propose a robust
grasping pipeline in which the known object models are fitted
to point cloud clusters using the standard ICP [76]. The search
space of potential object poses is reduced by assuming a dom-
inant plane and rotationally symmetric objects that are always
standing upright as, e.g., shown in Fig. 8(b). Papazov et al. [62]
demonstrate their previous approach on 3-D object recognition
and pose estimation [77] in a grasping scenario. Multiple ob-
jects in cluttered scenes can be robustly recognized and their
pose estimated. No assumption is made about the geometry of
the scene, the shape of the objects, or their pose.
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Fig. 6. Robot grasp learning from human demonstration. (a) Kinesthetic Teaching [71]. (b) Human-to-robot mapping of grasps using a data glove [6].
(c) Human-to-robot mapping of grasps using visual grasp recognition [61].

Fig. 7. Typical functional flowchart of a system that learns through trial and
error. First, a known object in the scene is segmented and recognized. Past ex-
periences with that object are retrieved, and a new grasp hypothesis is generated
or selected among the already tested ones. After execution of the selected grasp,
the performance is evaluated, and the memory of past experiences with the
object is updated. The following approaches use trial-and-error learning: [27],
[58], [64], [66].

The aforementioned methods assume a priori known rigid
3-D object model. Glover et al. [55] consider known deformable
objects. Probabilistic models of their 2-D shape are learned of-
fline. The objects can then be detected in monocular images
of cluttered scenes, even when they are partially occluded. The
visible object part serve as a basis for planning a grasp un-
der consideration of the global object shape. An example for a
successful detection is shown in Fig. 8(c).

Collet Romea et al. [78] use a combination of 2-D and 3-D
features as an object model. Examples for objects from an earlier
version of the system [63] are shown in Fig. 8(d). The authors
estimate the object’s pose in a scene from a single image. The
accuracy of their approach is demonstrated through a number
of successful grasps.

III. GRASPING FAMILIAR OBJECTS

The idea of addressing the problem of grasping familiar ob-
jects originates from the observation that many of the objects in
the environment can be grouped together into categories with

common characteristics. In the computer vision community, ob-
jects within one category usually share similar visual properties.
These can be, e.g., a common texture [79] or shape [80], [81],
the occurrence of specific local features [82], [83], or their spe-
cific spatial constellation [84], [85]. These categories are usually
referred to as basic level categories and emerged from the area
of cognitive psychology [86].

For grasping and manipulation of objects, a more natural char-
acteristic may be the functionality that they afford [30], similar
objects are grasped in a similar way or may be used to fulfill the
same task (pouring, rolling, etc). The difficulty is to find a rep-
resentation that encodes these common affordances. Given the
representation, a similarity metric has to be found under which
objects of the same functionality can be considered to be alike.
The approaches discussed in this survey are summarized in Ta-
ble II. All of them employ learning mechanisms and showed
that they can generalize the grasp experience on training data to
new but familiar objects.

A. Discriminative Approaches

First, there are approaches that learn a discriminative function
to distinguish between good and bad grasp configurations. They
mainly differ in what object features are used and, thereby, in the
space over which objects are considered similar. Furthermore,
they parameterize grasp candidates differently. Many of them
only consider whether a specific part of the object is graspable
or not. Others also learn multiple contact points or full grasp
configurations. A flowchart for the approaches discussed in the
following is presented in Fig. 9.

1) Based on 3-D Data: El-Khoury and Sahbani [89] distin-
guish between graspable and nongraspable parts of an object.
A point cloud of an object is segmented into parts. Each part is
approximated by an SQ. An artificial neural network (ANN) is
used to classify whether or not the part is prehensile. The ANN
is trained offline on human-labeled SQs. If one of the object
parts is classified as prehensile, then an n-fingered force-closure
grasp is synthesized on this object part. Grasp experience is,
therefore, only used to decide where to apply a grasp and not
how the grasp should be configured. These steps are shown for
two objects in Fig. 10.

Pelossof et al. [20] approximate an object with a single SQ.
Given this, their goal is to find a suitable grasp configuration
for a Barrett hand consisting of the approach vector, wrist ori-
entation, and finger spread. A Support Vector Machine (SVM)
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Fig. 8. Object representations for grasping and corresponding methods for pose estimation. (a) Object pose estimation of textured and untextured objects
in monocular images [73]. (b) ICP-based object pose estimation from segmented point clouds [75]. (c) Deformable object detection and pose estimation in
monocular images [55]. (d) Multiview object representation composed of 2-D and 3-D features [63]. (e) Probabilistic and hierarchical approach towards object
pose estimation [72]. (f) Grasp candidates linked to groups of local contour descriptors [27]. (g) Empirical grasp density built by trial and error [27].

Fig. 9. Typical functional flowchart of a system that learns from labeled
examples. In the offline learning phase, a database is available, consisting of
a set of objects labeled with grasp configurations and their quality. Database
entries are analyzed to extract relations between specific features and the grasps.
The result is a learned model that, given some features, can predict grasp
qualities. In the online phase, the scene is segmented, and features are extracted
from the scene. Given this, the model outputs a ranked set of promising grasp
hypotheses. Unreachable grasps are filtered out, and the best is executed. The
following approaches use labeled training examples: [20], [28]–[32], [67], [87]–[
89], [91]–[94], [97]–[102], [105], [106].

Fig. 10. (a) Object model. (b) Part segmentation. (c) SQ approximation.
(d) Graspable part and contact points [89].

Fig. 11. (Top) Grasp candidates performed on SQ. (Bottom) Grasp quality for
each candidate [20].

is trained on data consisting of feature vectors containing the
SQ parameters and a grasp configuration. They are labeled with
a scalar estimating the grasp quality. These training data are
shown in Fig. 11. When feeding the SVM only with the shape
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Fig. 12. Labeled training data. (a) One example for each of the eight ob-
ject classes in training data in [28] along with their grasp labels (in yellow).
(b) Positive (red) and negative examples (blue) for grasping points [94].

parameters of the SQ, their algorithm searches efficiently
through the grasp configuration space for parameters that max-
imize the grasp quality.

Both of the aforementioned approaches are evaluated in simu-
lation where the central assumption is that accurate and detailed
3-D object models are available: an assumption, that is not al-
ways valid. An SQ is an attractive 3-D representation due to its
low number of parameters and high-shape variability. However,
it remains unclear whether an SQ could equally well approxi-
mate object shape when given real-world sensory data that are
noisy and incomplete.

Hübner and Kragic [67] decomposed a point cloud into a
constellation of boxes. The simple geometry of a box reduces
the number of potential grasps significantly. A hand-designed
mapping between simple box features (size and position in con-
stellation) and grasping task is proposed. To decide which of the
sides of the boxes provides a good grasp, an ANN is trained of-
fline on synthetic data. The projection of the point cloud inside
a box to its sides provides the input to the ANN. The training
data consist of a set of these projections from different objects
labeled with the grasp quality metrics.

Boularias et al. [94] model an object as a Markov random field
(MRF) in which the nodes are points in a point cloud and edges
are spanned between the six nearest neighbors of a point. The
features of a node describe the local point distribution around
that node. A node in the MRF can carry either of two labels:
a good or a bad grasp location. The goal of the approach is
to find the maximum a posteriori labeling of point clouds for
new objects. Very little training data are used which is shown in
Fig. 12(b). A handle serves as a positive example. The exper-
iments show that this leads to a robust labeling of 3-D object
parts that are very similar to a handle.

Although both approaches [67], [94] also rely on 3-D models
for learning, the authors show examples for real sensor data. It
remains unclear how well the classifiers would generalize to a
larger set of object categories and real sensor data.

Fischinger and Vincze [96] propose a height-accumulated
feature that is similar to Haar basis functions as successfully
applied by, e.g., Viola and Jones [107] for face detection. The
values of the feature are computed based on the height of objects
above, e.g., the table plane. Positive and negative examples are
used to train an SVM that distinguishes between good and bad
grasping points. The authors demonstrate their approach for
cleaning cluttered scenes. No object segmentation is required
for the approach.

2) Based on 2-D Data: There are number of experience-
based approaches that avoid the complexity of 3-D data and
mainly rely on 2-D data to learn to discriminate between good
and bad grasp locations. Saxena et al. [28] propose a system
that infers a point at where to grasp an object directly as a
function of its image. The authors apply logistic regression to
train a grasping point model on labeled synthetic images of a
number of different objects. The classification is based on a
feature vector containing local appearance cues regarding color,
texture, and edges of an image patch in several scales and of
its neighboring patches. Samples from the labeled training data
are shown in Fig. 12(a). The system was used successfully to
pick up objects from a dishwasher after it has been additionally
trained for this scenario.

Instead of assuming the availability of a labeled dataset,
Montesano and Lopes [95] allow the robot to autonomously ex-
plore which features encode graspability. Similar to [28], simple
2-D filters are used that can be rapidly convolved with an im-
age. Given features from a region, the robot can compute the
posterior probability that a grasp applied to this location will be
successful. It is modeled as a Beta distribution and estimated
from the grasping trials executed by the robot and their outcome.
Furthermore, the variance of the posterior can be used to guide
exploration to regions that are predicted to have a high-success
rate but are still uncertain.

Another example of a system involving 2-D data and grasp
experience is presented by Stark et al. [30]. Here, an object
is represented by a composition of prehensile parts. These so-
called affordance cues are obtained by observing the interaction
of a person with a specific object. Grasp hypotheses for new
stimuli are inferred by matching features of that object against a
codebook of learned affordance cues that are stored along with
relative object position and scale. How to grasp the detected
parts is not solved since hand orientation and finger configura-
tion are not inferred from the affordance cues. Similar to [94],
especially locally very discriminative structures like handles are
well detected.

3) Integrating 2-D and 3-D Data: Although the previous
approaches have been demonstrated to work well in specific
manipulation scenarios, inferring a full grasp configuration from
2-D data alone is a highly underconstrained problem. Regions
in the image may have very similar visual features but afford
completely different grasps. The following approaches integrate
multiple complementary modalities, 2-D and 3-D visual data,
and their local or global characteristics, to learn a function that
can take more parameters of a grasp into account.

Saxena et al. [29] extend their previous work on inferring
2-D grasping points by taking the 3-D point distribution within
a sphere centered around a grasp candidate into account. This
enhances the prediction of a stable grasp and allows for the
inference of grasp parameters like approach vector and finger
spread. In earlier work [28], only downward or outward grasp
with a fixed-pinch grasp configuration were possible.

Rao et al. [103] distinguish between graspable and nongras-
pable object hypotheses in a scene. Using a combination of
2-D and 3-D features, an SVM is trained on labeled data of
segmented objects. Among those features are for example the
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Fig. 13. Three grasp candidates for a cup represented by two local patches
and their major gradient, as well as their connecting line [31].

Fig. 14. Example shape contexts descriptor for the image of a pencil. (a) Input
image. (b) Canny edges. (c) (Top) All vectors from one point to all other sample
points. (Bottom) Sampled points of the contour with gradients. (d) Histogram
with four angle and five log-radius bins comprising the vectors in (c) [32].

variance in depth and height, as well as variance of the three
channels in the Lab color space. These are some kind of meta
features that are used instead of the values of, e.g., the color
channels directly. Rao et al. [103] achieve good classification
rates on object hypotheses formed by segmentation on color and
depth cues. Le et al. [31] model grasp hypotheses as consisting
of two contact points. They apply a learning approach to rank
a sampled set of fingertip positions according to graspability.
The feature vector consists of a combination of 2-D and 3-D
cues such as gradient angle or depth variation along the line
connecting the two grasping points. Example grasp candidates
are shown in Fig. 13.

Bohg and Kragic [32] propose an approach that instead of
using local features, encodes global 2-D object shape. It is rep-
resented relative to a potential grasping point by shape contexts
as introduced by Belongie et al. [81]. Fig. 14 shows a potential
grasping point and the associated feature.

Bergström et al. [97] see the result of the 2-D based grasp
selection as a way to search in a 3-D object representation for
a full grasp configuration. The authors extend their previous
approach [32] to work on a sparse edge-based object represen-
tation. They show that integrating 3-D and 2-D-based methods
for grasp hypotheses generation results in a sparser set of grasps
with a good quality.

Different from the previous approaches, Ramisa et al. [93]
consider the problem of manipulating deformable objects,
specifically folding shirts. They aim at detecting the shirt collars
that exhibit deformability but that have distinct features as well.
The authors show that a combination of local 2-D and 3-D de-

Fig. 15. Matching contact points between human hand and object [88].

scriptors works well for this task. Results are presented in terms
of how reliable collars can be detected when only a single shirt
or several shirts are present in the scene.

B. Grasp Synthesis by Comparison

The aforementioned approaches study what kind of features
encode similarity of objects in terms of graspability and learn
a discriminative function in the associated space. The methods
we review next take an exemplar-based approach in which grasp
hypotheses for a specific object are synthesized by finding the
most similar object or object part in a database to which good
grasps are already associated.

1) Synthetic Exemplars: Li and Pollard [88] treated the prob-
lem of finding a suitable grasp as a shape matching problem
between the human hand and the object. The approach starts off
with a database of human grasp examples. From this database,
a suitable grasp is retrieved when queried with a new object.
Shape features of this object are matched against the shape of
the inside of the available hand postures. An example is shown
in Fig. 15.

Curtis and Xiao [100] built upon a knowledge base of 3-D ob-
ject types. These are represented by Gaussian distributions over
very basic shape features, e.g., the aspect ratio of the object’s
bounding box, but also over physical features, e.g., material and
weight. Furthermore, they are annotated with a set of repre-
sentative pregrasps. To infer a good grasp for a new object, its
features are used to look up the most similar object type in the
knowledge base. If a successful grasp has been synthesized in
this way and it is similar enough to the object type, then the
mean and standard deviation of the object features are updated;
otherwise, a new object type is formed in the knowledge base.

While these two aforementioned approaches use low-level
shape features to encode similarity between objects, Dang and
Allen [106] present an approach toward semantic grasp plan-
ning. In this case, semantic refers to both, the object category
and the task of a grasp, e.g., pour water, answer a call, or hold
and drill. A semantic affordance map links object features to
an approach vector and to semantic grasp features (task label,
joint angles, and tactile sensor readings). For planning a task-
specific grasp on a novel object of the same category, the object
features are used to retrieve the optimal approach direction and
associated grasp features. The approach vector serves as a seed
for synthesizing a grasp with the Eigengrasp planner [23]. The
grasp features are used as a reference to which the synthesized
grasp should be similar.
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Hillenbrand and Roa [98] frame the problem of transferring
functional grasps between objects of the same category as pose
alignment and shape warping. They assume that there is a source
object given on which a set of functional grasps is defined. Pose
clustering is used to align another object of the same category
with it. Subsequently, fingertip contact points can be transferred
from the source to the target object. The experimental results
are promising. However, they are limited to the category of cups
containing six instances.

All four approaches [88], [98], [100], [106] compute object
features that rely on the availability of 3-D object meshes. The
question remains how these ideas could be transferred to the
case where only partial sensory data are available to compute
object features and similarity to already known objects. One idea
would be to estimate full object shape from partial or multiple
observations, as proposed by the approaches in Section IV-A
and use the resulting potentially noisy and uncertain meshes
to transfer grasps. The previous methods are also suitable to
create experience databases offline that require only little la-
beling. In the case of category-based grasp transfer [98], [106],
only one object per category would need to be associated with
grasp hypotheses and all the other objects would only need a
category label. No expensive grasp simulations for many grasp
candidates would need to be executed as for the approaches in
Section II-A1. Dang and Allen [106] followed this idea and
demonstrated a few grasp trials on a real robot assuming that a
3-D model of the query object is in the experience database.

In addition, Goldfeder and Allen [101] built their knowledge
base only from synthetic data on which grasps are generated
using the previously discussed Eigengrasp planner [23]. Differ-
ent from the previous approaches, observations made with real
sensors from new objects are used to look up the most similar
object and its pose in the knowledge base. Once this is found, the
associated grasp hypotheses can be executed on the real object.
Although experiments on a real platform are provided, it is not
entirely clear how many trials have been performed on each ob-
ject and how much object pose was varied. As discussed earlier,
the study conducted by Balasubramanian et al. [39] suggested
that the employed grasp planner is not the optimal choice for
synthesizing grasps that also work well in the real world.

Detry et al. [91] aim at generalizing grasps to novel objects by
identifying parts to which a grasp has already been successfully
applied. This lookup is rendered efficient by creating a lower
dimensional space in which object parts that are similarly shaped
relative to the hand reference frame are close to each other. This
space is shown in Fig. 16. The authors show that similar grasp
to object part configurations can be clustered in this space and
form prototypical grasp-inducing parts. An extension of this
approach is presented by Detry et al. [92], where the authors
demonstrate how this approach can be used to synthesize grasps
on novel objects by matching these prototypical parts to real
sensor data.

2) Sensor-Based Exemplars: The aforementioned approa-
ches present promising ideas toward generalizing prior grasp
experience to new objects. However, they are using 3-D object
models to construct the experience database. In this section, we
review methods that generate a knowledge base by linking ob-

Fig. 16. Lower dimensional space in which similar pairs of grasps and object
parts are close to each other [91].

ject representations from real sensor data to grasps that were
executed on a robotic platform. Fig. 18 visualizes the flow of
data that these approaches follow.

Kamon et al. [5] propose one of the first approaches toward
generalizing grasp experience to novel objects. Their aim is
to learn a function f : Q → G that maps object- and grasp-
candidate-dependent quality parameters Q to a grade G of the
grasp. An object is represented by its 2-D silhouette, its center
of mass, and main axis. The grasp is represented by two pa-
rameters f1 and f2 from which in combination with the object
features, the fingertip positions can be computed. Learning is
bootstrapped by the offline generation of a knowledge database
containing grasp parameters along with their grade. This knowl-
edge database is then updated, while the robot gathers experi-
ence by grasping new objects. The system is restricted to planar
grasps and visual processing of top-down views on objects. It
is therefore questionable how robust this approach is to more
cluttered environments and strong pose variations of the object.

Morales et al. [25] use visual feedback to infer successful
grasp configurations for a three-fingered hand. The authors take
the hand kinematics into account when selecting a number of
planar grasp hypotheses directly from 2-D object contours. To
predict which of these grasps is the most stable one, a k-nearest
neighbor approach is applied in connection with a grasp ex-
perience database. The experience database is built during a
trial-and-error phase executed in the real world. Grasp hypothe-
ses are ranked dependent on their outcome. Fig. 17 shows a
successful and unsuccessful grasp configuration for one object.
The approach is restricted to planar objects. Speth et al. [104]
showed that their earlier 2-D-based approach [25] is also ap-
plicable when considering 3-D objects. The camera is used to
explore the object and retrieve crucial information like height,
3-D position, and pose. However, all this additional information
is not applied in the inference and final selection of a suitable
grasp configuration.
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Fig. 17. (a) Successful grasp configuration for this object. (b) Unsuccessful
grasp configuration for the same object [25].

Fig. 18. Typical functional flowchart of a system that learns from trial and
error. No prior knowledge about objects is assumed. The scene is segmented
to obtain object clusters and relevant features are extracted. A heuristic module
produces grasp candidates from these features. These candidates are ranked
using a previously learned model or based on comparison to previous examples.
The resulting grasp hypotheses are filtered, and one of them is finally executed.
The performance of the execution is evaluated, and the model or memory is
updated with this new experience. The following approaches can be summarized
by this flowchart: [5], [25], [26], [71], [90], [95], and [104].

The approaches presented by Herzog et al. [71] and Kroemer
et al. [90] also maintain a database of grasp examples. They
combine learning by trial and error on real world data with
a part-based representation of the object. There is no restric-
tion of object shape. Each of them bootstrap the learning by
providing the robot with a set of positive example grasps. How-
ever, their part representation and matching are very different.
Herzog et al. [71] store a set of local templates of the parts of
the object that have been in contact with the object during the
human demonstration. Given a segmented object point cloud,
its 3-D convex hull is constructed. A template is a height map
that is aligned with one polygon of this hull. Together with a
grasp hypotheses, they serve as positive examples. If a local
part of an object is similar to a template in the database, then the
associated grasp hypothesis is executed. Fig. 19 shows example
query templates and the matched template from the database.
In the case of failure, the object part is added as a negative ex-

Fig. 19. Example query and matching templates [71].

ample to the old template. In this way, the similarity metric can
weight in similarity to positive examples as well as dissimilarity
to negative examples. The proposed approach is evaluated on a
large set of different objects and with different robots.

Kroemer et al. [90] use a pouring task to demonstrate the
generalization capabilities of the proposed approach to similar
objects. An object part is represented as a set of points weighted
according to an isotropic 3-D Gaussian with a given standard
deviation. Its mean is manually set to define a part that is rele-
vant to the specific action. When shown a new object, the goal
of the approach is to find the subpart that is most likely to af-
ford the demonstrated action. This probability is computed by
kernel logistic regression whose result depends on the weighted
similarity between the considered subpart and the example sub-
parts in the database. The weight vector is learned given the
current set of examples. This set can be extended with new parts
after action execution. Neither Herzog et al. [71] nor Kroemer
et al. [90] adaptqed the similarity metric itself under which a
new object part is compared with previously encountered ex-
amples. Instead, the probability of success is estimated, all the
examples from the continuously growing knowledge base taken
into account.

C. Generative Models for Grasp Synthesis

Very little work has been done on learning generative models
of the whole grasp process. These kind of approaches iden-
tify common structures from a number of examples instead of
finding a decision boundary in some feature space or directly
comparing with previous examples under some similarity met-
ric. Montesano et al. [26] provide one example in which affor-
dances are encoded in terms of an action that is executed on an
object and produces a specific effect. The problem of learning
a joint distribution over a set of variables is posed as struc-
ture learning in a Bayesian network framework. Nodes in this
network are formed by object, action, and effect features that
the robot can observe during execution. Given 300 trials, the
robot learns the structure of the Bayesian network. Its validity
is demonstrated in an imitation game, where the robot observes
a human executing one of the known actions on an object and
is asked to reproduce the same observed effect when given a
new object. Effectively, the robot has to perform inference in
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Fig. 20. Ranking of approach vectors for different objects given a specific
task. The brighter an area, the higher the rank. The darker an area, the lower the
rank [87].

the learned network to determine the action with the highest
probability to succeed.

Song et al. [87] approach the problem of inferring a full grasp
configuration for an object given a specific task. As in [26],
the joint distribution over the set of variables influencing this
choice is modeled as a Bayesian network. Additional variables
like task, object category, and task constraints are introduced.
The structure of this model is learned given a large number of
grasp examples generated in Graspit! and annotated with grasp
quality metrics, as well as suitability for a specific task. The
authors exploit nonlinear dimensionality reduction techniques
to find a discrete representation of continuous variables for effi-
cient and more accurate structure learning. The effectiveness of
the method is demonstrated on the synthetic data for different
inference tasks. The learned quality of grasps on specific objects
given a task is visualized in Fig. 20.

D. Category-Based Grasp Synthesis

Most of the previously discussed approaches link low-level
information of the object to a grasp. Given that a novel object is
similar in shape or appearance to a previously encountered one,
then it is assumed that they can also be grasped in a similar way.
However, objects might be similar on a different level. Objects in
a household environment that share the same functional category
might have a vastly different shape or appearance. However, they
still can be grasped in the same way. In Section III-B1, we have
already mentioned the work in [98] and [106] in which task-
specific grasps are synthesized for objects of the same category.
The authors assume that the category is known a priori. In the
following, we review methods that generalize grasps to familiar
objects by first determining their category.

Marton et al. [108] use different 3-D sensors and a thermo
camera for performing object categorization. Features of the

segmented point cloud and the segmented image region are
extracted to train a Bayesian logic network for classifying object
hypotheses as either boxes, plates, bottles, glasses, mugs, or
silverware. A modified approach is presented in [102]. A layered
3-D object descriptor is used for categorization and an approach
based on the scale-invariant feature transform [109] is applied
for view-based object recognition. To increase the robustness of
the categorization, the examination methods are run iteratively
on the object hypotheses. A list of potential matching objects
are kept and reused for verification in the next iteration. Objects
for which no matching model can be found in the database
are labeled as novel. Given that an object has been recognized,
associated grasp hypotheses can be reused. These have been
generated using the technique presented in [110].

Song et al. [87] treat object category as one variable in the
Bayesian network. Madry et al. [105] demonstrate how the cat-
egory of an object can be robustly detected given multimodal
visual descriptors of an object hypothesis. This information is
fed into the Bayesian network together with the desired task.
A full hand configuration can then be inferred that obeys the
task constraints. Bohg et al. [99] demonstrated this approach
on the humanoid robot ARMAR III [74]. For robust object cat-
egorization, the approach by Madry et al. [105] is integrated
with the 3-D based categorization system by Wohlkinger and
Vincze [111]. The pose of the categorized object is estimated
with the approach presented by Aldoma and Vincze [112]. Given
this, the inferred grasp configuration can be checked for reach-
ability and executed by the robot.

Recently, we have seen an increasing amount of new ap-
proaches toward pure 3-D descriptors of objects for categoriza-
tion. Although, the following methods look promising, it has not
been shown yet that they provide a suitable base for generalizing
grasps over an object category. Rusu et al. [113], [114] provide
extensions of [35] for either recognizing or categorizing ob-
jects and estimating their pose relative to the viewpoint. While
in [114] quantitative results on real data are presented, [113]
uses simulated object point clouds only. Lai et al. [36] perform
object category and instance recognition. The authors learn an
instance distance using the database presented in [46]. A com-
bination of 3-D and 2-D features is used. Gonzalez-Aguirre
et al. [115] present a shape-based object categorization system.
A point cloud of an object is reconstructed by fusing partial
views. Different descriptors (capturing global and local object
shape) in combination with standard machine learning tech-
niques are studied. Their performance is evaluated on real data.

IV. GRASPING UNKNOWN OBJECTS

If a robot has to grasp a previously unseen object, then we refer
to it as unknown. Approaches toward grasping known objects are
obviously not applicable since they rely on the assumption that
an object model is available. The approaches in this group also
do not assume to have access to other kinds of grasp experiences.
Instead, they propose and analyze heuristics that directly link
structure in the sensory data to candidate grasps.

There are various ways to deal with sparse, incomplete, and
noisy data from real sensors such as stereo cameras: we divided
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Fig. 21. Typical functional flowchart of a grasping system for unknown ob-
jects. The scene is perceived and segmented to obtain object hypotheses and
relevant perceptual features. Then, the system follows either the right or left
pathway. On the left, low-level features are used to generate heuristically a set
of grasp hypotheses. On the right, a mesh model approximating the global object
shape is generated from the perceived features. Grasp candidates are then sam-
pled and executed in a simulator. Classical analytic grasp metric is used to rank
the grasp candidates. Finally, nonreachable grasp hypotheses are filtered out,
and the best ranked grasp hypothesis is executed. The following approaches
use the left pathway: [33], [34], [37], [60], [116], [117], [119], [121], [122],
and [126]. The following approaches estimate a full object model: [110], [118],
[120], and [123]–[125].

the approaches into methods that 1) approximate the full shape
of an object, 2) methods that generate grasps based on low-
level features and a set of heuristics, and 3) methods that rely
mostly on the global shape of the partially observed object hy-
pothesis. The reviewed approaches are summarized in Table III.
A flowchart that visualizes the data flow in the following ap-
proaches is shown in Fig. 21.

A. Approximating Unknown Object Shape

One approach toward generating grasp hypotheses for un-
known objects is to approximate objects with shape primitives.
Dunes et al. [124] approximate an object with a quadric whose
minor axis is used to infer the wrist orientation. The object cen-
troid serves as the approach target and the rough object size
helps to determine the hand preshape. The quadric is estimated
from multiview measurements of the global object shape in
monocular images. Marton et al. [110] show how grasp selec-
tion can be performed exploiting symmetry by fitting a curve
to a cross section of the point cloud of an object. For grasp
planning, the reconstructed object is imported to a simulator.
Grasp candidates are generated through randomization of grasp
parameters on which the force-closure criteria is then evalu-
ated. Rao et al. [103] sample grasp points from the surface of a
segmented object. The normal of the local surface at this point

Fig. 22. Estimated full object shape by assuming symmetry. (a) Ground truth
mesh. (b) Original point cloud. (c) Mirrored cloud with original points in blue
and additional points in red. (d) Reconstructed mesh [120].

Fig. 23. Unknown object shape estimated by shape carving. (a) (Left) Object
image. (Right) Point cloud. (b) (Left) Model from silhouettes. (Right) Model
merged with point cloud data [118].

serves as a search direction for a second contact point. This is
chosen to be at the intersection between the extended normal
and the opposite side of the object. By assuming symmetry, this
second contact point is assumed to have a contact normal in
the direction opposite from the normal of the first contact point.
Bohg et al. [120] propose a related approach that reconstructs
full object shape assuming planar symmetry which subsumes
all other kinds of symmetries. It takes the complete point cloud
into account and not only a local patch. Two simple methods
to generate grasp candidate on the resulting completed object
models are proposed and evaluated. An example for an object
whose full object shape is approximated with this approach is
shown in Fig. 22.

As opposed to the aforementioned techniques, Bone et al.
[118] made no prior assumption about the shape of the object.
They applied shape carving for the purpose of grasping with a
parallel-jaw gripper. After obtaining a model of the object, they
search for a pair of reasonably flat and parallel surfaces that are
best suited for this kind of manipulator. An object reconstructed
with this method is shown in Fig. 23.

Lippiello et al. [123] present a related approach for grasping
an unknown object with a multifingered hand. The authors first
record a number of views from around the object. Based on the
object bounding box in each view, a polyhedron is defined that
overestimates the visual object hull and is then approximated
by a quadric. A pregrasp shape is defined in which the fingertip
contacts on the quadric are aligned with its two minor axes. This
grasp is then refined, given the local surface shape close to the
contact point. This process is alternating with the refinement of
the object shape through an elastic surface model. The quality
of the grasps is evaluated by classic metrics. As previously
discussed, it is not clear how well these metrics predict the
outcome of a grasp.

B. From Low-Level Features to Grasp Hypotheses

A common approach is to map low-level 2-D or 3-D visual
features to a predefined set of grasp postures and then rank them
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Fig. 24. Generating and ranking grasp hypotheses from local object features. (a) Generation of grasp candidates from local surface features and evaluation in
simulation [117]. (b) Generated grasp hypotheses on point cloud clusters and execution results [33]. (c) (Top) Grasping a towel from the table. (Bottom) Regrasping
a towel for unfolding [37].

Fig. 25. PR2 gripper and associated grasp pattern [34].

dependent on a set criteria. Kraft et al. [116] use a stereo camera
to extract a representation of the scene. Instead of a raw point
cloud, they process it further to obtain a sparser model consist-
ing of local multimodal contour descriptors. Four elementary
grasping actions are associated with specific constellations of
these features. With the help of heuristics, the large number
of resulting grasp hypotheses is reduced. Popović et al. [117]
present an extension of this system that uses local surfaces and
their interrelations to propose and filter two- and three-fingered
grasp hypotheses. The feasibility of the approach is evaluated
in a mixed real-world and simulated environment. The object
representation and the evaluation in simulation is visualized in
Fig. 24(a).

Hsiao et al. [33] employ several heuristics for generating
grasp hypotheses dependent on the shape of the segmented point
cloud. These can be grasps from the top, from the side, or applied
to high points of the objects. The generated hypotheses are then
ranked using a weighted list of features such as for example
number of points within the gripper or distance between the
fingertip and the center of the segment. Some examples for
grasp hypotheses generated in this way are shown in Fig. 24(b).

The main idea presented by Klingbeil et al. [34] is to search
for a pattern in the scene that is similar to the 2-D cross section
of the robotic gripper interior. This is visualized in Fig. 25. The
idea is similar to the work by Li and Pollard [88], as shown
in Fig. 15. However, in this study, the authors do not rely on
the availability of a complete 3-D object model. A depth image
serves as the input to the method and is sampled to find a set of
grasp hypotheses. These are ranked according to an objective
function that takes pairs of these grasp hypotheses and their
local structure into account.

Maitin-Shepard et al. [37] propose a method for grasping and
folding towels that can vary in size and are arranged in unpre-
dictable configurations. Different from the approaches discussed
previously, the objects are deformable. The authors propose a
border detection method that relies on depth discontinuities and
then fit corners to border points. These then serve as grasping
points. Examples for grasping a towel are shown in Fig. 24(c).
Although this approach is applicable to a family of deformable
objects, it does not detect grasping points by comparing to pre-
viously encountered grasping points. Instead, it directly links
local structure to a grasp. For this reason, we consider it to be
an approach toward grasping unknown objects.

C. From Global Shape to Grasp Hypothesis

Other approaches use the global shape of an object to infer
one good grasp hypothesis. Morales et al. [126] extracted the
2-D silhouette of an unknown object from an image and com-
puted two- and three-fingered grasps taking into account the
kinematics constraints of the hand. Richtsfeld and Vincze [119]
use a segmented point cloud from a stereo camera. They search
for a suitable grasp with a simple gripper that is based on the
shift of the top plane of an object into its center of mass. A set
of heuristics is used for selecting promising fingertip positions.
Maldonado et al. [122] model the object as a 3-D Gaussian. For
choosing a grasp configuration, it optimizes a criterion in which
the distance between palm and object is minimized, while the
distance between fingertips and the object is maximized. The
simplified model of the hand and optimization variables are
shown in Fig. 26(a).

Stückler et al. [121] generate grasp hypotheses based on
eigenvectors of the object’s footprints on the table. Footprints
refer to the 3-D object point cloud projected onto the supporting
surface.

Kehoe et al. [125] assume an overhead view of the object and
approximate its shape with an extruded polygon. The goal is
to synthesize a zero-slip push grasp with a parallel jaw gripper,
given uncertainty about the precise object shape and the position
of its center of mass. For this purpose, perturbations of the initial
shape and position of the centroid are sampled. For an example
of this, see Fig. 26(b). For each of these samples, the same
grasp candidate is evaluated. Its quality depends on how often
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Fig. 26. Mapping global object shape to grasps. (a) Simplified hand model
and grasp parameters to be optimized [122]. (b) Planar object shape uncertainty
model (Left) Vertices and center of mass with Gaussian position uncertainty
(σ = 1). (Right) 100 samples of perturbed object models [125].

Fig. 27. (a) Object and point cloud. (b)–(d) Object representation and grasp
hypotheses. (e) Overlaid representations and list of consistent grasp hypotheses
[60], [127].

it resulted in force closure under the assumed model of object
shape uncertainty.

V. HYBRID APPROACHES

There are a few data-driven grasp synthesis methods that can-
not clearly be classified as using only one kind of prior knowl-
edge. One of these approaches has been proposed in Brook
et al. [60] with an extension in [127]. Different grasp planners
provide grasp hypotheses which are integrated to reach a con-
sensus on how to grasp a segmented point cloud. The authors
show results using the planner presented in [33] for unknown
objects in combination with grasp hypotheses generated through
fitting known objects to point cloud clusters, as described in [75].
Fig. 27 shows the grasp hypotheses for a segmented point cloud
based on the input from these different planners. Another ex-
ample for a hybrid approach is the work by Marton et al. [102].
A set of very simple shape primitives like boxes, cylinders,
and more general rotational objects are considered. They are
reconstructed from segmented point clouds by analysis of their
footprints. Parameters such as circle radius and the side lengths
of rectangles are varied; curve parameters are estimated to re-
construct more complex rotationally symmetric objects. Given
these reconstructions, a lookup is made in a database of already
encountered objects for reusing successful grasp hypotheses.
In case no similar object is found, new grasp hypotheses are
generated using the technique presented in [110]. For object hy-
potheses that cannot be represented by the simple shape prim-
itives mentioned previously, a surface is reconstructed through

triangulation. Grasp hypotheses are generated using the planner
presented in [33].

VI. DISCUSSION AND CONCLUSION

We have identified four major areas that form open problems
in the area of robotic grasping.

Object segmentation: Many of the approaches that are men-
tioned in this survey usually assume that the object to be grasped
is already segmented from the background. Since segmentation
is a very hard problem in itself, many methods make the simpli-
fying assumption that objects are standing on a planar surface.
Detecting this surface in a 3-D point cloud and performing Eu-
clidean clustering results in a set of segmented point clouds that
serve as object hypotheses [114]. Although the dominant sur-
face assumption is viable in certain scenarios and to shortcut
the problem of segmentation, we believe that we need a more
general approach to solve this.

First of all, some objects might usually occur in a specific
spatial context. This can be on a planar surface, but it might also
be on a shelf or in the fridge. Aydemir and Jensfelt [128] propose
to learn this context for each known object to guide the search
for them. One could also imagine that this context could help
segmenting foreground from background. Furthermore, there
are model-based object detection methods [55], [62], [72], [73],
[78] that can segment a scene as a by-product of detection and
without making strong assumptions about the environment. In
the case of unknown objects, some methods have been proposed
that employ the interaction capabilities of a robot, e.g., visual
fixation or pushing movements with the robot hand, to segment
the scene [116], [129]–[132]. A general solution toward object
segmentation might be a combination of these two methods.
The robot first interacts with objects to acquire a model. Once
it has an object model, it can be used for detecting and thereby
segmenting it from the background.

Learning to grasp: Let us consider the goal of having a robotic
companion helping us in our household. In this scenario, we
cannot expect that the programmer has foreseen all the different
situations with which this robot will be confronted. Therefore,
the ideal household robot should have the ability to continuously
learn about new objects and how to manipulate them while it is
operating in the environment. We will also not be able to rely
on having 3-D models readily available of all objects the robot
could possibly encounter. This requires the ability to learn a
model that could generalize from previous experience to new
situations. Many open questions arise: How is the experience
regarding one object and grasp represented in memory? How
can success and failure be autonomously quantified? How can
a model be learned from this experience that would generalize
to new situations? Should it be a discriminative, a generative, or
exemplar-based model? What are the features that encode ob-
ject affordances? Can these be autonomously learned? In which
space are we comparing new objects to already encountered
ones? Can we bootstrap learning by using simulation or by
human demonstration? The methods that we have discussed
in Section III about grasping familiar objects approach these
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questions. However, we are still far from a method that answers
all of them in a satisfying way.

Autonomous manipulation planning: Recently, more com-
plex scenarios than just grasping from a table top have been
approached by a number of research labs. How a robot can
autonomously sequence a set of actions to perform such a task
is still an open problem. Toward this end, Tenorth et al. [133]
propose a cloud robotics infrastructure under which robots can
share their experience such as action recipes and manipulation
strategies. An inference engine is provided for checking whether
all requirements are fulfilled for performing a full manipulation
strategy. It would be interesting to study how the uncertainty in
perception and execution can be dealt with in conjunction with
such a symbolic reasoning engine.

When considering a complex action, grasp synthesis cannot
be considered as an isolated problem. On the contrary, higher
level tasks influence what the best grasp in a specific scenario
might be, e.g., when grasping a specific tool. Task constraints
have not yet been considered extensively in the community.
Current approaches, e.g., [87] and [106], achieve impressive
results. An open question is how to scale to life-long learning.

Robust execution: It has been noted by many researchers that
inferring a grasp for a given object is necessary but not suf-
ficient. Only if execution is robust to uncertainties in sensing
and actuation, a grasp can succeed with high probability. There
are a number of approaches that use constant tactile or visual
feedback during grasp execution to adapt to unforeseen situa-
tions [33], [47], [49], [134]–[137]. Tactile feedback can be from
haptic or force–torque sensors. Visual feedback can be the result
from tracking the hand and object simultaneously. In addition, in
this area, there are a number of open questions. How can tactile
feedback be interpreted to choose an appropriate corrective ac-
tion independent of the object, the task, and environment? How
can visual and tactile information be fused in the controller?

A. Final Notes

In this paper, we reviewed work on data-driven grasp syn-
thesis and proposed a categorization of the published work. We
focused on the type and level of prior knowledge used in the
proposed approaches and on the assumptions that are commonly
made about the objects being manipulated. We identified recent
trends in the field and provided a discussion about the remaining
challenges.

An important issue is the current lack of general benchmarks
and performance metrics suitable for comparing the different
approaches. Although various object-grasp databases are al-
ready available, e.g., the Columbia grasp database [138], the
VisGraB dataset [139], or the playpen dataset [140], they are
not commonly used for comparison. We acknowledge that one
of the reasons is that grasping in itself is highly dependent on
the employed sensing and manipulation hardware. There have
also been robotic challenges organized such as the DARPA Arm
project [141] or RoboCup@Home [142], and a framework for
benchmarking has been proposed in [143]. However, none of
these successfully integrate all the subproblems relevant for
benchmarking different grasping approaches.

Given that data-driven grasp synthesis is an active field of
research and lots of work has been reported in the area, we have
set up a web page that contains all the references in this survey
at www.robotic-grasping.com. They are structured according
to the proposed classification and tagged with the mentioned
aspect. The web page will be constantly updated with the most
recent approaches.
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A. Aldóma, M. Przybylski, T. Asfour, H. Martı́, D. Kragic, A. Morales,
and M. Vincze, “Task-based grasp adaptation on a humanoid robot,”
in Proc. Int. IFAC Symp. Robot Contr., Dubrovnik, Croatia, Sep. 2012,
pp. 852–859.

[100] N. Curtis and J. Xiao, “Efficient and effective grasping of novel objects
through learning and adapting a knowledge base,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Sep. 2008, pp. 2252–2257.

[101] C. Goldfeder and P. Allen, “Data-driven grasping,” Auton. Robots,
vol. 31, pp. 1–20, 2011.

[102] Z. C. Marton, D. Pangercic, N. Blodow, and M. Beetz, “Combined
2-D–3-D categorization and classification for multimodal perception sys-
tems,” Int. J. Robot. Res., vol. 30, no. 11, pp. 1378–1402, 2011.

[103] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng,
“Grasping novel objects with depth segmentation,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Taipei, Taiwan, Oct. 2010, pp. 2578–
2585.

[104] J. Speth, A. Morales, and P. J. Sanz, “Vision-based grasp planning of 3-D
objects by extending 2-D contour based algorithms,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2008, pp. 2240–2245.

[105] M. Madry, D. Song, and D. Kragic, “From object categories to grasp
transfer using probabilistic reasoning,” in Proc. IEEE Int. Conf. Robot.
Autom., 2012, pp. 1716–1723.

[106] H. Dang and P. K. Allen, “Semantic grasping: Planning robotic grasps
functionally suitable for an object manipulation task,” in Proc. IEEE Int.
Conf. Intell. Robots Syst., 2012, pp. 1311–1317.

[107] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recog., 2001, pp. 511–518.

[108] Z. C. Marton, R. B. Rusu, D. Jain, U. Klank, and M. Beetz, “Probabilis-
tic categorization of kitchen objects in table settings with a composite
sensor,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, MO,
USA, Oct. 2009, pp. 4777–4784.

[109] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. Int. Conf. Comput, Vis., vol. 2, Washington, DC, USA, 1999,
pp. 1150–1157.

[110] Z. C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz,
“General 3-D modelling of novel objects from a single view,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Taipei, Taiwan, Oct. 2010,
pp. 3700–3705.

[111] W. Wohlkinger and M. Vincze, “Shape-based depth image to 3-D model
matching and classification with inter-view similarity,” in Proc. IEEE
Int. Conf. Robot. Autom., San Francisco, CA, USA, Sep. 2011, pp. 4865–
4870.

[112] A. Aldoma and M. Vincze, “Pose alignment for 3-D models and single
view stereo point clouds based on stable planes,” in Proc. Int. Conf. 3-D
Imag., Model., Process., Vis. Transmiss., 2011, pp. 374–380.

[113] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3-D recognition
and pose using the viewpoint feature histogram,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Taipei, Taiwan, Oct. 2010, pp. 2155–2162.

[114] R. B. Rusu, A. Holzbach, G. Bradski, and M. Beetz, “Detecting and
segmenting objects for mobile manipulation,” in Proc. 12th IEEE Int.
Conf. Comput. Vis. Workshop Search 3-D Video (S3DV) Held Conjunct.,
Kyoto, Japan, Sep. 2009, pp. 1–9.

[115] D. I. Gonzalez-Aguirre, J. Hoch, S. Rohl, T. Asfour, E. Bayro-
Corrochano, and R. Dillmann, “Toward shape-based visual object cate-
gorization for humanoid robots,” in Proc. IEEE Int. Conf. Robot. Autom.,
2011, pp. 5226–5232.

[116] D. Kraft, N. Pugeault, E. Baseski, M. Popovic, D. Kragic, S. Kalkan,
F. Wörgötter, and N. Krueger, “Birth of the object: Detection of object-
ness and extraction of object shape through object action complexes,”
Int. J. Human. Robot., vol. 5, pp. 247–265, 2009.
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“Grasping unknown objects using an early cognitive vision system for
general scene understanding,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., San Francisco, CA, USA, Sep. 2011, pp. 987–994.

[118] G. M. Bone, A. Lambert, and M. Edwards, “Automated modelling and
robotic grasping of unknown three-dimensional objects,” in Proc. IEEE
Int. Conf. Robot. Autom., Pasadena, CA, USA, May 2008, pp. 292–298.

[119] M. Richtsfeld and M. Vincze, “Grasping of unknown objects from a
table top,” presented at the Eur. Conf. Comput. Vis. Workshop ‘Vision
Action: Efficient Strategy Cognitive Agents in Complex Environments,’
Marseille, France, Sep. 2008.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOHG et al.: DATA-DRIVEN GRASP SYNTHESIS—A SURVEY 21

[120] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergström, D. Kragic, and A. Morales, “Mind the gap—Robotic
grasping under incomplete observation,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2011, pp. 686–693.

[121] J. Stückler, R. Steffens, D. Holz, and S. Behnke, “Real-time 3-D per-
ception and efficient grasp planning for everyday manipulation tasks,”
presented at the Eur. Conf. Mobile Robots, Örebro, Sweden, Sep. 2011.
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