
Riemannian Flow Matching Policy for Robot Motion Learning

Max Braun1, Noémie Jaquier1, Leonel Rozo2, and Tamim Asfour1

Abstract— We introduce Riemannian Flow Matching Policies
(RFMP), a novel model for learning and synthesizing robot
visuomotor policies. RFMP leverages the efficient training and
inference capabilities of flow matching methods. By design,
RFMP inherits the strengths of flow matching: the ability to
encode high-dimensional multimodal distributions, commonly
encountered in robotic tasks, and a very simple and fast
inference process. We demonstrate the applicability of RFMP to
both state-based and vision-conditioned robot motion policies.
Notably, as the robot state resides on a Riemannian manifold,
RFMP inherently incorporates geometric awareness, which is
crucial for realistic robotic tasks. To evaluate RFMP, we conduct
two proof-of-concept experiments, comparing its performance
against Diffusion Policies. Although both approaches success-
fully learn the considered tasks, our results show that RFMP
provides smoother action trajectories with significantly lower
inference times.

I. INTRODUCTION

The problem of learning, synthesizing and adapting robot
motions in unstructured environments has been recently dis-
rupted by the rise of deep generative models. These models
enable a robot to learn elaborated skills that may display
high-dimensional multimodal action distributions. They can
also be interfaced with deep multimodal perception networks,
thus allowing a robot to learn sensorimotor policies. These
models have been leveraged in both imitation and reinforce-
ment settings [1]–[4], where diffusion processes [5], [6] have
recently shown promising results in a plethora of real robotic
tasks. Nevertheless, this type of models are characterized by
expensive inference methods as they often require to solve a
stochastic differential equation, which might hinder their use
in some robotic settings [5], e.g., for reactive motion policies.
Moreover, when learning diffusion models on Riemannian
manifolds, the computation of the score function of the
diffusion process is not as simple as in the Euclidean case [7],
and the inference process incurs increasing computational
complexity.

In contrast to diffusion models, flow matching (FM) [8]
takes a different approach. Intuitively, FM defines a series of
small transformations (flows) that can smoothly move sam-
ples from a base distribution towards the target data points
(i.e., the demonstration dataset). Each flow is represented
by simple function that takes a base distribution sample
and pushes it slightly in a specific direction. By chaining

This work was supported by the Carl Zeiss Foundation under the project
JuBot and the European Union’s Horizon Europe Framework Programme
under grant agreement No 101070596 (euROBIN).

1Institute for Anthropomatics and Robotics, Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany. noemie.jaquier@kit.edu

2Bosch Center for Artificial Intelligence. Renningen, Germany.
leonel.rozo@de.bosch.com

Fig. 1: Learned RFMP flows () from the base distribution () to
the LASA datasets S and W () on both R2 (top) and S2 (bottom).
The flow is conditioned on random observations o from the training
dataset ().

these small flows together, FM gradually transforms the
prior distribution into the target (demonstrations) distribution.
The beauty of FM lies in its simplicity, as these flow
function is much easier to train and evaluate compared
to solving complex stochastic differential equations as in
diffusion models. Motivated by the recent efficacy of flow
matching (FM) methods [8] across various machine learning
domains [9]–[11], we propose to learn sensorimotor robot
skills via a Riemannian Flow Matching Policy (RFMP).
RFMP capitalizes on the easy training and fast inference
of FM methods to learn and synthesize robot movements
represented by end-effector pose trajectories. Our main con-
tributions are twofold: (1) we pioneer the application of FM
methods within sensorimotor robot policies learning, and (2)
we empirically validate their effectiveness on the established
benchmark LASA dataset [12].

Related work: The literature on robot policy learning
is vast, and therefore we focus on approaches that design
policies based on flow-based generative models. Normalizing
flows [13] are arguably the first models to be broadly adapted
as robot policy representations. The most common approach
was to employ them as diffeomorphisms for learning sta-
ble dynamical systems [14]–[16], with extensions to Lie
groups [17], and Riemannian manifolds [18]. A shortcom-
ing of normalizing flows is their slow training due to the
integration of the associated ODE. More recently, diffusion

mailto:noemie.jaquier@kit.edu
mailto:leonel.rozo@de.bosch.com

models have dominated the robot learning scene due to their
more stable training and their ability to learn complex data
distributions more accurately [6]. They have been primarily
employed to learn motion planners [1] and complex control
policies [2]–[4]. In contrast to the aforementioned works,
our work leverages flow matching [8] to model robot motion
policies. This choice stems from the inherent advantages of
FM: it avoids the complex training procedures of normal-
izing flows and the computationally expensive inference of
diffusion models. Furthermore, our method also accounts for
full-pose trajectories by leveraging the recently developed
Riemannian extension of FM models presented in [19].

II. BACKGROUND

In this section, we provide a short background on Rie-
mannian geometry, an overview of the general flow matching
framework and its extension to Riemannian manifolds.

A. Riemannian manifolds

Let us imagine a flexible and curved surface like a globe.
A smooth manifold, mathematically denoted by M, can be
intuitively conceptualized as a smaller patch on that surface.
Locally, this patch looks flat, therefore resembling the Eu-
clidean space Rd [20], [21]. But unlike the entire globe, the
whole manifold may be curved or twisted, preventing it from
being entirely flat. The smoothness of the manifold allows us
to define directions and rates of change at each point, leading
to tangent vectors in Rd. The set of tangent vectors of all
curves at x ∈ M forms a d-dimensional affine subspace
of Rd, known as the tangent space TxM of M at x. The
collection of all such tangent spaces is called the tangent
bundle TM =

⋃
x∈M {(x,u)|u ∈ TxM} It is possible to

endow a smooth manifold M with a Riemannian metric,
which is a family of inner products gx : TxM×TxM → R
associated to each point x ∈ M. A Riemannian manifold
(M, g) is a smooth manifold endowed with a Riemannian
metric g, that is a family of inner products gx : TxM ×
TxM → R associated to each point x ∈ M [21].

To operate with Riemannian manifolds, we can leverage
their Euclidean tangent spaces and resort to mappings back
and forth between TxM and M, using the exponential
and logarithmic maps. Specifically, the exponential map
Expx (u) : TxM → M maps a point u ∈ TxM to a
point y on the manifold, so that it lies on the geodesic
starting at x in the direction u and such that the geodesic
distance dM(x,y) = dR(x,u). The inverse operation is
the logarithmic map Logx (y) : M → TxM . Finally, the
parallel transport Γx→y(u) : TxM → TyM describes how
elements of M can be transported along curves on M while
maintaining their intrinsic geometric properties. This allows
us to operate elements lying on different tangent spaces.

B. Flow Matching

Flow matching [8] is a simulation-free generative model
that reshapes a simple base density p0 ∈ P(Rd) to a target
(more complicated) distribution p1 ∈ P(Rd) via the push-
forward of the prior p1 = ϕ♯p0, with ϕ denoting the flow

and ♯ being the push-forward operator. To design this flow,
we can define a vector field ut : [0, 1] × Rd → Rd that
represents the ODE,

dϕt(x)

dt
= ut(ϕt(x)) with initial condition ϕ0(x) = x.

(1)
Loosely speaking, the vector field ut defines how a sample
x0 ∼ p0 is transformed over time (from t0 to t = 1) to
match a target sample from x1 ∼ p1. At a density level, the
vector field defines a probability density path pt : [0, 1] ×
Rd → Rd, i.e. an interpolation in probability space, which
is characterized by the continuity equation [8].

Assuming that both the probability path pt(x) and the
corresponding vector field ut(x) are known, then one could
regress a parametrized vector field vt(·;θ) : [0, 1]×Rd → Rd

to some target vector field ut, which leads to the FM loss,

LFM(θ) = Et,pt(x)∥vt(x;θ)− ut(x)∥22, (2)

where θ are the learnable parameters, t ∼ U [0, 1], and
x ∼ pt(x). Unfortunately, the objective in (2) is intractable
since we actually do not have prior knowledge about pt and
ut. Lipman et al. [8] showed that by defining a conditional
probability path pt(x|z) (and consequently a conditional
vector field ut(x|z), it is possible to obtain a tractable
conditional flow matching (CFM) loss,

LCFM(θ) = Et,q(z),pt(x|z)∥vt(x;θ)− ut(x|z)∥22, (3)

which happens to have identical gradients to the uncondi-
tional loss (2) w.r.t θ.

Tong et al. [22] showed that there exist several forms
of CFM depending on how we design the prior q(z), the
conditional probability pt(x|z), and the corresponding vector
field u(x|z). For example, by considering the conditioning
variable as z = x1 ∼ p1, and by defining pt(x|z) and
u(x|z) as follows,

pt(x|z) = N
(
x|tx1, (tσ − t+ 1)2

)
, (4)

ut(x|z) =
x1 − (1− σ)x

1− (1− σ)t
, (5)

one recovers the Gaussian CFM of Lipman et al. [8],
which defines a probability path from a zero-mean normal
distribution to a Gaussian distribution centered at x1, which
is also the approach taken in this paper. Finally, the inference
process boils down to: (1) Get a sample from p0 and; (2) Use
the vector field vt(x;θ) to solve the ODE (1) using off-the-
shelf solvers.

The Riemannian case: In several robotic settings, the
target data distribution may lie on a Riemannian manifold
M, as the desired movements for a robot’s end-effector often
include the orientation component. Therefore, the part of the
robot state representation lie on either the S3 hypersphere or
the SO(3) group, depending on the specific parametrization
used. To properly handle this type of cases, Chen and Lip-
man [19] recently extended CFM to Riemannian manifolds
(RCFM). Formally, this Riemannian formulation considers
that x ∈ M, and therefore the vector field ut(x) ∈ TxM

(i.e., it evolves on the tangent bundle T M) generates a
probability density path pt ∈ P(M). As stated previously,
a Riemannian manifold M is endowed with a Riemannian
metric gx, which implies that the CFM loss (3) is now
computed w.r.t such a metric, as follows,

LRCFM(θ) = Et,q(z),pt(x|z)∥vt(x;θ)− ut(x|z)∥2gx . (6)

As in the Euclidean case, we need to design the vector
field and choose the base distribution. Following [11], [19],
the most straightforward strategy is to exploit geodesic paths
to design the flow ϕ, i.e., we use the shortest path to connect
x0 and x1. Importantly, for many known geometries such as
the Sd hypersphere, the SO(3) group, or the manifold of
symmetric positive definite matrices Sd

++, to mention a few,
we have closed-form geodesics. Specifically, the geodesic
flow connecting x0 and x1 is given by,

xt = Expx0

(
tLogx0

(x1)
)
, t ∈ [0, 1]. (7)

We now can design the vector field ut(x|z) by leveraging the
ODE associated with the conditional flow dϕt(x)/dt = ẋt =
ut(x|z). This means that computing the vector field ut(x|z)
corresponds to compute the time derivative of (7). Finally, the
choice of the base distribution p0 generally depends on the
problem at hand. One could directly define the base density
as a uniform distribution over M as in [11], [19], but it
is also possible to use Riemannian or wrapped Gaussian
distributions.

III. THE RIEMANNIAN FLOW MATCHING POLICY

Given a set of trajectories D = {on,an}Nn=1, where o
denotes the observation and a represents the corresponding
action, our goal is to leverage the CFM framework to learn
a Riemannian flow matching policy (RFMP) πθ(a|o). This
policy aims to generate action sequences that adhere to the
target (expert) distribution πe. Note that, in the general case,
we assume that both o,a ∈ M. We hereinafter explain how
we leverage CFM to model, train, and use such a policy.

A. RFMP training

Firstly, we adapt RCFM to visuomotor policies by simply
conditioning the parametrized vector field on the observation
vector ot, that is vt(a|o). Secondly, inspired by the diffusion
policies framework [4], we employ a receding horizon to
achieve temporal consistency and smoothness on the pre-
dicted actions. This means that our predicted action horizon
vector is constructed as a = [aτ ,aτ+1, . . . ,aτ+Ta

] for a
Ta-steps prediction horizon. This implies that all samples
a1 drawn from the target distribution have the form of the
action horizon vector a. Moreover, the samples a0 from
the base distribution are constructed as a0 = [ap0

, . . . ,ap0
]

with ap0
∼ p0. Nevertheless, instead of defining a similar

receding horizon for the observations, we randomly sample
only To observation vectors from the training dataset to
construct the conditioning variable o. To do so, we follow
the sampling strategy proposed in [9], which uses: (1) A
reference observation oτ−1 ; (2) A context observation oc

with the index c uniformly sampled from {1, . . . , τ − 2};

Algorithm 1: Riemannian Flow Matching Policy
Input : Initial parameters θ, base and target distributions

q(a1), p(a1).
Output: Regressed vector field parameters θ.

1 while termination condition do
2 Sample time step t ∼ U .
3 Sample training example a1 ∼ p, and noise a0 ∼ q.
4 Sample observation vector o.
5 Compute target vector field ȧt = ut(a|a1) based on the

geodesic flow (7).
6 Evaluate LRFMP(θ) (8).
7 Update parameters θ.
8 end

and (3) The distance τ − c between the prediction and the
context observation. The combination of a reference and a
context observation overcomes the fact that a single obser-
vation carries very little information and provides additional
information about the direction of the motion. Therefore, the
observation vector is defined as o = [oτ−1,oc, τ − c]. The
aforementioned strategy leads to the following RFMP loss,

LRFMP(θ) = Et,q(a1),pt(a|a1)∥vt(a|o;θ)− ut(a|a1)∥2ga .
(8)

Algorithm 8 summarizes the training procedure of RFMP.

B. RFMP inference

Once our RFMP is trained, the inference process, which
corresponds to querying our policy πθ(a|o), is carried out
as follows: (1) Draw a sample a0 ∼ q; (2) Employ an
off-the-shelf ODE solver to integrate the learned vector
field vt(a|o;θ) along the time interval [0, 1]; (3) Execute
only the first Te actions [aτ ,aτ+1, . . . ,aτ+Te

] with Te <
Ta, from the whole predicted action horizon a. Note that
the ODE solver queries the learned vector field vt(a|o;θ)
using the observation vector o = [oτ−1,oc, τ − c] with
c ∼ U{1, . . . , τ − 2}. In the Euclidean case, we use the
DOPRI ODE solver [23] implemented in torchdyn [24]. In
the Riemannian case, we employ a Riemannian ODE solver
based on the Euler method, as in [19].

C. RFMP implementation

Our RFMP implementation builds on the RFM framework
from Chen and Lipman [19]. Specifically, we parameter-
ized the vector field vt(a|o;θ) using a standard multilayer
perceptron (MLP) with 64 hidden units and 5 layers for
all experiments reported in the sequel. We used the Swish
activation function [25] with a learnable parameter. The input
to the MLP network is a vector formed as the concatenation
of time and the observation vector. Under the aforementioned
configuration, the resulting model has a total of 32K learn-
able parameters. We optimized the network parameters θ
using Adam with a learning rate of 1e−4 and an exponential
moving averaging on the weights [26] with a decay of 0.999.
For all experiments, we split the data as 80% train, 10%
validation, and 10% test. We trained the network for 200
epochs and selected the best model based on its performance
on the validation set.

(a) RFMP trajectories.

(b) DP trajectories.

Fig. 2: Demonstrations () and learned trajectories on the LASA datasets S in R2 (left), on the LASA datasets S, W projected on S2

(middle-left, middle-right), and on a multimodal dataset made of mirrored datasets of the letter L projected on S2 (right). Reproductions
start at the same initial observations as the demonstrations (), or from randomly-sampled observations in the demonstration dataset
neighborhood (). Trajectory starts are depicted by dots in the multimodal case.

Concerning the base distribution, our RFMP uses a Gaus-
sian distribution p0 = N (0, σI), in the Euclidean case
M = R2, where we set σ = 1 for the experiments reported
next. In the Riemannian setting, i.e., M = S2, we define
the base distribution as a wrapped Gaussian distribution [27],
[28] centered at the manifold origin e = (0, . . . , 0, 1)T ∈ Sd,
i.e., p0 = NS2

(
e, σI

)
with σ = 0.5 for our experiments.

IV. EXPERIMENTS

We evaluate RFMP on the LASA dataset [12] in the Eu-
clidean space R2 and on the same dataset but projected on the
sphere S2. Using these datasets, we consider: (1) Trajectory-
based policies, where observations are defined as current and
past states along the trajectories; and (2) Visuomotor policies,
where observations correspond to vector features extracted
from grayscale images.

A. Trajectory-based policies

To learn the vector field vt, we use a dataset
{{{am,τ ,om,τ}τ−2

c=1 }
Tm
τ=2}Mm=1 of M = 7 demonstrations

containing Tm = 200 timesteps each, where am,τ =
[am,τ , . . . ,am,τ+Ta

] and om,τ = [om,τ−1,om,c, τ − c] are
the action and observation vectors of the τ -th step of the m-th
demonstration. All actions and observations are normalized
and projected onto the manifold M of interest. In this
experiment, both actions aτ ∈ M and observations oτ ∈ M
are represented in the position space of the manifold M. The
variance of the base distribution p0 is selected such that the
distribution roughly spans half of the sphere containing the
data. We use a prediction horizon Ta = 8 and an execution
horizon Te = Ta/2.

Figure 1 shows the learned RFMP flows conditioned on
observations from the training dataset on the manifolds R2

and S2, for the letters S and W. We observe that the distri-
butions reconstructed by RFMP closely match the original
demonstrations. Figure 2a displays the trajectories recon-
structed by sequentially executing the actions inferred by
RFMP. The obtained trajectories closely follow the demon-
strations when initialized with the same initial observations.
Notably, when tested on initial conditions that are randomly-
sampled on the neighborhood of the demonstrations support,
RFMP generates trajectories that closely follow the demon-
strations pattern. This kind of generalization is desired, for
example, when the task demands to reproduce trajectories
that closely resemble the demonstration style.

We compare RFMP against diffusion policies (DP) [4].
To do so, we employ the CNN-based diffusion network with
256M parameters provided by the authors. As in [4], we
used the iDDPM algorithm [29] with the same 100 denoising
diffusion iterations for both training and inference. Moreover,
we used the same prediction and execution horizons as
for RFMP. Figure 2b shows the trajectories obtained by
sequentially executing the actions inferred by DP. Similarly
to RFMP, the trajectories closely match the demonstrations
when initialized with the same initial observations (blue
curves). Interestingly, unlike RFMP, the trajectories starting
at randomly-sampled initial conditions close to the demon-
strations (orange curves), tend to rejoin the demonstration
data support, resulting in less variance across reproductions.
This behavior might be partly explained by a high memoriza-
tion of the training data [30], although this requires further
investigation.

Importantly, the trajectories obtained by DP tend to be
more jerky than those obtained with RFMP. We hypothesize
that such jerky trajectories are a result of the inherent
stochasticity of diffusion models during inference. These

(a) RFMP on R2. (b) RFMP on S2.

(c) DP on R2. (d) DP on S2.

Fig. 3: Demonstrations () and learned trajectories on the LASA datasets S and W with different prediction horizons Ta = {2, 4, 8}
(from left to right). Reproductions start at the same initial observations as the demonstrations (), or from randomly-sampled observations
in their neighborhood ().

observations are supported by quantitative measures. Table I
shows the dynamic time warping distance (DTWD) as a
measure of reproduction accuracy for trajectories initialized
with the same initial observations as the demonstrations, and
the jerkiness as a measure of the trajectories smoothness [31].
We observe that DP produces trajectories that display a
similar or lower DTWD than RFMP. This can be explained
by the tendency of DP to generate trajectories within the
demonstrations support, while RFMP displays an increased
variance across reproductions. As observed qualitatively,
RFMP produces arguably smoother trajectories than DP, as
indicated by the lower jerkiness values reported in Table I.

Note that diffusion policies are not adapted to handle
data on Riemannian manifolds, and thus do not provide any
guarantees that the resulting trajectories lie on the manifold
of interest. This can be observed, e.g., for the S dataset on S2,
where some trajectories enter the sphere in the middle part
of the S trajectories. This means that a post-processing step
would be required to ensure that the trajectories lie on the
manifold of interest. Although possible, such post-processing
steps are known to produce highly-inaccurate predictions as
they disregard the intrinsic geometry of the data, as discussed
in [32]. A more technically-sound solution would involve to
adapt diffusion policies using Riemannian formulations of
diffusion models [7], [33].

We also tested the capabilities of both RFMP and DP
to learn multimodal policies on Riemannian manifolds. The
rightmost plots in Fig. 2 show the resulting trajectories
for initial conditions matching those of the demonstrations
dataset (blue curves) and for initial points drawn from a
region close to the demonstrations (orange curves). Although
both RFMP and DP are able to learn the multimodal pattern,
their generalization behavior is different when tested on
initial conditions that are different from the training dataset.
We can again observe that the DP trajectories tend to move
back to the data support. Interestingly, in the multimodal
case, RFMP outperforms DP in terms of both DTWD and

smoothness (see Table I).

Next, we ablate the prediction horizon Ta for both RFMP
and DP. Figure 3 shows the trajectories obtained for both
policy types with Ta = {2, 4, 8} and Te = Ta/2. The
corresponding quantitative measures (DTWD and jerkiness)
are given in Table II. Interestingly, the RFMP trajectories re-
main smooth despite the reduction of the prediction horizon,
even for Ta = 2. In contrast, DP exhibits jerkier behaviors
with shorter prediction horizons. This trend is especially
pronounced for trajectories starting from initial observations
that are different from the training dataset (see orange curves
in Fig. 3b-left and Fig. 3d-left). We hypothesize that the
reduction of the prediction horizon has a stronger impact
on the inference process of DP than on RFMP due to the
inherent stochasticity of diffusion models.

Finally, we compare the inference time of RFMP and DP
in Table III. All computations were performed on a laptop
with 2.60GHz ×12 CPU, a Nvidia Quatro T200 GPU, and 31
GB RAM. In the Euclidean case, we observe a reduction of
∼ 30% (∼ 350ms) for the inference time of RFMP compared
to DP. This is due to the fact that RFMP employs ODE
solvers, which are generally much more efficient that the
SDE solvers required for diffusion models. This result is an
inherent strength of flow matching compared to diffusion
models, as thoroughly analyzed in the flow matching liter-
ature [8], [22]. The inference time of RFMP on the sphere
S2 exceeds that of DP. However, this is due to the fact that
RFMP intrinsically handles data on Riemannian manifolds
and therefore uses ODE solvers that are specific to this type
of spaces. Instead, DP disregards the geometry of the data
and thus employs Euclidean SDE solvers. A fair comparison
of the inference times of RFMP and DP on the sphere
would involve the adaptation of diffusion policies to data
on Riemannian manifolds and leveraging Riemannian SDE
solvers for inference.

DTWD Jerkiness
Dataset S, R2 S, S2 W, S2 multi-L, S2 S, R2 S, S2 W, S2 multi-L, S2

RFMP 1.87± 0.94 0.95± 0.32 1.64± 0.84 6.14± 6.56 2120± 273 4077± 900 4198± 560 2161± 640
DP 0.98± 0.22 0.80± 0.21 0.90± 0.35 7.06± 7.73 8172± 747 7612± 543 2944± 1399 2201± 744

TABLE I: Average dynamic time warping distance (DTWD) and jerkiness (a.k.a smoothness) for trajectory-based RFMP and DP. DTWD
is computed between the demonstrations and the reproductions initialized as the demonstrations, while the smoothness is averaged over
all the reproductions displayed in Fig. 2.

DTWD, R2 Jerkiness, R2 DTWD, S2 Jerkiness, S2

Ta 2 4 8 2 4 8 2 4 8 2 4 8
RFMP 1.13± 0.29 2.31± 1.25 1.87± 0.94 3454± 276 3729± 475 2120± 273 0.52± 0.18 0.90± 0.34 0.95± 0.32 2845± 335 6169± 556 4077± 900

DP 0.70± 0.07 0.76± 0.25 0.98± 0.22 11905± 1962 7289± 939 8172± 747 0.60± 0.16 0.70± 0.33 0.80± 0.21 6586± 3140 4239± 1306 7612± 543

TABLE II: Average dynamic time warping distance (DTWD) and jerkiness (a.k.a smoothness) for RFMP and DP with different prediction
horizons Ta = {2, 4, 8}. DTWD is computed between the demonstrations and the reproductions initialized as the demonstrations, while
the smoothness is averaged over all the reproductions displayed in Fig. 3.

Trajectory-based Visuomotor
Dataset S, R2 S, S2 S, R2 S, S2

RFMP 803± 55 1539± 23 1355± 110 2351± 88
DP 1142± 17 1147± 26 2462± 141 2662± 541

TABLE III: Inference times (in milliseconds) per prediction step for
RFMP and DP. These are averaged across the 50 prediction steps
with Ta = 8, for both the 14 reproductions displayed in Fig. 2
for trajectory-based policies, and the 7 reproductions displayed in
Fig. 5 for visuomotor policies.

(a) R2 (b) S2

Fig. 4: Examples of visual observations at the end of a demonstra-
tion of the LASA dataset S.

B. Towards visuomotor policies

In this section, we study the case where the RFMP vector
field is conditioned on visual observations, thus resembling
a visuomotor diffusion policy. Similarly to Section IV-A,
we use a dataset defined as {{{am,τ ,om,τ}τ−2

c=1 }
Tm
τ=2}Mm=1

of M = 7 demonstrations containing Tm = 200 timesteps
each, where am,τ = [am,τ , . . . ,am,τ+Ta] and om,τ =
[om,τ−1,om,c, τ − c] are the action and observation vectors
of the τ -th step of the m-th demonstration. Again, all action
and observation vectors are normalized and projected onto
the manifold M of interest. However, in this case, the
observations oτ ∈ M are given by the latent encodings (a.k.a
feature vectors) of 48×48 raw grayscale images depicting the
temporal progress of the task. Examples of such images are
shown in Fig. 4. Specifically, our vision perception backbone,
which maps raw grayscale images to observation vectors, is
exactly the same used in DP [4]. Namely, we used a standard
ResNet-18 in which we replaced: (1) the global average
pooling with a spatial softmax pooling, and (2) BatchNorm
with GroupNorm. The former modification maintains spatial

information [34], while the latter stabilizes the training [35].
We trained the visual encoder end-to-end with our RFMP,

for which we used the same base distributions p0 and
prediction horizon Ta = 8 as in Section IV-A. In this visuo-
motor RFMP, we empirically observed that shortening the
observations horizon used to sample the context observation
increases temporal consistency and improves the smooth-
ness on the predicted actions. Therefore, in the following
experiments, we sample c ∼ U{τ − w, . . . , τ − 2} with
w = 50. Figure 5a shows the demonstrations and the repro-
duced trajectories of the learned visuomotor RFMP. For both
demonstrations and reproductions, the initial observations
correspond to blank images for policies trained in R2, and an
empty grayscale sphere for policies in S2. Similarly to the
trajectory-based policies, the visuomotor RFMP successfully
reproduces trajectories that match the demonstrations pattern
in both the Euclidean and the Riemannian settings.

We compare visuomotor RFMP against visuomotor DP.
As in [4], and similarly to the visuomotor RFMP, we train
the vision perception backbone (modified ResNet-18) end-
to-end with the CNN-based diffusion network described in
Section IV-A. Figure 5b shows the trajectories obtained by
sequentially executing the actions inferred by the visuomotor
DP. Similarly to RFMP, the trajectories closely match the
demonstrations. Interestingly, the visuomotor RFMP com-
petitively performs when compared to the visuomotor DP
in terms of the DTWD metric, as shown in Table IV, de-
spite having a simpler architecture parametrizing the RFMP
vector field. Moreover, as observed in Section IV-A for the
trajectory-based case, visuomotor RFMP leads to smooth
trajectories, especially for policies on S2 as indicated by
the low jerkiness values in Table IV. Let us emphasize once
more that RFMP ensures that the predicted actions lie on
the manifold of interest, as opposed to DP which does not
provide such guarantees.

Finally, we compare the inference time of visuomotor
RFMP and DP in Table III. We observe a reduction of ∼ 45%
(∼ 900ms) for the inference time of RFMP compared to
DP. Interestingly, this reduction is greater for visuomotor
policies compared to the trajectory-based case. Moreover,
the inference time of RFMP on the sphere S2 is similar
to that of DP, despite that RFMP uses Riemannian-specific

(a) RFMP trajectories.

(b) DP trajectories.

Fig. 5: Demonstrations () and trajectories reproduced by the visuomotor RFMP and DP () on the LASA datasets S and J in R2

(left) and on the LASA datasets S and W projected on S2 (right).

DTWD Jerkiness
Dataset S, R2 J, R2 S, S2 W, S2 S, R2 J, R2 S, S2 W, S2

RFMP 1.22± 0.44 1.82± 0.93 0.76± 0.27 0.84± 0.48 10543± 612 7655± 537 3590± 353 4455± 306
DP 1.29± 0.49 2.35± 1.66 0.67± 0.24 0.93± 0.48 6198± 755 5588± 801 5903± 170 5042± 136

TABLE IV: Average dynamic time warping distance (DTWD) and jerkiness (a.k.a smoothness) for visuomotor RFMP and DP. DTWD is
computed between the demonstrations and the reproductions displayed in Fig. 5 and the smoothness is averaged over the same reproductions.

ODE solvers which are computationally more expensive
than Euclidean ODE solvers. The reported findings indicate
comparable performance between RFMP and DP in terms of
task completion. However, RFMP exhibits a clear advantage
in generating smoother action predictions, and this advantage
remains consistent regardless of the prediction horizon. Fur-
thermore, RFMP boasts significantly faster inference times
compared to DP. These attributes make RFMP a compelling
choice for real-time applications in various robotic domains.

V. CONCLUSION

We introduced Riemannian Flow Matching Policies
(RFMP), a novel learning framework that leverages the sim-
plicity and fast inference of flow matching models to model
visuomotor robot policies on Riemannian manifolds. We
evaluated RFMP on both trajectory-based and vision-based
settings using the LASA dataset. Our results demonstrated
that RFMP successfully learns policies that reproduce the
demonstration patterns even for initial conditions outside the
training data. Compared to Diffusion Policies (DP), RFMP
generates smoother predicted trajectories with significantly
lower inference times. Interestingly, RFMP exhibited less
performance degradation with decreasing action prediction
horizons. Notably, RFMP achieved this competitive per-
formance using a simple MLP architecture for its vector
field, in contrast to the more powerful CNN architecture
employed by DP in score matching. Our proof-of-concept

experiments showed the potential of RFMP for learning com-
plex visuomotor policies in real-world robotic applications.
Future work will evaluate the performance of RFMP in real-
world robotics applications. Moreover, we will explore more
powerful representations for the RFMP vector field and more
informative prior models.

REFERENCES

[1] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in Intl. Conf. on Machine
Learning (ICML), 2022, pp. 9902–9915.

[2] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imitation
learning using score-based diffusion policies,” in Robotics: Science
and Systems (R:SS), 2023.

[3] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive
policy class for offline reinforcement learning,” in Intl. Conf. on
Learning Representations (ICLR), 2023.

[4] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Robotics: Science and Systems (R:SS), 2023.

[5] C. Luo, “Understanding diffusion models: A unified perspective,”
arXiv preprint arXiv2208.11970, 2022.

[6] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey
of methods and applications,” ACM Comput. Surv., vol. 56, no. 4,
2023.

[7] C.-W. Huang, M. Aghajohari, J. Bose, P. Panangaden, and
A. Courville, “Riemannian diffusion models,” in Neural Information
Processing Systems (NeurIPS), 2022.

[8] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le,
“Flow matching for generative modeling,” in Intl. Conf. on Learning
Representations (ICLR), 2023.

[9] A. Davtyan, S. Sameni, and P. Favaro, “Efficient video prediction via
sparsely conditioned flow matching,” in Intl. Conf. on Computer Vision
(ICCV), 2023, pp. 23 206–23 217.

[10] A. H. Liu, M. Le, A. Vyas, B. Shi, A. Tjandra, and W.-N. Hsu,
“Generative pre-training for speech with flow matching,” in Intl. Conf.
on Learning Representations (ICLR), 2024.

[11] J. Bose, T. Akhound-Sadegh, K. FATRAS, G. Huguet, J. Rector-
Brooks, C.-H. Liu, A. C. Nica, M. Korablyov, M. M. Bronstein,
and A. Tong, “SE(3)-stochastic flow matching for protein backbone
generation,” in Intl. Conf. on Learning Representations (ICLR), 2024.

[12] A. Lemme, Y. Meirovitch, M. Khansari-Zadeh, T. Flash, A. Billard,
and J. J. Steil, “Open-source benchmarking for learned reaching mo-
tion generation in robotics,” Paladyn, Journal of Behavioral Robotics,
vol. 6, no. 1, 2015.

[13] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference,” Journal of Machine Learning Research, vol. 22, no. 57,
pp. 1–64, 2021.

[14] M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff,
“Euclideanizing flows: Diffeomorphic reduction for learning stable
dynamical systems,” in Conference on Learning for Dynamics and
Control (L4DC), 2020, pp. 630–639.

[15] S. A. Khader, H. Yin, P. Falco, and D. Kragic, “Learning stable
normalizing-flow control for robotic manipulation,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2021, pp. 1644–1650.

[16] J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflow: Learning
deep stable stochastic dynamic systems by normalizing flows,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2020,
pp. 5231–5237.

[17] J. Urain, D. Tateo, and J. Peters, “Learning stable vector fields on
lie groups,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
12 569–12 576, 2022.

[18] J. Zhang, H. B. Mohammadi, and L. Rozo, “Learning Riemannian sta-
ble dynamical systems via diffeomorphisms,” in Conference on Robot
Learning (CoRL), ser. Proceedings of Machine Learning Research,
vol. 205, 2023, pp. 1211–1221.

[19] R. T. Q. Chen and Y. Lipman, “Flow matching on general geometries,”
in Intl. Conf. on Learning Representations (ICLR), 2024.

[20] M. do Carmo, Riemannian Geometry. Birkhäuser Basel, 1992.
[21] J. M. Lee, Introduction to Riemannian Manifolds. Springer, 2018.
[22] A. Tong, K. Fatras, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks,

G. Wolf, and Y. Bengio, “Improving and generalizing flow-based
generative models with minibatch optimal transport,” Transactions on
Machine Learning Research (TMLR), 2024.

[23] J. Dormand and P. Prince, “A family of embedded runge-kutta for-
mulae,” Journal of Computational and Applied Mathematics, vol. 6,
no. 1, pp. 19–26, 1980.

[24] M. Poli, S. Massaroli, A. Yamashita, H. Asama, J. Park, and S. Er-
mon, “TorchDyn: Implicit models and neural numerical methods in
PyTorch,” arXiv preprint arXiv:2009.09346, 2020.

[25] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[26] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM Journal on Control and Optimization,
vol. 30, no. 4, pp. 838–855, 1992.

[27] K. V. Mardia and P. E. Jupp, Distributions on Spheres. John Wiley
and Sons, Ltd, 1999, ch. 9, pp. 159–192.

[28] F. Galaz-Garcia, M. Papamichalis, K. Turnbull, S. Lunagomez, and
E. Airoldi, “Wrapped distributions on homogeneous Riemannian man-
ifolds,” arXiv preprint 2204.09790, 2022.

[29] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion prob-
abilistic models,” in Intl. Conf. on Machine Learning (ICML), ser.
Proceedings of Machine Learning Research, vol. 139, 2021, pp. 8162–
8171.

[30] T. Yoon, J. Y. Choi, S. Kwon, and E. K. Ryu, “Diffusion probabilistic
models generalize when they fail to memorize,” in ICML 2023 Work-
shop on Structured Probabilistic Inference & Generative Modeling,
2023.

[31] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and
E. Burdet, “On the analysis of movement smoothness,” Journal of
NeuroEngineering and Rehabilitation, vol. 12, no. 112, 2015.

[32] N. Jaquier, L. Rozo, and T. Asfour, “Unraveling the single tangent
space fallacy: An analysis and clarification for applying Riemannian
geometry in robot learning,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2024.

[33] A. Lou, M. Xu, A. Farris, and S. Ermon, “Scaling Riemannian dif-
fusion models,” in Neural Information Processing Systems (NeurIPS),
2023.

[34] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipula-
tion,” in Conference on Robot Learning (CoRL), ser. Proceedings of
Machine Learning Research, vol. 164, 2022, pp. 1678–1690.

[35] Y. Wu and K. He, “Group normalization,” in European conference on
computer vision (ECCV), 2018, pp. 3–19.

	INTRODUCTION
	BACKGROUND
	Riemannian manifolds
	Flow Matching

	The Riemannian Flow Matching Policy
	RFMP training
	RFMP inference
	RFMP implementation

	EXPERIMENTS
	Trajectory-based policies
	Towards visuomotor policies

	CONCLUSION
	References

