
Speeding Up Assembly Sequence Planning
Through Learning Removability Probabilities

Alexander Cebulla, Tamim Asfour, and Torsten Kröger

Abstract— Industry 4.0 facilitates a high number of product
variants, posing significant challenges for modern manufactur-
ing. One of them is the automatic creation of assembly se-
quences. This can be achieved with the assembly-by-disassembly
(AbD) approach, which is currently highly inefficient. We aim
at speeding up AbD by leveraging deep learning. AbD relies on
iteratively testing parts for removal, which makes the order
in which parts are tested highly relevant for its run-time.
We optimize this order by training a graph neural network
(GNN) based on the shape of parts and the shape of local
part connections. For each part, it predicts a removability
probability. We use these probabilities to optimize the order in
which parts are tested for removal. This reduces the number
of parts tested by approximately 64%–90%, depending on the
tested product. Further improvements are achieved by com-
bining our approach with bookkeeping, another approach for
speeding up AbD. Finally, we separately analyze the impact of
the parts and their connections on the removability probabilities
predicted by the GNN. We found that most of the important
information regarding a part’s removability can be derived
from its connections alone.

I. INTRODUCTION

The manufacturing of customized product variants, as fa-
cilitated by industry 4.0, poses a number of challenges to the
production process. A crucial one is assembly sequence plan-
ning (ASP), which refers to finding a suitable sequence of
assembly steps to put the final product together. Traditionally
done by hand, this process needs automation to handle the
increasing number of product variants. An existing approach
for automating ASP is assembly-by-disassembly (AbD). This
approach tries to find a suitable assembly sequence by finding
a disassembly sequence for the fully assembled product and
inverting it. Without further improvements, AbD is very
inefficient, as it iteratively tests, in simulation, for each part
if it can be removed. In the worst case, this can lead to
(n − 1) + (n − 2) + · · · ∈ O(N2) removal attempts for
an assembly with N parts, hence becoming highly time-
consuming [1].

To speed up AbD, it is crucial to reduce the number of
removal attempts, either by reducing unnecessary ones and/or
by optimizing the order in which parts are tested for removal.
An existing approach for reducing unnecessary removal
attempts is a bookkeeping heuristic [2]. It keeps track of
parts that could not be removed in previous attempts and only
tests them again if there is a chance that they have become
removable. However, the order in which parts are tested

The research leading to these results has received funding from the Carl
Zeiss Foundation.

Institute for Anthropomatics and Robotics - Intelligent Process Automa-
tion and Robotics Lab (IAR-IPR), Karlsruhe Institute of Technology (KIT)
{alexander.cebulla, asfour, torsten}@kit.edu.

Graph
Neural
Network

Assembly state Part removability

Fig. 1: Goal of our approach: Predict for an assembly the
removability probabilities of its parts.

remains the same. This leaves room for complementary
approaches aimed at optimizing the part order.

We propose such a part order optimization by employing
a graph neural network (GNN) to learn and predict the
removability probabilities of individual parts in an assembly
as shown in Fig. 1. Optimization is performed by reordering
the parts according to their removability. We leverage that
products often share similarly designed sub-assemblies as
well as that a part’s removability depends on its type and
the presence or absence of parts in its local environment.
We assume that these similarities extend to the removability
of individual parts, meaning that similar parts in similar
environments have similar removability. This relationship can
be learned by GNNs, as parts and their connections can be
represented through graphs, where nodes correspond to parts
and edges to their connections.

Throughout this paper, we first introduce how we derive
data suited for GNN training by transforming assemblies into
a graph representation. Next, we describe our GNN approach
and its incorporation in an existing AbD framework [1].
With our experiments we first validate our assumption: for
products using similar designs, we are able to predict a part’s
removability with over 85% accuracy. Then, we investigate
how our approach can improve an existing AbD frame-
work [1]. An additional comparison between our approach
and bookkeeping [2] is provided, together with a combination
of both approaches.

In summary, our main contributions are:
1) Development of a graph-shaped representation for as-

semblies.
2) The construction of a dataset using this representation.
3) Development and training of a GNN for predicting part

removability probabilities.
4) Speeding up AbD by testing parts in order of their

predicted removability.

II. RELATED WORK

An important aspect of AbD is how parts are tested
for removal. Several strategies for these tests exist. The
mating vector approach tries to remove each part along
pre-computed directions. These might be parallel to the
coordinate axes [3] or are extracted from the parts’ surface
normals [1]. In a more sophisticated approach [4], they are
derived from analyzing the configuration space obstacles for
each part. Testing removability via mating vectors is fast,
however, it fails if a part cannot be removed along a linear
path. An alternative is to search for paths via sampling-based
motion planers [1], [5] such as Rapidly-exploring Random
Trees (RRT) [6]. The ’Expansive Voronoi Tree’ algorithm [7]
is another approach that first computes a general Voronoi
diagram for the whole assembly, which is then used to
efficiently compute removal paths for each of its parts.

All of the work discussed so far focuses on how to
efficiently test if a part can be removed. Another important
aspect of AbD is how to select a part for testing. In [2] a
bookkeeping heuristic is suggested. This is done by keeping
track of parts for which no removal path was found during
previous removal attempts. For these parts, the approach
assumes that they are surrounded by other parts blocking
them. Therefore, they are only tested again, if at least one
of the parts they collided with during previous removal tests
has been removed. Additionally, a wide range optimization
algorithms has been applied to ASP [8] with the goal
to find a sequence that minimizes criteria such as tool
changes. Examples are genetic algorithms [9], particle swarm
optimization [10], and deep reinforcement learning [11].
However, all these methods optimize a specific assembly.

In contrast, approaches based on case-based planning
(CBP) re-use assembly sequences of sub-assemblies from
related objects. For example, [12] retrieved assembly plans
for sub-assemblies from a database based on similarities
between graphs of part connections, mating directions as well
as mating constraints. In [13] a genetic algorithm was used to
first find correspondences between parts of a new assembly
and a reference assembly. Based on these correspondences,
it then generates a reference assembly sequence. In [14],
CBP was used to first generate assembly sequence candidates
which were then evaluated based on geometric constraints
extracted from CAD models. Closest to us are the works
[15] and [16]. In [15] – similar to our approach – a graph-
based representation with nodes that encode parts via spher-
ical harmonic features [17] was used. However, to encode
connections between parts, collinear and coplanar relations
between them were computed. This requires manual work
of a human to define the axis and plane elements for each
part. Based on the similarities between their representations,
assembly sequences were then transferred from a reference
assembly to the new assembly. The assumption was made
that all assemblies are of the same type – in this case,
chairs. In [16] graph-shape topologies were specified for
a well-defined set of assemblies. These assemblies consisted
of three or four aluminium profiles, and various assemblies

Fig. 2: Representation of a 3D assembly model with four
parts as graph. Not shown is the computation of the 3D shape
descriptors from the extracted point clouds.

could have the same topology. Through clustering, a set
of typical topologies was then identified. Furthermore, each
topology defined a sequence of features that determined a set
of assembly rules. Then, for a new assembly, first its topology
was computed and the corresponding sequence of features
was extracted. Finally, a classifier was used to determine the
correct set of assembly rules.

Compared to [15], our approach does not rely on human
input at all, and the product assemblies are broader in per-
spective: They belong to different product groups and only
share the property that they are constructed from aluminum
profiles together with accompanying parts. In contrast to
[16], we work on complex real-world assemblies adapted
from [18], [19], [20], [21], [22] with up to 68 parts instead
of small assemblies using only 3-4 aluminum profiles.

III. ASSEMBLY REPRESENTATION

Our primary objective for improving ASP via AbD is to
preferably test parts for removal that have a high removability
probability. We assume, that a part’s removability primarily
depends on the type of part and its local neighborhood, and
not the specific assembly it is employed in. Therefore, we
propose the use of a graph-based assembly representation,
which explicitly encodes these factors: the individual parts
are represented as nodes, while their connections with other
parts are represented as directed edges as shown in Fig. 2. In
the following, we first give a formal definition of an assembly
and show how it can be represented as a graph. Then, we
introduce how we calculate node and edge attributes for the
graph from an assembly.

A. Formal Definition of an Assembly

An assembly is defined by the set of its parts A :=
{p1, p2, . . . pN} as well as their connections C :=
{Cp1 , Cp2 , . . . Cpn}. Each part pi is defined by its geometric
shape and 6D pose. The connections Cpi associated with pi
include all parts pj that share a physical connection with pi.
A connection between pi and a potential neighbor pj exists,
if the minimal distance between both parts is smaller than
a threshold ϵ. Formally, let Xpi

and Xpj
be sets of surface

points on pi and pj respectively, then the connections Cpi of
pi are given by

Cpi
:= {pj |pj ∈ A, min

xi∈Xpi
,xj∈Xpj

||xi − xj ||2 < ϵ}

B. Representing Assemblies as Graph

We represent an assembly A as directed graph GA =
(NA, EA), with the node set NA and the edge set EA.
Thereby, each part pi ∈ A is represented by a node ni ∈ NA,
while connections between parts pi and pj are represented
by directed edges ei,j ∈ EA connecting the nodes. Formally,
a connection ei,j ∈ EA exists exactly when pi, pj ∈ A and
pj ∈ Cpi

. In the following, the subscript for GA will be
omitted if it is clear which assembly the graph represents.

C. Calculation of Node and Edge Attributes

Next, a suitable representation for nodes and edges in
the graph is needed. Given our assumption that a part’s
removability primarily depends on the part itself and its
connections, such a representation should be invariant to
scale, translation and rotation. Through these invariances,
it is no longer important in which way and size a part is
employed in an assembly - the resulting representation will
always be the same, keeping the focus on the part and its
connections. To obtain such a representation, we employ 3D
shape histograms [23] with a spherical harmonic representa-
tion [17]. This approach works based on point clouds of the
parts. First, the point cloud is centered and re-scaled to the
unit cube to achieve and translation and scale invariance. To
obtain rotation invariance, spherical harmonics are utilized
next. Therefore, the re-scaled and centered point cloud is
transformed into spherical coordinates, which characterize
each point by a radius r and two angles θ, φ. For these
values, a 3D histogram is calculated, where each bin is
characterized by a combination of value-ranges for r, θ, φ.
Through fixing a value-range for radius r we can obtain
a discrete spherical function f(θ, φ) from the 3D shape
histogram. Further, according to spherical harmonics theory
each spherical function can be decomposed as the sum of its
harmonics [17]:

f(θ, φ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Y m
ℓ (θ, φ), (1)

where Y m
ℓ (θ, φ) are the spherical harmonic basis functions

of degree ℓ and order m and amℓ are coefficients computed
through projecting f(θ, φ) onto these basis functions. An
important property of spherical harmonics is that for a fixed

degree ℓ the L2 norm of the coefficient vector is invariant
against rotating the spherical function f(θ, φ). Therefore,
through computing the norm of these vectors for every
radius bin, i.e., every value-range for radius r, and then
concatenating all norms, we obtain a rotation-invariant shape
descriptor h ∈ RD. We used six radius bins and 30 bins each
for θ and φ, resulting in D = 90.

To be independent of manual annotations, we want to
automatically extract node attributes an ∈ RD and edge
attributes ae ∈ R2D from an assembly. This can be achieved
by using the aforementioned shape descriptor h. Specifically,
each node ni will store the 3D shape descriptor, computed
for the point cloud Xi of its corresponding part pi, as its
attribute an1 := hn1 . For edge attributes, an2 := hn2 as
shown in Fig. 2, the contact areas between parts will be used.
In detail, for edge ei,j and fixed distance threshold ϵ, we
define Xj

i = {xi ∈ Xpi |∃xj ∈ Xpj : ||xi − xj || < ϵ} ⊆ Xpi

as the points of pi that are in contact with pj . Xi
j is defined

accordingly. Then, hj
i and hi

j are the 3D shape descriptors
computed for Xj

i and Xi
j . The edge attribute for the directed

edge ei,j is then given by the vector ae1,2 :=
[
h2
1,h

1
2

]
and

for e2,1 it is ae2,1 :=
[
h1
2,h

2
1

]
, respectively.

IV. SPEEDING UP ASP VIA ABD

The basic idea behind ASP via AbD is to find a suitable
assembly sequence by first disassembling the product. As
shown in Fig. 3a, it starts from a fully assembled product
and then tests for each part if it can be removed without
collision and if potential additional constraints (e.g. for
gravity) are fulfilled. This creates a disassembly sequences,
which is inverted to get an assembly sequence (assuming
the sequence is invertible). While general, this approach
suffers from a combinatorial explosion. That is, the number
of removal attempts is in O(N2), where N is the number of
parts. We propose to mitigate this problem through reducing
the number of removal tests. In detail, for an assembly
represented as graph as described in Sec. III, we use a GNN
to predict the probability of parts being removable. Then,
parts are tested according to their removability from high
to low. The whole process is illustrated in Fig. 3b In the
following, we first describe a general AbD framework [1]
and how we used it to create our dataset. Then, we describe
the GNN architecture. Finally, we show how we used a
GNN to intelligently reordering parts before testing them
for removability.

A. General AbD Framework

We use [1] as general AbD framework. It suggests a gen-
eral workflow, but leaves the implementation of its individual
steps open, see below. The idea is to organize the search
for a disassembly sequence through constructing a directed
disassembly graph DG. Thereby, its root node contains the
fully-assembled product. Starting from the root, the graph
is then iteratively expanded with new nodes, where each
node contains a (sub-)assembly of the original assembly.
Specifically, from a node to its child node, exactly one part is
removed from the sub-assembly. Child nodes are only added,

Failure: cannot find
collision-free path to
remove

Failure: cannot find
collision-free path to
remove

Test removability

Success: removed

[...]

Test removabilityTest removabilityTest removability

(a) Vanilla AbD: Test the parts of assembly A := {p1, p2, p3, . . . , pN} for removability in an arbitrarily pre-defined order.

Success: removed

Convert assembly to graph Predict removability probabilities
with

Test removability

Test parts wrt their
predicted probabilities

Repeat process with
remaining parts.

(b) Our approach: Test parts according to their predicted removability probabilities ϕL.

Fig. 3: Comparison between vanilla AbD and our approach. Parts highlighted in yellow are fixated in the xy-plane, with
gravity acting along the −z-axis, and act as a stable base.

(a) Workbench
(68 parts) [18]

(b) Lectern
(59 parts) [19]

(c) Whiteboard
(29 parts) [20]

(d) Cart
(33 parts) [21]

(e) Shelf
(53 parts) [22]

Fig. 4: The used real-world assemblies adapted from the
given source. Parts highlighted in yellow are fixated in the
xy-plane, with gravity acting along the −z-axis, and act as
a stable base. They are not included in the number of parts.

if a part is removable. In the end, the leaf nodes of the graph
contain empty sub-assemblies and each path from the root
to a leaf node describes a valid disassembly sequence. The
framework allows to flexibly implement the following steps:

1) The strategy used to search through the disassembly
graph DG. Search strategies suggested in [1] are depth-
first search (DFS) or breadth-first search (BFS).

2) The order, in which assembly parts of a selected node
are tested. In [1], an arbitrarily pre-defined order is used.

3) The used removal test. [1] suggested to use two tests:
first, all parts are tested via mating vectors (fast removal
tests), then via RRT [6] (slower removal tests).

We make the following choices: 1) We use DFS, because we

want to find a single suitable disassembly sequence as fast
as possible. 2) We use a GNN to predict the removability
probability for each part in a node’s sub-assembly. Then we
reorder the parts for testing according to these probabilities
from high to low to optimize the part order. In contrast, [1]
used an arbitrarily pre-defined order – we will refer to this as
vanilla AbD. 3) We follow the suggested approach and first
test via mating vectors, and, if no removable part is found,
with RRT. As a further improvement, we only use RRT on
parts that could be moved at least along one mating vector.

As an additional constraint for a part being removable,
we employ a simple gravity constraint. This is done to
account for the stability of an assembly. We assumed that
each assembly is build upon a fixed frame of profiles, which
is highlighted yellow in Fig. 3. Each remaining part must be
directly or indirectly (over a chain of physically connected
parts) in contact with a part belonging to this frame.

B. Dataset

For comparing our approach against the vanilla AbD ap-
proach, we used five real-world assemblies shown in Fig. 4.
Additionally, these assemblies were also used to construct
a dataset D = {(Ai, li)|i ∈ 0, 1, . . . , N} for training and
evaluating our GNN. Hereby, Ai denotes the set of parts
contained in the sub-assembly and li the labels associated
with the parts in Ai. 1 is used as label if the part is
removable, 0 otherwise. To obtain valid sub-assemblies and
labels, we use the vanilla AbD framework as described in
Sec. IV-A with the following alteration: For each state, all
contained parts are tested for removal to obtain li. Then, the
part that is actually removed is randomly chosen to form the
next disassembly state.

C. GNN architecture

GNNs are designed for processing graphs with variable
node and edge count [24]. They employ layers with shared
weights for nodes as well as layers with shared weights

for edges. For each layer l, a GNN Φl takes a graph
Gl = (N l, El) as input, applies various transformations
and outputs another graph G(l+1) = (N (l+1), E(l+1)) of the
same shape with updated attributes. Formally:

G(l+1) = Φl
(
Gl

)
,∀l ∈ [0, L], (2)

where L+ 1 the total number of layers. Updating node and
edge attributes in layer l consists of three steps: First, the
edge attributes are updated, using the edge attributes plus
the attributes of the two adjacent nodes as input for a feed-
forward neural network (FNN). Next, the node attributes
are updated in a two-step process: First, attributes from
all adjacent edges and nodes are aggregated. Second, these
aggregated attributes, together with the node attributes, are
processed by another FNN. Formally,

a(l+1)
ei,j = ϕl

e(a
l
ni

+ al
ei,j + al

nj
) (3)

ā(l+1)
ni

= σl
(
{ReLU

(
al
ni

+ a(l+1)
ei,j

)
+ ϵ|ei,j ∈ EA}

)
(4)

a(l+1)
ni

= ϕl
(
al
ni

+ ā(l+1)
ni

)
, (5)

where the exponent l denotes the layer. ϕl
e and ϕl denote

layer-specific FNNs, each consisting of two layers with 64
neurons and ReLU activation functions. The same networks
are applied to all edges/layers of l. Last, σ denotes a learned
SoftMax aggregator, which was shown [25] to perform better
than other aggregation methods such as mean() or max().
The GNN contains two layer-specific adjustments: In the first
layer, a linear transformation is applied to the edge attributes
to align their channel count with the node attributes. In the
last layer L, ϕL produces only a single output using the
sigmoid activation function. We interpret this output as the
removability probability of the part pi represented by the
respective node ni, ranging from 0.0 (not removable) to 1.0
(removable). The GNN output for node ni will be denoted
as nL

i in the following. For training, the binary cross-entropy
loss together with the ADAM [26] optimizer is used.

D. Intelligently Reordering Parts for Removal Tests

To speed up the AbD process, we first train a GNN Φ on a
dataset D = {(Ai, li)|i ∈ 0, 1, . . . , N} collected as described
in Sec. IV-B. Then, as shown in Fig. 3b, given a new
assembly A we first convert it into the graph representation
GA = {NA, EA} as described in Sec. III. Next, GA is
passed through Φ to obtain the removability probability
nL
i for each node ni ∈ NA. Finally, the parts ni ∈ NA

are ordered according to their removability probability from
highest to lowest, before they are tested for removability until
a removable part is found and removed. This results in a
new sub-assembly with its own graph representation. The
process is repeated with each new sub-assembly, until a full
disassembly sequence is found.

V. EXPERIMENTS

Our experiments aim to answer three questions: (i) Is the
proposed graph representation in combination with a GNN
suitable for inferring part removability? (ii) How does our

Fig. 5: Prediction accuracy averaged over ten runs for GNNs
trained on four assemblies and tested on the fifth.

approach compare to vanilla AbD as proposed in [1] and
to AbD with a bookkeeping heuristic [2]? (iii) Does our
approach yield further improvements when combined with
a bookkeeping heuristic?

We answer these question through two sets of experiments.
The first one addresses the impact of different parts of the
graph representation on the final removability prediction.
The second one evaluates our approach with and without
bookkeeping against the AbD approach proposed in [1] with
and without bookkeeping. For both, a dataset is created as
described in Sec. IV-B. For each assembly, we start fully
assembled and stop when it is fully disassembled. This is
repeated 20 times per assembly to form the final dataset.

We used Python and relied on the Open3D [27] library
for handling meshes, the Flexible Collision Library [28] to
test for part collisions, and on PyTorch Geometric [29] for
implementing GNNs. All experiments were performed on
Ubuntu with an Intel Core i9-10980XE, 64 GB of memory,
and a GeForce RTX 2080 Ti.

A. Assembly Representation Analysis

We performed experiments to evaluate the importance
of node and edge attributes of our assembly representation
for learning part removability probabilities. The GNN was
trained for 50 epochs and evaluated using five-fold cross-
validation, i.e., each assembly was evaluated using a GNN
trained on the other four assemblies. For each assembly,
we repeated this 10 times. We evaluated the performance
using averaged prediction accuracy acc = #correct prediction

#all samples . A
part is removable, if its predicted removability probability
was > 0.5. The results are shown Fig. 5. It can be seen
that the node attributes contain useful information regard-
ing removability, achieving > 0.8 median accuracy for all
experiments. However, they are outperformed by the edge
attributes as well as the the combined node + edge attributes.
This was expected, given that there are various scenarios that
the classifier cannot differentiate based on node attributes
alone, e.g., when the same parts are connected differently. In
addition, one can see that most of the information required
to learn removability probabilities is stored in the edge
attributes as the edge feature performance is always very
close to the edge + node feature performance.

TABLE I: Comparision of the total disassembly time and
number of removal tests required by the AbD framework
described in Sec. IV-A without (Vanilla) and with (BK)
a bookkeping heuristic [2] against our approach described
in Sec. IV-D without (GNN) and with (GNN + BK) a
bookkeping heuristic.

Time (s)
(mean + std.
over 10 runs)

Number of removal tests
(mean + std. over 10 runs)

Total Reduction (%)
Workbench Vanilla 816 ± 90 1153 ± 107

GNN 310 ± 34 420 ± 47 64

Cart Vanilla 191 ± 53 252 ± 36
GNN 51 ± 15 90 ± 11 64

Whiteboard Vanilla 217 ± 115 186 ± 36
GNN 66 ± 32 35 ± 5 81

Lectern Vanilla 591 ± 190 725 ± 74
GNN 72 ± 13 123 ± 25 83

Shelf Vanilla 258 ± 49 579 ± 85
GNN 35 ± 5 58 ± 3 90

B. Improving the AbD Process

To investigate how our approach improves the AbD pro-
cess, we conducted four experiments for each assembly:

1) Vanilla: The vanilla AbD framework [1] is used as
described in Sec. IV-A.

2) Bookkeeping (BK): We extended the vanilla AbD frame-
work with a bookkeping heuristic described in [2] to
avoid unnecessary removal tests.

3) Graph Neural Networks (GNN): This uses our approach
as described in Sec. IV-D. We trained a GNN on sam-
ples created for the other four assemblies as described in
Sec. IV-B. We then used it to predict parts’ removability
probabilities and ordered the parts accordingly from
high to low removability probability.

4) Graph Neural Networks + Bookkeeping (GNN + BK):
A combination of 2) and 3) is used.

For all four experiments, we used the same pre-computed
initial sequence in which parts were tested for removability.
Each experiment was repeated with ten different initial part
orderings. For each repetition, a GNN was trained on the
dataset of the other four assemblies, each for 50 epochs.
For comparability, the same trained GNNs were used for
3) and 4). The used assembly representation utilized edge as
well as node attributes as described in Sec. III. The averaged
results from all four experiments for each assembly, showing
total execution time and the number of removal attempts, are
displayed in Tbl. I. Wrt the execution time it is important to
note that this property is only comparable for experiments on
the same assembly, because removal attempts for differently
shaped parts have different duration. For example, the AbD
process for the cart is faster than for the whiteboard, despite
the total number of removable parts and number of removal
attempts being higher as shown in Fig. 4.

The results show, that the Vanilla approach always per-
formed worst. Bookkeeping always reduced the number of
needed removal attempts due to collision but could not
reduce the number of removal attempts due to gravity

constraints. This is expected, as the approach does only
keep track of parts that are impossible to remove due to
collisions. Our approach reduced the number of needed
removal attempts further, not only for those that failed due
to collision but also for those that failed due to gravity
constraints. Especially high improvements were observed for
the whiteboard and the shelf. During the preliminary study,
we achieved over 95% accuracy for those, which led to
an average of only six failed removal attempts for both.
Overall our approach reduced the total number of removal
attempts between 64% and 90% when compared to vanilla
AbD and between 30% and 87% when compared to AbD
with bookkeeping. This leads to speed ups between 2.6 and
7.4 compared to vanilla AbD and 1.4 and 5.3 compared
to AbD with bookkeeping. The highest improvements were
obtained for the shelf assembly and the smallest ones for the
workbench.

Combining our approach with bookkeeping led to further
improvements for three out of five assemblies. The highest
further reduction of removal attempts compared to the GNN
alone was achieved for the workbench assembly with 33%.
This illustrates how our approach can be combined with
complementary methods for further improvements.

VI. DISCUSSION AND FUTURE WORK

In our work, we focused on speeding up the AbD approach
for ASP. It has to iteratively test parts for removal, hence its
run-time is highly dependent on a good order for testing
parts. We introduced a graph-based assembly representation
and proposed to train a GNN on it to optimize the order. In
detail, we used the GNN to predict the removability prob-
abilities of parts and then ordered them accordingly, before
testing them. We evaluated this approach using five different
real-world assemblies, achieving a significant speedup for
AbD (between 2.6 and 7.4). Further improvements were
achieved by combining our approach with a bookkeeping
heuristic. In future work, we want to add additional infor-
mation to our representation such as an encoding of the
spatial neighborhood around parts which would be useful
for optimizing the reachability of parts. Additionally, our
approach is limited as only the current disassembly state
is considered when predicting removability, while potential
future states could impact the ideal current choice. Thus,
further improvements could be achieved through the use of
reinforcement learning, which is able to consider the impact
of future states in the disassembly. Other objectives, like
the total number of tool changes, could also be optimized
through such an approach.

REFERENCES

[1] T. Ebinger, S. Kaden, S. Thomas, R. Andre, N. M. Amato, and
U. Thomas, “A general and flexible search framework for disassembly
planning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 3548–3555.

[2] S. Dorn, N. Wolpert, and E. Schömer, “An assembly sequence planning
framework for complex data using general voronoi diagram,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 9896–9902.

[3] M. V. A. R. Bahubalendruni and B. B. Biswal, “An intelligent approach
towards optimal assembly sequence generation,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, vol. 232, pp. 531 – 541, 2018.

[4] U. Thomas, M. Barrenscheen, and F. M. Wahl, “Efficient assembly
sequence planning using stereographical projections of c-space obsta-
cles,” Proceedings of the IEEE International Symposium on Assembly
and Task Planning, pp. 96–102, 2003.

[5] I. Aguinaga, D. Borro, and L. M. Matey, “Parallel rrt-based path plan-
ning for selective disassembly planning,” The International Journal of
Advanced Manufacturing Technology, vol. 36, pp. 1221–1233, 2008.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Ames, Iowa 50011, USA, Tech. Rep.,
October 1998.

[7] S. Dorn, N. Wolpert, and E. Schömer, “Expansive voronoi tree:
A motion planner for assembly sequence planning,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 7880–7886.

[8] B. Deepak, G. B. Murali, M. V. A. R. Bahubalendruni, and B. B.
Biswal, “Assembly sequence planning using soft computing methods:
A review,” Proceedings of the Institution of Mechanical Engineers,
Part E: Journal of Process Mechanical Engineering, vol. 233, pp.
653 – 683, 2019.

[9] L. M. Galantucci, G. Percoco, and R. Spina, “Assembly and disassem-
bly planning by using fuzzy logic & genetic algorithms,” International
Journal of Advanced Robotic Systems, vol. 1, 2004.

[10] H. Y. Zhang, H. Liu, and L. Li, “Research on a kind of assembly
sequence planning based on immune algorithm and particle swarm
optimization algorithm,” The International Journal of Advanced Man-
ufacturing Technology, vol. 71, pp. 795–808, 2014.

[11] K. Kitz and U. Thomas, “Neural dynamic assembly sequence plan-
ning,” 2021 IEEE 17th International Conference on Automation Sci-
ence and Engineering (CASE), pp. 2063–2068, 2021.

[12] A. Swaminathan and K. S. Barber, “Ape: an experience-based assem-
bly sequence planner for mechanical assemblies,” Proceedings of 1995
IEEE International Conference on Robotics and Automation, vol. 2,
pp. 1278–1283 vol.2, 1995.

[13] Q. Su, “Applying case-based reasoning in assembly sequence plan-
ning,” International Journal of Production Research, vol. 45, pp. 29
– 47, 2007.

[14] K. Lee, S. Joo, and H. I. Christensen, “An assembly sequence gen-
eration of a product family for robot programming,” 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1268–1274, 2016.

[15] Z. Zhou, R. Xiong, Z. Chen, and Y. Wang, “Assembly sequence
generation for new objects via experience learned from similar object,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021, pp. 1054–1061.

[16] I. Rodríguez, K. Nottensteiner, D. Leidner, M. Durner, F. Stulp,
and A. Albu-Schäffer, “Pattern recognition for knowledge transfer in
robotic assembly sequence planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3666–3673, 2020.

[17] M. M. Kazhdan, T. A. Funkhouser, and S. M. Rusinkiewicz, “Rotation
invariant spherical harmonic representation of 3d shape descriptors,”
in Symposium on Geometry Processing, 2003.

[18] Kjn workbench 4. [Online]. Available: https://grabcad.com/library/kjn-
workbench-4-1

[19] Angled cart/lectern with drawer. [Online]. Available:
https://grabcad.com/library/angled-cart-lectern-with-drawer-1

[20] Large rotatable white board. [Online]. Available:
https://grabcad.com/library/large-rotatable-white-board-1

[21] Premium panel cart. [Online]. Available:
https://grabcad.com/library/premium-panel-cart-1

[22] Aluminium profile shelf. [Online]. Available:
https://grabcad.com/library/aluminium-profile-shelf-1

[23] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl, “3d shape
histograms for similarity search and classification in spatial databases,”
in International symposium on spatial databases. Springer, 1999, pp.
207–226.

[24] P. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner,
C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani,
K. Allen, C. Nash, V. J. Langston, C. Dyer, N. Heess, D. Wierstra,
P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational

inductive biases, deep learning, and graph networks,” arXiv, 2018.
[Online]. Available: https://arxiv.org/pdf/1806.01261.pdf

[25] G. Li, C. Xiong, A. K. Thabet, and B. Ghanem, “Deepergcn: All you
need to train deeper gcns,” arXiv:2006.07739, 2020.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

[27] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[28] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 3859–3866.

[29] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

