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Abstract— Industry 4.0 aims to automate the production of
customized product variants, which presents several challenges,
particularly in the realm of assembly sequence planning (ASP).
Manufacturers are often interested not only in a viable se-
quence but also in optimizing multiple additional objectives.
However, because there are N! potential sequences for an
assembly containing N parts, discovering such sequences can
be time-consuming. To accelerate this process, we propose an
approach that combines Monte Carlo Tree Search (MCTS)
with deep learning to effectively transfer knowledge between
similar assemblies. Specifically, we employ learnable state-
action functions using graph neural networks for two common
objectives: minimizing the number of direction changes and
maximizing part accessibility. After pretraining these functions
on similar assemblies, we could use them to efficiently guide an
MCTS such that it found assembly sequences that optimized
both objectives for two sets of 3D puzzles consisting of either 38
or 58 parts. In fact, for both sets, our approach outperformed
both the unmodified MCTS and an MCTS that utilized state-
action functions trained during the search.

I. INTRODUCTION

A goal of industry 4.0 is the automatic production of cus-
tomized product variants. However, to achieve this, several
challenges must be overcome. A significant one is assembly
sequence planning (ASP), which involves determining the
optimal sequence of assembly steps required to assemble a
final product. One approach for automating ASP is assembly-
by-disassembly (AbD), which, given a 3D model of a fully
assembled product, finds an assembly sequence by first
finding a disassembly sequence and then inverting it. This is
done by iteratively testing in simulation, whether each part
can be removed without collision until all parts are removed.

Each disassembly sequence must satisfy fundamental con-
straints, such as ensuring that each part can be removed with-
out colliding with other parts or compromising the stability of
the assembly. However, manufacturers often seek to optimize
additional objectives alongside these constraints [1]. For
instance, they may aim to minimize the number of direction
changes in the sequence to simplify the mounting of parts
or prioritize maximizing the accessibility of each part during
the assembly process. Finding a sequence that optimize such
objectives can be time-consuming, given that the search
space for assembly sequences grows exponentially, with N!
potential sequences for an assembly with N parts.

To accelerate this process, we use deep learning meth-
ods to guide a multi-objective Monte Carlo tree search
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Fig. 1: Multi-objective assembly sequence planning for a
soma cube using a variant of Monte Carlo Tree search [2].

(MCTS) [2]. This approach has shown promising results
when dealing with large state spaces [3]. Recently, it has
been successfully applied to ASP [4]. However, the focus
was on optimizing a single objective. Our approach aims
at generalizing these ideas, allowing to optimize multiple
objectives at once, as shown in Fig. 1.

Specifically, this knowledge has to be provided in the form
of state-action functions, also known as Q-functions, which
calculate an estimation of the maximum expected costs over
all potential future sequences given the current state of an
assembly and a part to be removed.

We discuss how such functions can be learned for two
specific objectives – the number of direction changes and
the accessibility of each part – using graph neural networks
(GNNs). We evaluate our approach, by optimizing these two
costs while assembling two sets of 3D puzzles consisting
of either 38 or 58 parts. We can demonstrate that using
pretrained Q-functions to guide an MCTS outperforms the
unmodified MCTS, as well as an MCTS that utilized Q-
functions that were trained during the search. In summary,
our main contributions are:

1) an approach for multi-objective ASP that combines a
multi-objective MCTS [2] with deep learning to effec-
tively transfer knowledge from similar assemblies.

2) the implementation of learnable Q-functions for two
specific objectives, namely the number of direction
changes and the accessibility of each part, using GNNs.



II. RELATED WORK

Various approaches have been discussed over the years
for automatically generating assembly sequences that are
optimized with respect to various objectives (see [5] for an
overview). In [6], assemblies were represented as AND/OR
graphs, where each node represents a (sub-)assembly. They
use two types of edges: Nodes connected by AND edges
represent specific assembly sequences. OR edges, on the
other hand, represent choices, indicating different assembly
sequences that both contain a specific sub-assembly. Using
this representation, assembly sequences were planned that
were optimized with respect to three different objectives.
This representation was also used in [7], where an anytime
search algorithm was presented that produced assembly
sequences optimized with respect to various objectives. Sim-
ilarly to our work, distance maps [8] were used to define
cost functions for the geometric accessibility of parts and the
number of direction changes required to assemble each part.
The geometric accessibility was also maximized in [9] via
deep reinforcement learning. Another common approach to
multi-objective optimization of assembly sequences is using
a genetic algorithm [10], [11]. In [10], such an algorithm
was employed to find an assembly sequence that minimizes
both the number of direction changes and the assembly
time. Similarly, in [11], the objective was to minimize
not only the number of direction changes but also the
number of tool changes. However, these approaches do not
utilize transfer learning and require starting the planning
process from scratch. Conversely, strategies that rely on
case-based planning (CBP) adopt a different approach by
reusing assembly sequences of sub-assemblies from related
objects. For instance, in [12], a database was used to retrieve
assembly plans for sub-assemblies based on similarities in
part connections, mating directions, and mating constraints.
Another example is [13], where a genetic algorithm inferred
an assembly sequence for a new assembly based on cor-
respondences between its parts and a reference assembly.
Furthermore, CBP was used in [14] to generate feasible
assembly sequences for a new product by reusing assembly
sequences of old products within the same product family.
Recent approaches [15], [4], [16] rely on graph-based repre-
sentations of assemblies in combination with deep learning
approaches to utilize previously learned knowledge. In [15],
a GNN was utilized to estimate the probability of suc-
cessfully removing assembly parts during the AbD process.
By prioritizing the testing of parts with a higher predicted
removability probability, a reduction in the number of failed
removal attempts ranging from 64% to 90% was achieved,
depending on the specific product being tested. Similarly to
our approach [4] used trained Q-functions in combination
with MCTS to enable autonomous robotic assembly of
complex 3D structures. In [16], it was demonstrated that
large-scale reinforcement learning is sufficient to train agents
that can assemble complex unseen blueprints. However, these
works focus on finding feasible sequences that are collision-
free and stable. In particular, [4], [16] optimized a single

objective that linearly combines a stability cost with a cost
that measures how close a part could be placed to its target
as given by a blueprint. In contrast, our approach allows
manufacturers to optimize multiple costs, such as the number
of direction changes or geometric accessibility, and select a
solution that best reflects their desired trade-offs.

III. PROBLEM STATEMENT

Let an assembly be a set of its parts A := {p1, p2, . . . pN},
where each part pi is defined by its geometric shape
and 6D pose. Further, let x ∈ X be a decision vector
that encodes a disassembly sequence s.t. its first element
x0 := j; pj ∈ A corresponds to the index of the first part that
was removed from assembly A. X is the set of all viable
sequences, i.e., sequences where every part can be removed
without collision and where the assembly remains stable
during all removal steps. We now define the vector function
f(x) = (f1(x), f2(x), . . . , fm(x)) that consists of m ≥ 2
possibly objective functions fi : RN → R, i ∈ {0, . . . ,m}.

The problem is then given by

max
x∈X

f(x)

There may be multiple solutions that optimize differ-
ent objectives. Given two potential solutions x, y ∈ X ,
x dominates y, denoted by x ≺ y, if fi(x) ≥ fi(y) for
all i = 1, 2, . . . ,m and there exists at least one k such that
fk(x) > fk(y). The goal is to find a set of non-dominated
solutions P – i.e., no solution dominates any other solution
in the set – that maximizes all objectives simultaneously. In
fact, if for all solutions x ∈ P there exists no other solution
y ∈ X that dominates it, then P is called Pareto set, and
the corresponding objective vectors form the Pareto front
Pf := f(x),∀x ∈ P .

IV. MULTI-OBJECTIVE OPTIMIZATION FOR ASSEMBLY
SEQUENCE PLANNING

We utilize the AbD approach to find assembly sequences
that are optimized with respect to multiple objectives. The
general idea of the AbD approach is to find viable disas-
sembly sequences for a product which can then be inverted
to obtain viable assembly sequences. However, obtaining
and evaluating these sequences is challenging, as the full
evaluation of all possible disassembly sequences suffers from
a combinatorial explosion: N ! potential sequences would
have to be evaluated for an assembly with N parts.

To address this issue and to obtain the Pareto set of
assembly sequences defined in Sec. III more efficiently, we
propose to guide a multi-objective MCTS [2] with learnable
Q-functions. These functions are trained to estimate the
reward of actions used in the disassembly process (like
removing a part), based on the current disassembly state
(i.e. without actually performing actions like removing parts).
They allow us to construct the search tree created by the
MCTS more efficiently and to find optimal assembly se-
quences faster/with fewer steps. To learn the Q-functions, we
train GNNs on a graph-encoding of the disassembly state.



In the following, we first formalize ASP as a Markov de-
cision process with multiple rewards. We then describe how
we used Q-functions to guide a multi-objective MCTS [2].
Next, we introduce the fundamental constraints that must be
satisfied by each disassembly step, along with the reward
functions for the objectives we aim to optimize. We then
illustrate how we developed learnable Q-functions for these
objectives: First, we present how we encoded all required
state information as graph, then we discuss how we used
this encoding to train GNNs as Q-functions.

A. Assembly Sequence Planning as Markov Decision
Process

A Markov Decision Process (MDP) is a tuple (S,A, P,R),
where S is the set of states and A is the set of actions.
Then, P (st, at, st+1) is the probability of transitioning from
state st to state st+1 under action at, and R(st, at, st+1)
represents the immediate reward obtained during the transi-
tion. Given an MDP, the goal is to find an optimal policy
π : S → A, which is a function mapping states to actions,
such that the expected reward is maximized:

E

[ ∞∑
t=0

γtR(st, at, st+1)

]
; at = π(st),

where 0 ≤ γ ≤ 1 a discount factor.
One approach to finding an optimal policy π is deep Q-

learning (DQL) [17]. A Q-function, also known as state-
action function, estimates the expected discounted reward
for taking a specific action a in a given state s then
following a particular policy π thereafter. The goal of
DQL is to first train a neural network to approximate the
Q-function for an optimal policy. The optimal policy π
can then be computed by selecting the action that maxi-
mizes the Q-value for the current state-action pair π(s) =
argmaxa∈A Q(s, a). DQL maintains a replay buffer that
stores experiences (st, at, st+1, R(st, at, st+1)) gained while
traversing the MDP. Then, during the training process, it sam-
ples batches of experiences from the replay buffer to update
the neural network’s parameters. This allows the algorithm to
break correlations between sequential experiences and learn
more efficiently from a diverse set of data points.

ASP by AbD can be modeled as a finite MDP, where
at each step, it must be decided which part needs to be
removed next. We define S to be the set of all disassembly
states s ⊆ A, where an disassembly state contains all
parts that are still present in the assembly. Further, we
define an action as removing a part. Specifically, if at
time step t part pi ∈ A was removed, we define the
corresponding action to be equal to the part’s index, i.e.,
at = i. Given that the disassembly process is deterministic,
P (st, at, st+1) = 1 for all viable transitions – that is,
part a can be removed in state st without collision
and the disassembly state st+1 is stable with respect to
gravity – and 0, otherwise. Finally, because we want to
optimize multiple objectives, we define R(st, at, st+1) :=
(R1(st, at, st+1), R2(st, at, st+1), ..., Rm(st, at, st+1));
m ≥ 2 to be a vector reward function, where Ri(st, at, st+1)
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Fig. 2: Use of ϵ-greedy policy during MCTS simulation step.
The hypervolume is represented by the shaded areas.

is the i-th reward obtained when transitioning from state st
to state st+1 under action a.

B. Guided Multi-objective Monte Carlo Tree Search for
Assembly Sequence Planning

We applied a variant of MCTS [2] to search for assembly
sequences that optimize various objectives. In detail, this
algorithm builds a search tree as depicted in Fig. 1) through
repeating the following four steps until a search budget is
exhausted: selection, expansion, simulation, and backpropa-
gation. Each tree node nT stores a disassembly state s ∈ S.
Additionally, each node maintains a local approximation of
the Pareto front Pf and tracks the number of visits to that
specific node, denoted as N . Both are updated during the
backpropagation step.

The children of each node represent all viable disassembly
states reachable from the parent node’s disassembly state.
Formally, n′T ∈ Children(nT ) ⇐⇒ ∃a ∈ A :
P (s, a, s′) = 1, where s′ and s are the disassembly states
stored in nodes n′T and nT , respectively. A is the set of
actions, and P (s, a, s′) represents the transition probability,
as defined in Sec. IV-A.

We now provide a detailed explanation of the steps:
a) Selection: Starting from the root node nT

0 , child
nodes are recursively selected using a selection policy until a
non-expanded node is reached. That is, the node has at least
one child node that has not been visited.

In single-objective MCTS, commonly the upper confi-
dence bound (UCB) [18] is used as selection policy:

UCB(nT , n′T ) =
QT (n′T )

N(n′T )
+ c

√
2 ∗ lnN(nT )

N(n′T )

n′T = argmax
n′T∈Children(nT )

UCB(nT , n′T ),

where n′T is a child of nT . In this case, instead of the Pareto
front only a single value QT is stored in the tree nodes, which
is the total reward obtained after visiting the corresponding
node.



A variant of the UCB, that can handle Pareto sets, was
proposed in [2]. It utilized the hypervolume indicator [19].
This indicator is commonly used to evaluate the quality of
a set of solutions by measuring the size of the dominated
portion of the objective space. Formally, the hypervolume
HV (P, z) of P with respect to a reference point z ∈ Rm is
given by:

HV (P, z) = Λ ({z′ ∈ Rm|∃p ∈ P : z ≺ z′ ≺ p}) ,

where Λ is the Lebesgue measure. Using this metric, multi-
objective UCB (MOUCB) can be defined as [2]:

MOUCB(nT , n′T ) =
HV (P)

N(n′T )
+ c

√
2 ∗ lnN(nT )

N(n′T )
.

b) Expansion: One of the unvisited child nodes is
added to the tree.

c) Simulation: Starting from the added child, a policy
is used to recursively select child nodes until a leaf node is
reached. Nodes visited during this step are not added to the
tree. It is in this step, that we utilize the trained Q-functions
to guide the MCTS exploration, as illustrated in Fig. 2. In
detail, we use an ϵ-greedy policy to facilitate exploration:
if a random sample r ∼ U(0, 1) is larger than a predefined
threshold ϵ, we use the trained Q-functions to estimate the
values of all viable actions with respect to their correspond-
ing objectives. For each action, all computed values are
multiplied which corresponds to computing the hypervolume
indicator for a solution set with a single element. These
volumes are then normalized. Finally, the action with the
highest value is selected and the associated part is removed.

d) Backpropagation: After the simulation step, a re-
ward vector r is computed by summing over all obtained
rewards. During its backpropagation through the expanded
nodes, it is either dominated by one or more elements of the
local Pareto front – in which case r is discarded and the
backpropagation is halted – or it is not dominated. In the
later case, r is added to the local Pareto front. Furthermore,
all elements in the set that are dominated by r are removed.

Throughout each MCTS episode, the four steps are con-
tinuously executed until the search budget is exhausted. At
this point, a child node is chosen using the MOUCB, and the
search process starts again. This is repeated until a leaf node
is reached, signaling the end of the MCTS episode. The next
MCTS episode starts again from the root node nT

0 .

C. Fundamental Constraints and Objectives

One of the fundamental constraints for ASP is that each
part must be removable along a collision-free path. Various
methods have been proposed to compute such paths. One
popular approach is the mating vector method, which as-
sumes that each part can be removed along a pre-computed
direction. 2 1

2D distance maps [8] offer an efficient way to
organize these vectors.

Let M(pi, pj) be a distance map of size N×N . Each entry
M(k,l) encodes a direction vector m and separation distance
ds, which describes how far the part pi can be moved into the

direction defined by m before either colliding with part pj
or being removed, i.e., a maximum removal distance dmax is
exceeded. To encode the direction, a stereographic projection
is used that maps the indices of a 2D grid to 3D directions.

Maps are pre-computed for each pair of parts (pi, pj) ∈
A × A. By combining all maps for a part pi it can be
determined how far it can be moved with respect to all other
parts and directions. Formally,

M̄(pi, s) := min
pj∈s\pi

M(pi, pj), (1)

where s ∈ S is a disassembly state as defined in Sec. IV-
A. Thus, M̄k,l(pi, s) is the shortest distance that pi can be
moved along a separation direction encoded in the distance
maps before it collides with any other part in the disassembly
state s.

a) Collision-free Removal Constraint: To determine
whether a part pi can be safely removed, one can check if
there exists a direction m for which the minimum separation
distance ds with respect to all other parts present in the
disassembly state s exceeds the maximum removal distance
dmax. Specifically, pi can be safely removed, if there exist
k, l ∈ {0, . . . , N} such that M̄k,l(pi, s) is greater than dmax.

b) Gravity Constraint: To ensure that every disassem-
bly state is stable, all parts in the state must be supported.
After each disassembly action, we use M̄ to verify that the
shortest distance each part can be moved along the gravity
vector’s direction is zero.

c) Geometric Accessibility Objective: Having multiple
options for attaching a part allows for greater flexibility dur-
ing the assembly process and can also reduce the likelihood
of damaging parts. To approximate how accessible a part pi
is in the current disassembly state s, one can sum over how
far it can be moved along each direction before colliding with
any other part present in the disassembly state s. Formally,
we define the reward function for the geometric accessibility
objective Rgeo(pi, s) for part pi in disassembly state s as:

Rgeo(pi, s) =
∑

k,l∈0,...,N

M̄k,l(pi, s), (2)

where M̄k,l(pi, s) is the minimum over all distance maps
for part pi as defined in Eq. 1.

d) Direction Change Objective: Reducing the number
of direction changes needed during an assembly process
improves its overall efficiency and speed as fewer movements
are required to assemble the parts. We optimize this by
maximizing the number of directions in which each part can
be removed, while taking into account the directions along
which previous parts were removed.

Assume that in disassembly state sn disassembly action
an is executed, which will remove part pi. Additionally,
a sequence of previously visited disassembly states re-
quired to reach sn as well as the corresponding disassem-
bly actions (i.e., parts that were removed) in each state
Dn = ((s0, a0), (s1, a1), . . . , (sn−1, an−1)) is given. Also,
let BM̄(pi, s) be a binary map computed from M̄k,l(pi, s)
which is the minimum over all distance maps for part pi



as defined in Eq. 1. It is one for all possible directions in
which a part pi can be removed in disassembly state s, and
zero, otherwise. Then, we define a function H(an, sn,Dn)
that computes the directions in which part pi can be removed
in state sn that are in common with the potential directions
along which the previous parts in the sequence Dn were
removed:

H(an, sn,Dn) = BM̄(pi, s)

∩H(ai−1, sn−1,Dn−1)
(3)

If there are no common directions with the previous parts in
Dn, we assume a direction change and restart the computa-
tion with all the directions in which part pi can be removed
in state sn:

H(an, sn,Dn) = BM̄(pi, s)

For the first action a0, we use all the directions in which its
corresponding part could be removed:

H(a0, s0,D0) = BM̄(pk, s0),

where we assume that action a0 removed part pk in the first
disassembly state s0 that corresponds to the full assembly A.
D0 = () is always an empty sequence.

The reward function for the direction change objective is
then defined as:

Rdir(pi, sn,Dn) =
∑

k,l∈0,...,N

Hk,l(an, sn,Dn) (4)

That is, the sum over all the directions in which part
pi can be removed in state sn that are in common with
the potential directions along which the previous parts in
the sequence Dn were removed. However, in case of a
direction change, we do not provide any reward. Formally,
if BM̄(pi, s) ∩H(ai−1, sn−1,Dn−1) = ∅:

Rdir(pi, sn,Dn) = 0 (5)

D. Encoding Assemblies as Graph

A disassembly state s ∈ S is encoded as a directed graph
Gs = (Ns, Es) where Ns is the node set and Es is the
edge set. Each part pi in s is mapped to a node ni ∈ Ns,
and connections between parts pi and pj are captured by
directed edges ei,j ∈ Es. Finally, each node ni has a node
attribute uni

and each edge ei,j has an edge attribute vei,j .
To create a graph encoding Ggeo

s of a disassembly state s
that can be used to learn a Q-function for the geometric
accessibility reward function defined in Eq. 2, we use the
distance maps M(pi, pj) for parts pi and pj as edge at-
tributes for the corresponding directed edges. Specifically,
edge attribute vei,j is set to M(pi, pj), and for vej,i , it is
set to M(pj , pi). Additionally, the node attribute for part pi
is given by uni

:= M̄(pi, s).
The graph encoding for the direction change reward func-

tion Gdir
(s,D) defined in Eq. 4 and 5, depends not only on the

current disassembly state s, but also on the sequence D of
previously visited disassembly states and actions required to
reach s.

The encoding of current disassembly state s is similar to
its encoding for the geometric accessibility reward function.
The only difference is that we use the binary version of
the distance map BM(pi, pj). That is, it is one for all
possible directions in which a part pi can be removed in
the presence of part pj , and zero, otherwise. Then, the edge
attribute vei,j is set to BM(pi, pj), and for vej,i , it is set
to BM(pj , pi). Additionally, the node attribute for part pi is
given by uni := BM̄(pi, s).

With regards to D, we need to encode the common
directions along which the previous parts were removed.
This is computed by function H(an−1, sn−1,Dn−1) that is
defined in Eq. 3. Given that the output of this function is itself
a binary map, we can directly encode it as the node attribute
unc

:= H(an−1, sn−1,Dn−1) of an additional node nc that
we add to the graph Gdir

s,D. We connect nc with outgoing
edges to all other nodes.

A limitation of this particular encoding method is that it
produces a fully-connected, directed graph. That is, for a
disassembly state s consisting of N parts, i.e., |s| = N , the
number of edges grows quadratically: |Es| = N2 − N . To
reduce the number of edges, for each part pi ∈ s, we use
the corresponding distance maps to determine the Nc parts
closest to it and then only added edges to these parts.

E. Using GNN as learnable Q-functions
GNNs [20] consist of multiple layers where each layer

l takes a graph Gl = (N l, El) as input, performs sev-
eral transformations, and outputs another graph G(l+1) =
(N (l+1), E(l+1)) with updated node and edge attributes of
the same shape. Let Φl be the l-th layer of a GNN, then

G(l+1) = Φl
(
Gl

)
,∀l ∈ [0, L− 1],

where L the total number of layers. To update an edge
attributes a feed-forward neural network (FNN) is used that
takes the edge and the adjacent node attributes as input. Then
the node attributes are updated by first aggregating attributes
from adjacent nodes and edges and then providing them –
together with the node’s attributes – as input to another FNN.
Formally, for the l-th layer of the GNN, let ϕl

e and ϕl
n be

the FNNs used to update the node attributes u(l+1)
ni and edge

attributes vl
ei,j computed by the previous layer, then:

v(l+1)
ei,j = ϕl

e(u
l
ni

+ vl
ei,j + ul

nj
)

ū(l+1)
ni

= min
(
{ReLU

(
ul
ni

+ v(l+1)
ei,j

)
+ ϵ|ei,j ∈ Es}

)
u(l+1)
ni

= ϕl
n

(
ul
ni

+ ū(l+1)
ni

)
,

We now describe how we used a GNN to approximate
the Q-function Qgeo for the geometric accessibility reward
function based on the graph embedding Ggeo

s described
in Sec. IV-D. Let GL,geo

s be the graph computed by the GNN,
with the corresponding node set NL,geo

s . The Q-function is
defined as

Qgeo(st, at) = ϕgeo


nL

at
,

1

|NL,geo
st |

∑
nL
j ∈NL,geo

st

nL
j


 ,



(a) Average hypervolume for 5x5 soma cubes.

(b) Pareto front for a 5x5 soma cube.

Fig. 3: Average hypervolume and pareto front for 5x5 soma
cubes.

where ϕgeo is an FNN and nL
at

∈ NL,geo
st represents the node

embedding of the node that corresponds to the part removed
by action at. We concatenate nL

at
with the global mean over

all node embeddings NL,geo
st and use it as input for an FNN

ϕgeo. The Q-function Qdir for the direction change reward
function is similarly defined.

V. EXPERIMENTS

The goal of our experiments was to compare the perfor-
mance of the unmodified multi-objective MCTS [2] against
our proposed multi-objective MCTS guided via learned
Q-functions. In particular, we tested four scenarios:

1) MCTS: This is the unmodified multi-objective MCTS.
2) MCTS + Q-functions: The Q-functions were trained

after each MCTS episode and then used to guide the
next episode of MCTS.

3) MCTS + pretrained Q-functions: The Q-functions
were pretrained on previously obtained data.

4) MCTS + retrained Q-functions: A combination of the
previous two approaches: the Q-functions were trained
on previously obtained data and then retrained after each
MCTS episode.

A search budget of 5 was used in all scenarios.
We conducted multiple experiments using two datasets of

soma cubes (see Fig. 5). The first set consisted of eight cubes
with size 5×5 and the second set of four cubes with size 6×6.

All Q-functions were trained via DQL [17] using a replay
buffer of size 10000. After each MCTS episode, we add all

(a) Average hypervolume for 6x6 soma cubes.

(b) Pareto front for a 6x6 soma cube.

Fig. 4: Average hypervolume and pareto front for 6x6 soma
cubes.

(a) 5 × 5 Soma cube (38
parts).

(b) 6 × 6 Soma cube (58
parts).

Fig. 5: Two soma cubes from the datasets.

obtained data – that is, data obtained during the selection and
the simulation steps – to the replay buffer. We then sample
a batch consisting of either one element, for the 6× 6 soma
cubes, or five elements for the 5×5 soma cubes and train the
GNNs. For both cube sizes, we want to train on 100 samples,
therefore, we used 20 training episodes for the 5 × 5 soma
cubes and 100 training episodes for the 6 × 6 soma cubes.
For experiments, where we pretrained the Q-functions, we
used a two-fold cross validation for both datasets.

We used Python and relied on the Open3D [21] library
for handling meshes, the Flexible Collision Library [22] to
test for part collisions, and on PyTorch Geometric [23] for
implementing GNNs. All experiments were performed on
Ubuntu with an Intel Core i9-10980XE, 128 GB of memory,
and a GeForce RTX 2080 Ti.



A. Results

Our experimental results for the 5 × 5 and 6 × 6 soma
cube datasets are depicted in Fig. 3 and Fig. 4, respectively.
The hypervolume on the y-axis in Fig. 3a and Fig. 4a was
computed from the Pareto front stored in the root node of
the Monte-Carlo tree at each corresponding timestep. These
values were then averaged over either all eight or four cubes.
Additionally, Fig. 3b and Fig. 4b show the final Pareto fronts
for a soma cube from each dataset.

In all experiments, a consistent run time was maintained
for each dataset. Specifically, we set the time limit based on
the duration required to run either 50 Monte-Carlo tree search
(MCTS) episodes for the 6 × 6 soma cube or 100 MCTS
episodes for the 5×5 soma cube in the MCTS + Q-function
setting. Once this threshold was reached, the search in other
settings was halted. On average, the total running time was
190 minutes for the 5× 5 soma cubes and 570 minutes for
the 6× 6 soma cubes.

Fig. 3a demonstrates that using Q-functions trained with
data collected during the MCTS (MCTS + Q-functions)
outperformed the vanilla MCTS approach for both the 5× 5
and 6×6 soma cubes. It is noteworthy that during this period,
the vanilla MCTS performed, on average, 14.4 times more
episodes for the 5×5 soma cubes and 15 times more episodes
for the 6 × 6 soma cubes. For both datasets, employing
pretrained Q-functions (MCTS + pretrained Q-functions)
yielded better results than the vanilla MCTS and the MCTS
where Q-functions were trained during the search. Finally, re-
training the pretrained Q-functions during the MCTS (MCTS
+ retrained Q-functions) did not lead to an improvement over
solely utilizing pretrained Q-functions.

VI. DISCUSSION AND FUTURE WORK

We proposed an efficient approach for multi-objective ASP
by leveraging learnable Q-functions for knowledge transfer
among similar assemblies. To evaluate this approach, we in-
troduced graph-based encodings for two common objectives,
namely, geometric accessibility and direction change, and
used them to train two GNNs. We conducted experiments on
two datasets of soma cubes and compared the performance
for different settings. The results demonstrate that utilizing
pretrained Q-functions outperformed both the vanilla MCTS
and the MCTS with Q-functions trained during the search.
For future work, we plan to extend our approach to more
complex assemblies that require the planning of more intri-
cate removal paths. To achieve this, we intend to incorporate
metrics such as path smoothness and/or curvature that can
be applied to such paths. This will allow us to evaluate our
approach on a wider range of assemblies.
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