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Abstract— In this paper, we address the problem of finding
a minimal multi-modal sensor setup for motion classification
in lower limb exoskeleton applications while maintaining the
classification performance. We present an approach for a
systematic exploration of the feature space and feature space
dimensionality reduction for motion recognition using Hidden
Markov Models (HMMs). We evaluated our approach using
IMU and force sensor data with 10 subjects performing 14 dif-
ferent daily activities. We perform a dimensionality reduction
on sensor feature level with single- and multi-subjects and we
explore the feature space using fine-grained features such as the
force value of a single direction. Additionally, we investigate
the influence of physical characteristics on the classification
quality. Our results show that a subject specific and general
reduction of the sensors is possible while still achieving the
same classification performance.

I. INTRODUCTION

Human action recognition has been a large research field
over the last years. It covers many different topics such as
hand gesture recognition, whole body motion recognition,
semantic segmentation and imitation learning. Hence, the
recognition can be based on different types of input data
such as visual data ([1], [2]), data of wearable sensors ([3],
[4]) or a combination of such approaches ([5]). In the context
of human action recognition for exoskeletons often wearable
sensors are used. They have the advantage of allowing the
exoskeleton wearer to move independently and without being
restricted to a certain area. One important requirement for
commercial wearable devices, such as exoskeletons, prosthet-
ics and orthotics, is the reduction of the number of sensors
due to several factors such as costs, limited computing
resources and energy consumption. Therefore, it is essential
to identify a minimal set of sensors, which still allows a
correct and robust motion classification.

In our previous work, we introduced an unilateral lower
limb exoskeleton (KIT-EXO-1) with a force-based interface
to the human leg and two active Degrees of Freedom (DoF),
see [6]. In [7], we presented a motion classification system
based on Hidden Markov Models (HMMs) and evaluated it
using a new unilateral, passive lower limb exoskeleton for
the left leg, shown in Figure 1. This exoskeleton is equipped
with a sensor system consisting of 3 Inertial Measurement
Units (IMUs), one on each segment and seven 3D force
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Fig. 1: Passive exoskeleton with seven 3D-force (red) and
three IMU sensors (blue). The numbers correspond to the
sensor labels.

sensors (FS). These force sensors are arranged in a way that
corresponds to the main muscles being involved in human lo-
comotion. This arrangement allows the measurement of inter-
action forces between the exoskeleton and the human lower
limb. We evaluated the online classification performance
with multi-subject data using a sliding-window approach.
In particular, we investigated the generalization performance
and latency. Based on these results, we presented a single- vs.
multi-subject evaluation, a detailed analysis of the classifica-
tion performance of each single motion type and investigated
a minimal sensor setup for lower limb exoskeletons based on
a brute-force approach in [8].

In this paper, we introduce an approach for a systematic
exploration of the feature space for motion classification,
which is based on dimensionality reduction techniques for
the recognition of whole-body human motions described
in [9]. We investigate how the presented techniques can
be applied to motion classification in exoskeletons based
on multi-modal sensory data. Our analyses cover two main
aspects: the sensory-based dimensionality reduction and
feature-based dimensionality reduction. Thereby, we address
the question of a minimal set of sensors (respectively fea-
tures) required to achieve a certain motion classification
accuracy. Furthermore, we investigate how the body char-
acteristics of different subjects influence the classification
performance. To allow a representative comparison, we use
the same data used in our previous work described in [7] in
our evaluation.

The paper is organized as follows. Section II provides a
brief overview of sensor setups, machine learning methods



and their combinations in the context of human action
recognition as well as different feature reduction approaches.
In Section III, we give a short recap of our previous
works regarding the passive lower limb exoskeleton, the
underlying data and the HMM-based motion classification
approach. Furthermore, we want to introduce a baseline for
motion classification conditions in context of exoskeletons.
Section IV describes our approach to systematically explore
the feature space. Section V describes the evaluation results
while Section VI provides a conclusion and an outlook.

II. RELATED WORK

Classification of human motions is used in the field of
industry to evaluate the ergonomic of the workers [10] and
to track time of single working steps [11]. A further field
of application is using these sensors as an interface to the
human body for the control of exoskeletons ([6], [7], [8],
[12]). In the context of motion classification different sensors
can be used, such as depth cameras, Inertial Measurement
Units (IMUs), force sensors, EMG- and EEG-sensors. Based
on the application, a suitable sensor setup has to be chosen.
In the context of exoskeletons often wearable sensors such
as EMG-, EEG- or mechanical sensors are used [12]. Tsai
et al. [13] analyzed motion patterns in multi-channel EMG
signals for the control of an upper arm exoskeleton robot.
Several lower limb exoskeletons are controlled via EEG-
based interfaces ([14], [15], [16]). A combination of EEG
and surface EMG signals is presented in [17] where the H2
exoskeleton is controlled by identifying signal patterns using
Artificial Neuronal Networks and Support Vector Machines
(SVMs). A disadvantage of using EEG or EMG sensors
is the classification accuracy due to the subject specific
nature of the signal patterns and the temporal change of
the signal ([18], [19], [20]). In other applications, sensors
such as IMUs or torque sensors, are often used for motion
classification, e.g. it is especially common in industrial envi-
ronments to place inertial sensors on the human body ([21],
[22], [23]).

Jang et al. [12] use three IMUs in combination with
two joint angle encoders for motion classification in the
context of exoskeletons. Based on SVMs they distinguish
walking on flat ground, on a ramp and on stairs (upwards
and downwards). Attal et al. [21] compare different machine
learning approaches, such as SVMs and Hidden Markov
Models (HMMs), by using input from three inertial sensors
placed on the left ankle, the right thigh and the chest. Malaisé
et al. use a wearable motion tracking suit (MVN Link suit
Xsens) with 17 integrated IMUs and an additional sensorized
glove (Emphasis Telematics) for motion classification via
HMMs in an industrial environment ([10], [24]).

Some works address the problem of reducing the number
of sensors and features to scale down manufacturing costs
and computational effort while keeping the classification and
prediction accuracy. One strategy to achieve this is to reduce
the number of dimensions by aggregation, e.g. via Principal
Component Analysis (PCA). The amount of the input data
remains the same but is reduced to a low dimensional

description. Another possibility is to use algorithms for selec-
tive dimensionality reduction. To evaluate the generated fea-
tures, there are three common methods: embedded methods,
filter-based methods and wrapper-based methods. Malaisé et
al. [10] compared PCA, a filter-based, and a wrapper-based
method for their HMM-based motion classification. In their
analysis they used the data of 13 subjects and showed that a
wrapper-based method performed best compared to the other
two. Their wrapper-based method is based on our previous
work [9] where we conducted a feature space dimensionality
reduction for the recognition of whole-body human actions
based on Hidden Markov Models.

III. SENSOR SYSTEM AND MOTION CLASSIFICATION

We provide a brief overview of our previous works ([7],
[8]) on motion classification, system setup, data and methods
which are used for the evaluations in Section V. For detailed
information on these topics, we refer to [7] and [8].

A. Exoskeleton and Sensors

For this work, we use the data captured with our passive
lower limb exoskeleton for the left leg (Figure 1). The frames
of the exoskeleton cover the thigh, shank and foot. Two
orthotic revolute joints connect these three components. The
orientations and linear accelerations are measured on each
limb segment (thigh, shank and foot) by a total of 3 Inertial
Measurement Units (IMUs). The interaction forces between
the exoskeleton and the wearer are measured by 7 individual
3D force sensors. The force sensors are placed over large
muscles on the front and back of the thigh, as well as on the
shank, which are mainly involved in walking motions.

B. Data

Our previously collected data described in [7] and [8] con-
sists of 14 different motion activities, namely: Walking For-
ward (WF), Walking Backward (WB), Turn Left (TL), Turn
Right (TR), Sidesteps Right (SR), Sidesteps Left (SL), Going
Upstairs (GU), Going Downstairs (GD), Going Downstairs
Backwards (GDB), Lift Object (LO), Drop Object (DO),
Stand Up (SU), Sit Down (SD) and Stand (ST). Each of
the 10 subjects (5 male, 5 female) performed every motion
10 times. The timestamps of the recordings were unified,
since the IMU data (80 Hz) and the force data (100 Hz) were
recorded at a different frequency.

C. Motion Classification

Our evaluations and results are based on a Hidden
Markov Model (HMM) multi-class classification approach.
We trained one HMM for each motion, leading to 14 HMMs
in total. We used a sliding window approach to enable an
online application. Therefore, we split the data into windows
of 100, 200 or 300 ms, depending on the evaluation. A new
window starts every 10 ms. A currently tested window is
assigned to the HMM with the highest log-likelihood.

We used the values of the force and IMU sensors as
training input. The force feature vector consists of the 3D
force data of every force sensor, resulting in a total of



21 values for all seven force sensors. The IMU feature vector
contains the 3D linear acceleration, as well as the Roll-
Pitch-Yaw angles for every segment. This leads to an 18
dimensional IMU feature vector (containing all 3 IMUs).

D. Baseline

Using wearable sensors for human action recognition can
be evaluated under different aspects. One is the placement of
the sensors on the human body or exoskeleton. Depending
on the motions the system has to recognize, a wide range of
sensor placements is possible. In the context of leg motions,
often the foot, shank and thigh are used for the placement
of the IMU sensors ([10], [12], [21]). It can be observed
that using multiple sensors increases the classification per-
formance compared to using single sensors ([8], [21], [25]).
When using wearable sensors the latency (time between the
activation of the movement by the user and the action being
correctly classified) varies strongly on the application of the
exoskeleton. When observing human motions in the context
of industrial applications often windows with a width of more
than 1 second are common ([26]), whereas in the context of
fall prevention or human augmentation a very low latency is
required ([26]). For fast adaptations to the human movements
latencies between 100-300 ms are desirable ([27]). In [28],
the authors suggest that a window size of 150-250 ms pro-
vides a good trade-off between the classification accuracy
and latency. This is frequently realized by using overlapping
windows [29].

A further important point is the classification performance
of the system. It is desirable to achieve an accuracy near
100 % since the exoskeleton has to classify motions as
error free as possible. Even achieving an accuracy of about
95 % would mean by one million steps, that roughly 50
thousand of these steps are wrongly classified and could
therefore lead to increasing interaction forces between the
human body and the exoskeleton which in turn lead to a
decreased wearing comfort. One solution to overcome this
problem is to implement further strategies which do not
only take one single classification into account but take the
entire locomotion task into consideration, e. g. to allow using
knowledge about the previously recognized actions.

IV. FEATURE SELECTION APPROACH

For the feature selection approach in this paper, we use
an adaptation of the wrapper-based method we developed
in our previous work [9]. There, we conducted a feature
space dimensionality reduction for the recognition of whole-
body human motions based on Hidden Markov Models. Our
adapted approach consists of the following steps:

1) Feature definition
2) Search among features

a) Build feature sets of certain size
b) Train and test classifier
c) Identify feature sets for extension
d) Repeat until maximum size

3) Evaluate different feature sets

In the Feature definition step the features are defined based
on the chosen sensor setup. To define features, the measured
values have to be processed and grouped. This can be done
at different levels of detail.

Let us assume that Ω is the set of all sensor modalities.
Each modality Γ ∈ Ω can have n sensors. Examples for
modalities are Inertial Measurement Unit (IMU) sensors,
force sensors or angle encoders. Each modality Γ is rep-
resented as a single capital letter, e.g. A or B. Each sensor
of modality Γ is defined by the same feature representations
fk(Γ). The sensor data can be represented at different levels
of detail. The data type of modality Γ at detail level k is
described by fk(Γ), k ∈ {1, 2, ...,m}. The most aggregated
form of the sensor data is represented by fm(Γ). This
combined representation describes hierarchical feature sets
and can be subdivided into features of the form fk(Γ), k ∈
{1, 2, ...,m−1}. f1(Γ) describes thereby only scalar values.
Based on the use case, the level of detail k can be chosen
separately for each modality Γ.

The result of applying step 1 – Feature definition to the
exoskeleton data introduced in Section III-C is depicted in
Table I. The data is represented by two different sensor
modalities Γ, namely A which represents the IMU sensors
and B which represents the force sensors. This leads to
Ω = {A,B}. A has 2 data types, the Euler angles (ex, ey, ez)
and the linear accelerations (ax, ay, az) in x, y, z direction.
These sensor modalities can be used in combination f3(A) =
((ex, ey, ez), (ax, ay, az)) or can be split into smaller fea-
tures, f2(A) = (ex, ey, ez) and (ax, ay, az), or scalar values
f1(A) = ex, ey , ez, ax, ay and az . The force sensor data
B is represented by forces Fx, Fy, Fz in all three directions.
f3(B) is empty since a further aggregation of the force values
is not possible.

TABLE I: Step 1 applied to exoskeleton data.

Γ A [IMU] B [Force Sensor]
f1(Γ) e1 e2 e3 ax ay az Fx Fy Fz

f2(Γ) (e1, e2, e3) (ax, ay, az) (Fx, Fy, Fz)
f3(Γ) ((e1, e2, e3), (ax, ay, az)) -

A non greedy-search ([9]) among the previously defined
features is then conducted in step 2 – Search among features.
In step 2a feature sets of a certain size are built. We extend
feature sets by one feature so that the dimensionality of the
resulting feature set matches the number of the iteration. At
iteration 1 the single different feature sets equal scalar values.
In iteration 2 the feature set is extended by one additional
feature. For more details on the feature selection approach
we refer to [9].

In step 2b – Train and test classifier the current feature
set is trained and tested with the chosen classifier, e.g. a
Hidden Markov Model or a Support Vector Machine. To
allow comparing features sets, a performance criterion has
to be selected, e.g. accuracy or F1 score. Testing the feature
sets of the current dimension yields a score for each of them.

In the next step 2c – Identify feature sets for extension
the best s feature sets of the current iteration are saved and
are used for subsequent iterations. In step 2a, such feature



sets are extended by one additional feature to form a new
feature set. Extending s feature sets instead of just one
reduces the risk of eliminating important feature subsets.
The steps 2a–c are repeated until the maximum dimension
is reached. Afterwards the different feature sets can be
evaluated, depending on the research question (step 3 –
Evaluate different feature sets).

For step 2b, we use a Hidden Markov Model classifier
as in [8] and [9]. The classification performance is assessed
using the F1 score. For training and testing, we perform a
stratified 3-fold cross validation as used in [8] and [9]. The
number of best features s is set to s = 10 ([9]).

V. EVALUATIONS AND RESULTS

In this section the different evaluation methods and their
results regarding the sensor-based and fine-grained dimen-
sionality reduction are presented.

In our previous work [8] numerous feature sets differed
only marginally in their performance (0.01 %–2.06 %). While
selecting the best n feature sets for further evaluation might
often be adequate, such procedure likely discard relevant
feature sets in this case. To avoid this, we count the frequency
of features in suitable feature sets. These are all sets with a
score differing no more than 3.5 % from the best feature set
of the same dimension. If this threshold rates all feature sets
of this dimension as suitable, it is lowered to 1.0 %.

A. Sensor-based Reduction

For all subjects individually and in combination sensor-
based tests were performed using the window sizes 100 ms,
200 ms and 300 ms to determine the suitability of sensors,
the influence of the test subject and the influence of the
window size. The sensor-wise suitability test corresponds
to an analysis on a hardware level which means that at
least 1 sensor and at most 10 sensors of the exoskeleton
are used. Here, irrelevant sensors should be identified in
order to reduce the required sensor setup. The used features
equal f3(A) and f2(B). In consequence, the dimension of
all evaluated feature sets is a multiple of three.

1) Multi-Subject: An excerpt of the evaluation of multi-
subjects is depicted in Figure 2. The columns correspond
to the window size, the rows to the used feature. IMU-xle
describes the x-th sensor (see positions of the sensors in
Figure 1) of the IMU sensors using all linear accelerations
and Euler angles of this single sensor combined. FS-y
corresponds to the y-th force sensor. The suitability threshold
changes from 3.5% to 1.0% for 6 and 8 used sensors, since
the results are otherwise too close to each other and all
combinations would be taken into account. The numbers
(a/b) following the window size describe the number of
suitable feature sets a among all evaluated feature sets b
in this round.

Figure 2b shows the evaluation results for combining four
sensors using the data of all 10 subjects. 63 feature sets
were evaluated for a window size of 100 ms (first column).
25 of these features were suitable, i.e. within the threshold
of 3.5%. The colours of the heatmap describe the relative

frequency of occurrence of the single sensors. While IMU-
1le has a 24% share, IMU-3le has a 25% share. The other
sensors appear between 3% and 8%. The further columns
are read equivalently.

For combinations of up to 3 sensor representing features
the IMU sensors are dominant. The force sensors rarely
occur. Overall, IMU-2le clearly occurs less frequently than
IMU-1le and IMU-3le, which usually occur with a similar
frequency or a slight advantage for IMU-1le. As depicted
in Figure 2a, IMU-2le is more relevant for small window
sizes. Among the force sensors, FS-7 occurs mostly. The
occurrence of IMU-2le decreases in Figure 2b compared
to Figure 2a. IMU-1le and IMU-3le remain dominant. The
force sensors FS-5 and FS-7 occur slightly more frequently
than the other force sensors.
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Fig. 2: Heatmap for the multi-subject evaluations with dif-
ferent window sizes and different number of sensors.

For combinations of 6 sensors, the frequency of occurrence
of IMU-2le compared to IMU-1le and IMU-3le is similar
for a window size of 100 ms and slightly lower for larger
window sizes, as depicted in Figure 2c. FS-4 performs worse
than the other sensors. For combinations of 8 sensors, as
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Fig. 3: Heatmap for the single subject evaluations with different window sizes and 3 sensors.
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Fig. 4: Heatmap for the single subject evaluations with different window sizes and 6 sensors.

shown in Figure 2d, the differences of occurrences between
the sensors get smaller, since only a few sensors can be left
out. FS-4 performs still worse than the other sensors.

For the evaluation of the multi-subject data it can be seen
in total that IMUs occur more frequently than force sensors.
For combinations of up to 6 sensors, IMU-1le and IMU-
3le perform better than IMU-2le, thereafter the frequency
of occurrence of sensor IMU-2le is equal. The frequency
of occurrence of FS-4 is considerably lower than for the
other force sensors. Apart from this exception, the differences
among the force sensors are relatively small and vary with
the window size. The worse performance of FS-4 might be
explained by some measurements being unrealistically high.

With all 10 sensors and a window size of 300 ms we
achieve an accuracy of 92.40 % in [8]. With our exploration
of the feature space approach we achieve an F1 score of
90.95 %. We attribute the slight difference in this paper
to some parameters being adapted, such as the number of
stratified cross fold validations and the number of training
steps. The adaptations lead to a reduced training time.

2) Single-Subject: An excerpt of the evaluation of the
single-subjects is depicted in Figure 3 and Figure 4.

For each single subject a heatmap of the frequency of
occurrences for each sensor modality was generated. By
using 3 features combined (Figure 3) it can be seen that IMU-
2le is mostly not used, whereas IMU-1le and IMU-3le appear
very often. Regarding the force sensors, some force sensors,

e.g. FS-1, play an important role for subject 1, 2, 8, 9 and
10 while for the other subjects other force sensors are more
important, e.g. FS-3 and FS-5. Force sensor FS-4 performs
worst for most subjects.

Using 6 sensors combined a usage of all sensors can
be seen (Figure 4). IMU-2le and FS-4 perform still worse
compared to the other sensors but become more relevant.
At this point FS-2 and FS-6 are more used than before.
Depending on the subject, different sensors remain most
common.

In summary, it can be said (not depicted by graphics)
that for groups of up to two sensors, the high suitability of
IMU-1le and IMU-3le stands out. From 3 sensors upwards
depending on the subject individual force sensors are well
suited, in particular FS-1, FS-3 and FS-5. IMU-2le and
FS-4 remain particularly rare. FS-2 and FS-6 frequently
occur at a later stage. The difference between the more
frequently and less frequently occurring sensors decreases
with increasing dimension. Using 9 sensors there are only
slight differences between the sensors. The dominance of
sensors can be seen as a continuous development across the
different sensor numbers, in contrast to a distribution being
completely different for each sensor number. There are some
differences in the frequency of a sensor for a certain subject
between different window sizes.

3) Classification Performance per Motion Type: A fur-
ther important aspect is the classification performance per



motion type. For future analyses and improvement of future
recordings it is important to know which movements cause
a worse classification performance. For that purpose, we
evaluated the data of subject 1 in more detail.

Figure 5 shows the aggregated results of the features
IMU-1le and IMU-3le, which are the suitable feature sets
according to the evaluation process used for the heatmaps.
The confusion matrix presents the data of subject 1 and a
window size of 100 ms. The rows correspond to the per-
formed motion, whereas the columns represent the classified
motion. The shortcuts of the motions are in line with those
introduced in Section III-B.
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Fig. 5: Aggregated confusion matrix of subject 1.

The motion classes which are often mixed up are high-
lighted in Figure 5. Walking Forward (WF) and Walk-
ing Backward (WB) are often misclassified as Going Up-
stairs (GU), Going Downstairs (GD) and Going Down-
stairs Backwards (GDB) or otherwise. Additionally, Lift
Object (LO) and Drop Object (DO) are often mixed up with
Stand Up (SU) and Sit Down (SD). The results are consistent
since the motion types are very similar in the execution.

Analysing only single sensors, a large difference between
force and IMU sensors can be observed. This is shown
in Figure 6 and Figure 7.

IMU-2le achieves an overall F1 score of 58.13 %, FS-1
achieves 60.33 %. Since the scores are nearby, these sensors
were chosen for the comparison. IMU-2le performs worst
among the IMU sensors and FS-1 performs best among all
force sensors. Figure 6 shows that only the motion Stand (ST)
is reliably classified. Especially clear are the differences
of the motion Lift Object (LO) which achieves very low
results for IMU-2le namely 9.5 %, while FS-1 enables correct
detection in 79.1 % of the cases. It should be noted at this
point that the other two IMU sensors achieve significantly
better results than IMU-2le, even though they remain below
the values of most force sensors. Other motions such as
Sidestep Right (SR) or Sidestep Left (SL) achieve better
results when using IMU-2le instead of FS-1. Depending on
the modality, different movements are easily distinguishable.
However, even within the same modality, the differences for
some classes are high.
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Fig. 6: Confusion matrix of subject 1 using only FS-1.
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Fig. 7: Confusion matrix of subject 1 using only IMU-2le.

B. Fine-grained Reduction

An analysis using more fine-grained features was con-
ducted for two single subjects using the window size 100 ms.
In contrast to the sensor-based analyses, the features are split
into smaller parts. The force sensor data is split in its x, y and
z direction to verify if some directions play a more important
role or if even a one-dimensional force sensor would be suf-
ficient. The feature equals therefore f1(B). The y direction
of the force sensor directs upwards, the z direction towards
the leg and the x direction respectively to build a right-
handed coordinate system. Technically, splitting the Euler
angles and linear acceleration values of the IMU sensors in
their single directions would be possible as well. However,
as Euler angles are sometimes ambiguous, providing just a
single scalar value is meaningless. Therefore, the features
are defined as f2(A).

For the evaluation, the following procedure was used:
Adding one feature to a feature set results in a difference
of the F1 score. To account for the overall score being
limited by 100 %, this difference is normalized by the highest
achievable difference. Figure 8 depicts the impact of IMU-1e
and FS-1z for subject 1 and a window size of 100 ms. While
the normalized difference being approximately constant for



lower original scores, it drops for very high ones until it
scatters around zero. The drop might be caused by informa-
tion already being provided by the original feature set (re-
dundancy), leading to fewer added information and smaller
improvements. The scattering might be due to training being
a randomized process, which gets dominant as soon as the
achievable differences become very small. When interpreting
such plots, one has to assure a lack of values scattering
around zero is not caused by the absence of data points
with high original scores, which usually occur when the
original feature set is of a high dimension. When comparing
normalized score differences for the same original score, it
can be seen that IMU-1le achieves higher improvements than
FS-1z, but in both cases, the improvement is limited at a
certain original score.

(a) IMU-1e (b) FS-1z

Fig. 8: Normalized score difference of ID 1 with window
size 100 ms.

By comparing the single features against each other (not
depicted here in detail), it can be seen that for the y direction
FS-1y and FS-2y perform best, followed by FS-4y, FS-6y
and FS-7y. For the x direction FS-2x and FS-5x reveal good
results, thereafter FS-1x, FS-4x and FS-6x. Regarding the
z direction FS-1z, FS-2z, FS-3z, FS-4z and FS-6z perform
equally good. Summarized, it can be observed that FS-1 and
FS-2 perform best, FS-4 and FS-6 are thereafter. The worst
results are achieved with FS-3, FS-5 and FS-7. Compared
to the frequency of occurrence results of Section V-A.2
the results of both analyses are similar for FS-1 and FS-
2, while the results differ especially for FS-3, FS-5 and
FS-7. Here, it can be seen that the single directions play
an important role for the classification performance. Within
one sensor modality, different directions perform best and
this also differs between subjects. Therefore, it is difficult
to favour certain directions. This leads us to the assumption
that it is worthy to use 3D force sensors in context of motion
classification with exoskeletons instead of 1D sensors.

Among the IMU sensors, IMU-3e achieves better results
that the other features. In general, the Euler angles perform
better than the linear accelerations. Nevertheless, the linear
accelerations contribute to a notable improvement of the
classification results and should be utilized as well.

C. Influence of Physical Characteristics

Since the classification performance in Section V-A differs
between the subjects, we analysed the influence of their
physical characteristics. Further details of our subject group

are listed in [7] Section IV-A. Figure 9 depicts the F1 scores
for individual subjects depending on their Body Mass Index
(BMI) and the difference of the upper leg (UL) circumfer-
ence to the exoskeleton’s nominal value. The results were
retrieved using all sensors and a window size of 300 ms.
The average BMI of the subjects was about 22 kg/m2 (Std.
dev. 1.5) and the average UL circumference 55.2 cm (Std.
dev. 3.2).
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Fig. 9: Classification performance of all subjects depending
on their physical characteristics.

Figure 9a shows that the classification performance in-
creases with the BMI. This might be caused by the rigid
parts of the exoskeleton. The exoskeleton can be tightened
to the user only to a certain extent. If a subject is too thin
it could happen that the force sensors do not have enough
contact to measure the interaction forces correctly.

Figure 9b depicts the deviation of a subject’s upper
leg circumference to subject 2, whom the exoskeleton was
designed for. A larger deviation correlates with a decrease
of the classification accuracy. This indicates that a good fit
and correct tightening of the exoskeleton to the user play
a crucial role for the motion classification when using force
sensors. In future exoskeletons it should be possible to better
adjust the exoskeleton to the user.

VI. CONCLUSION

In this paper, we investigated further whether the number
of sensors or features used to classify motions of our unilat-
eral, passive lower limb exoskeleton can be reduced while
maintaining the classification performance. For this purpose,
we used the data of 10 subjects who performed 14 different
daily activities wearing our exoskeleton which is equipped
with three IMUs and seven 3D force sensors. We evaluated
the data with our motion classification approach based on
Hidden Markov Models (HMMs) as introduced in [7].

We presented our adaptation of our systematic exploration
of the feature space approach ([9]) in combination with our
HMM-based motion classification approach. Applying this
exploration approach reduces the risk of discarding important
feature sets and decreases the training and testing time. Our
evaluation addressed first the problem of a sensor-based
dimensionality reduction. We showed that when training and
testing with multi-subjects the IMU sensors performed better
than the force sensors but using both sensor modalities in



combination increases the classification performance signif-
icantly. IMU-2le which is located on the lower leg performs
worse than the other IMU sensors. FS-4 achieves worse
results than the other force sensors. We can reduce our sensor
setup to 7 sensors, e.g. to IMU-1le, IMU-2le, IMU-3le, FS-1,
FS-5, FS-6 and FS-7 while still maintaining about the same
classification accuracy. In the context of the sensor-based
dimensionality reduction we also performed an evaluation
with training and testing on single-subjects. The results show
that IMU-1le and IMU-3le sensors achieve better results
than the IMU-2le. Depending on the subject, different force
sensors revealed good results. Regarding the classification
accuracy of single motion types we observed that for some
motions, e.g. Sidesteps Left, the IMU sensors achieve better
classification results and that for other motions, e.g. Lift
Object, the force sensors perform better.

In addition, we conducted a more fine-grained dimension-
ality reduction where the features were split into smaller
parts. The results show that different force directions or
IMU sensor values were preferred depending on the subject.
Therefore, we suggest to use both, the linear accelerations
and Euler angles of the IMU sensors and three dimensional
force sensors. Furthermore, we looked at the subjects’ physi-
cal characteristics to determine their influence on the motion
classification. A higher BMI and a smaller deviation of the
upper leg circumference lead to higher classification results.

In our future work we will address the question of
using derived features to determine if the classification
performance can be increased and the training time can
be minimized. Furthermore, we will investigate how the
motion classification framework can be used to support the
prediction of the next possible motion type in a given context
to allow a faster adaptation to the user’s movement.
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