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Abstract— Robots should be able to continuously learn and
enhance their skills and abilities over time. Such skills can
be represented as sequences of movement primitives, which
are known for their generalization abilities and can be re-
used across tasks when being collected in a library. Incre-
mentally learning such a library efficiently allows movement
primitives to be updated without the need to permanently
store all demonstrations. This extended abstract builds on our
previous work on incrementally learning Full-Pose Via-Point
Movement Primitives based on 7 fundamental operations. Here,
we integrate this movement primitive library into a cognitive
architecture and conceptionally show how to incrementally
learn such a library for a humanoid robot from demonstrations
of multiple modalities.

I. INTRODUCTION

Robots at home, in care settings or at work need to adapt
their skills to new situations. For this, movement primitives
(MPs) [1], [2] are a commonly used representation, par-
ticularly in the field of learning from demonstrations [3]
and imitation learning [2]. Storing MPs in a library [2], [4]
enables their re-use across tasks.

Robots may need to extend and improve their skills
over time [5], [4], mandating to update the MP library.
Using all previous demonstrations for such updates results in
unnecessary storage and computation requirements. This is
avoided by incrementally learning from a new demonstration
alone. Akin to Gepperth and Hammer [6], we consider online
learning as learning from sequentially-arriving data, and
incremental learning as online learning with limited amount
of memory. Specifically, we require the memory for learning
m models from n samples with m < n to be bound by
O(f(m)), i. e., independently of n.

Incrementally learning a MP library is not just about im-
proving an existing MP, but requires further operations, such
as merging or splitting MPs. Many previous works enable a
single operation [7], [8], [9]. Others enable more operations,
but are only applied to 2D motions [10], achieve bounded
memory consumption by discarding old demonstrations [5],
or are purely on-line instead of incremental, due to storing

The research leading to these results has received funding from the
European Union’s Horizon 2021 Research and Innovation programme
under grant agreement No 101070292 (HARIA) and from the Carl Zeiss
Foundation through the JuBot project, and was partially supported by the
German Federal Ministry of Education and Research (BMBF) under the
Robotics Institute Germany (RIG).

1Institute for Anthropomatics and Robotics, High Performance Hu-
manoid Technologies Lab (H2T), Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany. {tilman.daab, asfour}@kit.edu

2Division of Robotics, Perception and Learning (RPL), KTH Royal
Institute of Technology, Stockholm, Sweden.

(a) Adding (b) Improving (c) Removing

(d) Merging
modes

(e) Splitting
a mode

(f) Merging
temporally

(g) Splitting
temporally

Fig. 1: Fundamental operations to incrementally learn MP libraries.

all demonstrations permanently [11], [12]. In contrast, we
aim at providing multiple operations on a MP library that is
capable to describe full-pose motions. The operations shall
be performed in an incremental fashion without the need to
discard some of the demonstrations.

In the following, we outline our previous work [13] on
incrementally learning MP libraries (Section II and Sec-
tion III), show its embedding into a cognitive architecture
(Section IV), and an outlook on future directions (Section V).

II. FUNDAMENTAL OPERATIONS TO INCREMENTALLY
LEARN A MOVEMENT PRIMITIVE LIBRARY

As presented previously [13], we consider adding, improv-
ing, removing, merging modes, splitting a mode, merging
temporally, and splitting temporally as the fundamental op-
erations of learning a MP library incrementally, which are
depicted in Fig. 1. The first three operations act on a single
MP, while the others involve merging or splitting of two MPs.
Thereby, the latter operations re-organize the MP library.
Moreover, the first five operations are spatial ones, affecting
MP amplitudes, while the others are temporal operations,
addressing the concatenation of MPs.

III. FULL-POSE VIA-POINT MOVEMENT PRIMITIVES
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Fig. 2: Illustration of a Riemannian VMP on S2.



(a) Illustrations of demonstration modalities (left to right): Kinesthetic
teaching of a wiping motion, motion capture for a transfer motion [14],
visual observation of a stirring motion.

(b) Consolidation as
demonstration.

(c) Movement primitive library with mode
splitting shown as an example.

Fig. 3: Illustration of processing demonstrations as part of the memory-centric cognitive architecture.

Via-Point Movement Primitives [15] (VMPs) are highly
flexible and combine the extrapolation capabilities of Dy-
namic Movement Primitives [16] with the ability of Proba-
bilistic Movement Primitives [17] to handle via-points. We
exemplarily use an extension of VMPs to full poses [13]
to represent the movement primitives of the library. This
enables to accurately handle orientations by leveraging Rie-
mannian geometry.

VMPs decompose the trajectory y into an elementary
trajectory h(φ) and a shape modulation f(φ) (Fig. 2),

y(φ) = Exph(φ)

(
fh(φ)(φ)

)
(1a)

y(φ) = h(φ) + f(φ), (1b)

where Eqn. (a) describes the Riemannian [18] and (b)
the Euclidean case. The phase φ describes the progress, in
our case using φ ∈ [0; 1]. The elementary trajectory h(φ)
interpolates between start pose h0 and end pose h1,

h(φ) = Exph0

(
φ · Logh0

(h1)
)

(2a)

h(φ) = h0 + φ · (h1 − h0). (2b)

The shape modulation describes the deviation of the actual
trajectory from the point of the elementary trajectory as a
sum of kernels Ψ activated by phase, multiplied by coeffi-
cients stored as the weight vector w,

fh(φ)(φ) = Γh0→h(φ) (Ψ(φ)wh0) (3a)

f(φ) = Ψ(φ)w. (3b)

For detailed descriptions, we refer to Daab et al. [13]. With
the spatial operations having been realized therein, we are
currently working on the temporal operations.

IV. INTEGRATION INTO A COGNITIVE ARCHITECTURE

To apply the incremental learning methods to a robot,
an integration into its cognitive architecture is required. We
leverage a memory-centric approach [19], allowing multi-
modal data to be organized in an episodic manner. Depending
on the demonstration method (Fig. 3a), relevant modalities
could be raw joint angles or processed human poses. Objects
in the scene or force measurements could be added as well.
The memory allows to access these different modalities of
a demonstration via a unified interface (Fig. 3b). The MP

library is represented in the robot’s memory as well (Fig. 3c),
and can be learned over prolonged periods by using the long
term memory. It not only allows to retrieve the stored MPs,
but to apply the fundamental operations to it. To conserve
the acquired knowledge, the long term memory is used. In
the future, sequences of MPs and their task parameters could
be represented and learned in a similar manner.

Learning from demonstrations of different modalities is
not only a matter of a unified interface, but also of the
demonstrations adhering to different kinematic structures –
here, following the robot’s or the human’s embodiment. For a
general solution, motion retargeting is needed to learn across
these embodiments. When just learning the end effector
motion in task space, one could also attempt to neglect
the remaining differences and directly learn across such
demonstrations.

The proposed integration of incrementally learning a MP
library allows the following: Initially, the MP library can
either be empty, or equipped with prior knowledge. The data
of a demonstration are spread over the robot’s distributed
memory system. They are consolidated and provided to the
memory of the MP library for incremental learning. For
example, if an MP already existed that was to be split into
two MPs representing different modes, that MP would be
retrieved from the MP library. The demonstration would be
used to identify one of the modes, which is separated into a
first MP, and the remaining estimation forms a second MP.
Finally, both MPs would be stored in the MP library, and the
demonstration could be discarded. Not only can MPs learned
from different modalities be stored in the same MP library,
but even the same MP could be incrementally learned from
different modalities.

V. OUTLOOK

On the long term, we aim for the robot to learn with less
manual interaction, so that the decision of when to segment
demonstrations and which incremental learning operation to
apply are perform automatically. This also facilitates to learn
from larger data sets, or even by observing the environment.
When including the temporal operations, the robustness of
such learning is expected to increase, as erroneous segmen-
tation decisions can be corrected when learning from further
observations.
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