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Mapping Encoder Values to Ankle Angles in a 3 DoF
Parallel Ankle Exoskeleton

Miha Dežman∗†, Charlotte Marquardt∗ and Tamim Asfour∗†

Abstract— Accurate estimation of ankle joint angles is vital
for advancing assistive technologies such as ankle exoskeletons.
This study investigates whether three encoders within the
parallel kinematics of a three degree of freedom (3-DoF) ankle
exoskeleton can effectively estimate the three rotational move-
ments of the ankle: plantar-/dorsiflexion (PF/DF), in-/eversion
(IN/EV), and internal/external rotation (IR/ER). Performance
was tested during walking, curve walking, and stair climbing
with two healthy participants. Ankle motion was independently
captured using a motion capture system, while encoder values
from the exoskeleton were concurrently recorded. The root-
mean-squared error (RMSE) for angle estimations ranged from
1◦ and 3◦, indicating good accuracy, particularly for IN/EV
and IR/ER, though challenges were noted in capturing peak
dorsiflexion. The findings suggest that misalignment between
the exoskeleton and the biological joint axis may have con-
tributed to the observed inaccuracies, particularly for PF/DF,
as evidenced by differing range of motion (RoM). Addition-
ally, variability between the two participants may reflect the
potential impact of individual anthropometry and alignment
quality, which could inform future considerations for design
and alignment protocols. Future model enhancements could
incorporate dynamic effects and machine learning to generalize
across diverse populations.

I. INTRODUCTION

Exoskeletons have emerged as innovative assistive devices
designed to enhance mobility, support rehabilitation, and
improve the overall quality of life for individuals with vari-
ous physical impairments. Among these, ankle exoskeletons
specifically target the ankle joint, providing assistance to
reduce the metabolic cost of walking. These systems enable
users to regain or enhance movement patterns that may have
been disrupted due to injury or disease [1], [2].

A critical aspect of optimizing ankle exoskeletons is
the accurate estimation of ankle joint kinematics, which is
essential for delivering customized assistance across the three
degree of freedom (DoF) of the ankle: plantar-/dorsiflexion
(PF/DF), in-/eversion (IN/EV), and internal/external rotation
(IR/ER). However, determining the precise motion of the
ankle joint is inherently complex due to the necessity of
three-dimensional imaging techniques, which are vital for
capturing the intricate movements of the ankle [3]–[5].
These imaging techniques provide valuable data but can be
resource-intensive and not always accessible in all clinical
or research settings.
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The integration of sensors into exoskeletons marks an
advancement in the continuous monitoring and analysis of
user data, particularly concerning motor performance [6].
These devices can provide real-time feedback, enhancing
the understanding of joint kinematics and thereby improving
rehabilitation protocols and performance assessments. How-
ever, most wearable exoskeleton designs primarily optimize
for PF/DF motion, offering limited motion or assistance
for IN/EV and IR/ER [7], [8]. A notable example is the
wearable three DoF exoskeleton developed by Weerasingha
et al. [9], which incorporates direct angle measurement via
encoders and allows for assistance. However, this system is
constrained by its considerable weight and limited torque
assistance, highlighting the ongoing challenge of balancing
functionality and portability in exoskeleton design. Another
three DoF ankle exoskeleton mechanism by Hong et al.
[10] uses a configuration of three encoders integrated into
a spherical mechanism. These measure all rotations of the
ankle joint. However, the proposed device does not include
a method for actuation and active assistance. Lack of a rigid
supportive three DoF structure requires multi-DoF measure-
ment methods or external sensing systems to determine the
accurate state of the exoskeleton. Such an example is the
three DoF exoskeleton by Mooney et al. [11], which utilizes
struts attached to a hiking boot for torque transmission,
facilitating some IN/EV and IR/ER movements. Struts de-
formations were measured using motion capture (MOCAP)
to estimate assistance torques, allowing for a simplified
exoskeleton design but limiting its use to a laboratory setting.

Multidimensional DoF measurement of the ankle is also
possible with systems exploiting magnetic fields for actuation
and sensing [12]. However, the findings indicate that while
magnetic fields can facilitate complex motion tracking, they
require specialized calibration setups to ensure accuracy,
showing the complexities involved in kinematic measurement
within multi-DoF systems.

Soft exosuits allow minimally restrictive motion of user
joints with structures relying on fabric materials and ca-
bles for force transmission. These exoskeletons represent a
lightweight alternative with excellent adaptability to various
postures and dynamic movements [13], [14]. However, their
inherent compliance introduces challenges in achieving ac-
curate kinematic assessments. This difficulty arises primarily
from the non-rigid nature of their components and the lack
of rigid attachment points, which complicates the use of
conventional angular encoder measurements. Instead, novel
sensor systems and technologies are proposed, including
optoelectronic systems [15], stretchable sensors [16], and
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capacitance-based bending sensors [17], to facilitate con-
tinuous monitoring of joint angles. To address these chal-
lenges, novel sensor systems and technologies have been
proposed, including optoelectronic systems [15], stretchable
sensors [16], and capacitance-based bending sensors [17], to
facilitate continuous monitoring of joint angles despite the
adaptability of exosuits. However, these novel sensors are
not yet widely accessible.

Alternatively, inertial measurement unit (IMU) sensors are
frequently employed for tracking motion in wearable devices,
which includes both rigid and soft exoskeletons. Chapman
et al. [18] validated IMU-based methods against optical
MOCAP systems, demonstrating high accuracy for upper
extremity movements. Similarly, Kim et al. [19] confirmed
the reliability of IMU sensors in tracking ankle kinemat-
ics during running. The quality of measurements can be
enhanced through sensor fusion techniques that integrate
different modalities. For example, Arceo et al. [20] developed
a robust system that combines force sensing resistor (FSR)
and IMU sensors to measure both force myography (FMG)
signals and limb motion. However, while IMU sensors offer
practical solutions for motion tracking, they require extensive
calibration to ensure accuracy, and there may be inherent
limitations to the precision they can achieve due to factors
such as drift and sensor misalignment [21], [22].

This study builds upon prior work to evaluate the feasibil-
ity of a 3-DoF ankle exoskeleton equipped with encoders
for joint angle estimation [7]. The kinematic design of
the ankle exoskeleton enables passive adaptation to IN/EV
and IR/ER motion and assistance along PF/DF motion. It
features a size adjustable frame and embedded encoders
for angle measurement. Notably, the encoders are arranged
in a parallel kinematics configuration, meaning that they
do not directly represent the three rotations of the ankle
joint. This study presents a simplified model to estimate the
three ankle rotations based on the encoder values and their
combinations. By testing the exoskeleton on two participants
during walking, curve walking, and stair-climbing tasks,
we examine the system’s ability to capture 3-DoF ankle
rotations and assess factors influencing its performance. The
findings provide valuable insights into design and alignment
improvements necessary for future iterations.

The remainder of this paper is structured as follows.
Section II details the design of the exoskeleton device, the
user study protocol, and the procedures for data collection,
postprocessing, and optimization. Section III presents the
experimental results, including an analysis of the system’s
performance in estimating 3-DoF ankle rotations. Section
IV explores the implications of these findings, highlighting
design considerations and future directions for improvement.
Finally, Section V summarizes the contributions of this study
and outlines potential avenues for further research.

II. METHODS
A. Exoskeleton

This paper builds on the exoskeleton presented in [7]. The
exoskeleton consists of a rigid frame structure that includes

a shank and a foot section, shown in Fig. 1 (left). A series
of joints, including a parallelogram mechanism, link the
two sections. The shank frame has a kinematic design that
adjusts to the user’s ankle movements. It incorporates 11
DoF, comprising multiple passive 1 DoF joints as well as two
passive 3 DoF joints, as illustrated in Fig. 1(right). Additional
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Fig. 1: Exoskeleton shown left and the kinematic represen-
tation shown right. The structure consists of several passive
joints: ” ” 1 rotation DoF joint, ” ” 3 DoF ball joint,
” ” 1 rotation DoF with an encoder and ” ” 1 DoF
manually adjustable translation joint. (reused from [7])

aspects of the shank frame include: two cylindrical joints on
both sides of the exoskeleton (J1, J2, J3, J4) illustrated in
Fig. 1 a⃝, are intentionally misaligned for a more compact
integration of the magnetic encoder. The two ball joints (J5,
J6) connect each parallel strut to the curved lever, as shown
in Fig. 1 b⃝, allowing for both IN/EV and IR/ER of the
ankle. A cylindrical joint (J7) links the curved lever to the
exoskeleton cuff, depicted in Fig. 1 c⃝, and incorporates the
third encoder. Altogether, three of the passive joints (J1, J2,
J7) include an integrated absolute encoder (RMB20, RLS
d.o.o.) to infer the ankle joint angles. The exoskeleton frame
is designed to adjust in multiple dimensions for both the
shank and foot frames, as illustrated in Fig. 1(right).

This passive joint configuration permits all three types
of ankle rotation, as shown in Fig. 2. When joints J1 and
J2 rotate in the same direction, PF/DF movement occurs.
The combined rotation of joints J3 and J4 with joints J5 to
J7 facilitates the IN/EV motion. Conversely, rotating joints
J1 and J2 in opposite directions alongside joints J5 to J7
allows for the IR/ER. An additional foot frame DoF allows
for forefoot rotation.

The foot frame design is rigid with one passive DoF for
rotation of the forefoot, and several adjustable DoF to fit
different shoe sizes. The shoe is secured using toe and heel
bails adopted from crampons (Petzl, France).

B. User-study

This user study evaluates the proposed encoder model’s
effectiveness in estimating the three rotational movements
of the ankle across three tasks. Effectiveness is assessed
by comparing actual ankle motion, measured independently



TABLE I: Participant Information

Participant Sex
Height
(cm)

Weight
(kg)

EU shoe
size

Age
(y)

pA female 170 59 40 27

pB male 178 65 42 22

via MOCAP technology, with ankle measurements from
the exoskeleton’s three encoders. Two healthy participants
performed activities including straight-path walking, curved-
path navigation, and stair ascent and descent. Their demo-
graphic and physical details are presented in Table I

Both participants provided written informed consent be-
fore the study, which followed the ethical guidelines of
the Declaration of Helsinki. The experimental protocol was
reviewed and approved by the Karlsruhe Institute of Tech-
nology (KIT) Ethics Committee as part of the JuBot project’s
ethical application.

The participants engaged in three distinct tasks: 1) Normal
walking: This task involved walking along a straight path
measuring 3 m in length, with two turnarounds that returned
them to the starting position. 2) Figure-eight walking: In
this task, participants maneuvered along a figure-eight path,
designed to simulate slalom walking, measuring 3 m in
length and 1.5 m in width, starting and ending at the center
of the figure-eight. 3) stair climbing/descending: Participants
ascended a flight of four steps, paused to turn at the top, and
then descended back down the stairs before rotating to return
to the starting position. These specific tasks were chosen
because they represent common and functionally relevant
movement patterns in daily activities and exoskeleton ap-
plications. The tasks were conducted in a randomized order,
with each task repeated three times to ensure consistency
in the data collection. Prior to the session, each participant
underwent a 3 min familiarization phase, and resting pauses
were provided between conditions and repetitions to mini-
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Fig. 2: A display of the exoskeleton’s functionality, high-
lighting the three main ankle joint rotations: PF/DF, IN/EV,
and IR/ER, in addition to the forefoot rotation of the foot
frame. (reused from [7])

mize fatigue.
The ankle exoskeleton was fitted to the right leg of each

participant and the foot frame was adjusted to accommodate
the user’s shoe size. During the donning process, the ex-
oskeleton’s PF/DF axis was aligned with the user’s medial
malleolus for accurate motion tracking.

The exoskeleton shank was then rotated to achieve sym-
metry with the sagittal plane and secured in place using ad-
justable straps. To account for the height of the exoskeleton’s
rubber sole, a separate foot segment was worn on the left leg,
ensuring balanced support during the tasks.

C. Data Collection and Post-Processing
During the experiment, the motion of both the user and

the exoskeleton was captured independently across all tasks.
Passive markers were placed on the participant to track
all three rotational movements of the ankle joint using an
optical MOCAP system (Vicon Motion Systems, Ltd., UK).
Additionally, the exoskeleton’s internal sensors, including
three encoders and a heel switch, were recorded on the
exoskeleton side. A combined trigger signal was employed
to synchronize the two data sources effectively. The encoders
used are RMB14 (RLS d.o.o., Slovenia) that provide a 12-bit
resolution. The MOCAP data was sampled at 100 Hz, while
the exoskeleton data was collected at 200 Hz.

At the start of each recording, participants were asked
to stand in a relaxed position to establish neutral marker
positions and neutral positions of the encoders. After the
measurements, the MOCAP data was processed to compute
the ankle joint angles, as detailed in [7]. The resulting
ankle angles calculated with MOCAP are henceforth named
as αPFDF, αINEV and αIRER, to denote ankle PF/DF, IN/EV
and IR/ER, and present the ground truth for the subsequent
analysis. In the same way, the exoskeleton encoder angles are
named as εLEFT, εRIGHT and εBACK, representing the encoders
at position J1, J2 and J7, respectively, as shown in Fig. 1.
To align with the exoskeleton’s sampling frequency, αPFDF,
αINEV and αIRER were interpolated to 200 Hz using the interp1
function in MATLAB®(R2023a, MathWorks, USA).

In all recordings, the mean of the first 100 data points
from each of 6 parameters named above was used to cal-
ibrate the measurement to the neutral position. For each
participant, all recordings related to a specific parameter
were concatenated and used to optimize a personalized, user-
specific model. To create the generalized model, recordings
from all participants were combined. Finally, the distribution
of all angles and encoder measurements was calculated using
the MATLAB®function ksdensity. For visualization, the heel
switch measurements marked the beginning of the right stride
during straight and figure-eight walking, while MOCAP data
was used to identify the start of stair steps.

D. Mathematical Model and Optimization
This section describes the mathematical model and opti-

mization process used for estimation of ankle angles from
encoder measurements. For the modeling, a 3D plane equa-
tion was used:

ax+by+ cz = d, (1)



where x, y and z represent the three spatial coordinates of
the plane, and a, b, c and d are the plane parameters to be
determined through optimization.

For easier interpretation and comparison of the plane
parameters, Eq. (1) is rearranged into the following form:

z =−a
c

x− b
c

y− d
c
. (2)

To simplify the notation, we define the terms − a
c , − b

c ,
and − d

c as P1, P2, and P3, respectively. This transforms the
equation into:

z = fi(x,y) = P1x+P2y+P3, (3)

where i is the respective plane fitting. The parameters P1,
P2 and P3 were optimized using the nonlinear programming
solver fmincon in MATLAB®. An initial guess vector x0 =
[1,1,1] was provided, and no bounds were imposed on the
search space.

This paper assumes the following parameter relations:

εDIFF = εLEFT − εRIGHT, (4)

α̃PFDF =
εLEFT + εRIGHT

2
+ fCPFDF(εBACK,εDIFF), (5)

α̃INEV = fα INEV(εBACK,εDIFF), (6)
α̃IRER = fα IRER(εBACK,εDIFF), (7)

where fCPFDF(εBACK,εDIFF) is a plane that estimates a cor-
rection factor to improve the α̃PFDF calculated using the
average of εLEFT and εRIGHT. And α̃INEV and α̃IRER are estimated
directly from the corresponding planes fα INEV and fα IRER,
respectively.

III. RESULTS AND ANALYSIS
A. Optimized Parameters

A simple plane fitting was conducted for both individual
participants (personalized model) and for the combined data
from both participants (generalized model). Table II displays
the optimized parameters for the three planes: fCPFDF, fα INEV

and fα IRER, which correspond to the ankle rotations αPFDF,
αINEV, and αIRER, respectively. While fα INEV and fα IRER di-
rectly represent the estimated ankle angles, fCPFDF functions
as a correction factor that is added to the average readings

from the left and right encoders. This correction improves
the estimation the PF/DF angle, as shown in Eq. (5).

The goodness of fit for each plane is assessed using
the RMSE, with lower values indicating a closer alignment
to the recorded data. Table II presents the RMSE values
calculated for both the individualized models and the gen-
eralized model. The table comprises three rows: one for the
individual models of participants pA and pB, and another
for the generalized model (pAB). The parameters P1, P2, and
P3 define the orientation of each plane relative to the three
axes, providing insight into how well the models represent
the actual ankle movements. Normalized RMSE values from
this table are presented in Table III to account for different
range of motion (RoM).

Participant pB consistently demonstrates the lowest RMSE
values across all three parameters ( fCPFDF, fα INEV, fα IRER),
indicating the most accurate fit of the modeled planes.
Notably, the RMSE values for participant pB are smaller
for nearly 30% of those recorded for participant pA in both
fCPFDF and fα INEV. This disparity suggests that participant
pB’s movement patterns align more closely with the modeled
planes, resulting in a superior fit. In contrast, participant pA
exhibits higher RMSE values for all parameters, underscor-
ing a less precise correspondence between their motion and
the fitted model.

The generalized model (pAB) yields root RMSE values
that lie between those of the individual participants. This
suggests that while the combined model captures overarching
trends across both participants, it sacrifices some specificity
achieved by the individualized models. Although the gen-
eralized model results in slightly higher RMSE values, the
differences are relatively small, indicating that it could serve
as a practical approximation. Nonetheless, its performance
may still be enhanced through further fine-tuning for each
participant to improve accuracy.

The plane parameters P1, P2, and P3 provide valuable
insights into the relative contributions of the encoders in
estimating each plane. For fCPFDF, parameters P1 and P2
consistently dominate across all cases, while P3 remains close
to zero, suggesting a negligible influence on the estimation.
A similar pattern is observed for fα INEV, where P2 and P3

TABLE II: Optimized Parameters for 3D Plane Fitting Across Ankle Rotations

fCPFDF fα INEV fα IRER

Participant P1 P2 P3 RMSE P1 P2 P3 RMSE P1 P2 P3 RMSE

pA 0.295 -0.168 -0.952 2.9451 -0.053 1.009 0.706 1.4331 1.402 -0.047 0.380 1.8461

2.9622 1.4532 1.8902

pB 0.407 0.033 -0.576 2.1471 -0.040 1.016 0.288 0.9801 1.706 -0.045 0.129 1.6741

2.1882 0.9952 1.7302

pAB 0.323 -0.123 -0.745 2.536 -0.054 1.009 0.465 1.205 1.522 -0.078 0.282 1.798
Entry pAB represents combined recordings. P1, P2, and P3 define the 3D plane orientation, with root-mean-squared error (RMSE) measuring fit accuracy.

1 and 2 denote RMSE values for personalized and generalized models, respectively.



TABLE III: RoM Normalized RMSE values

fCPFDF fα INEV fα IRER

Partic.
nRMSE

(%)
RoM
(deg)

nRMSE
(%)

RoM
(deg)

nRMSE
(%)

RoM
(deg)

pA 4.841 60.8 4.291 33.4 3.881 47.6

4.862 60.8 4.352 33.4 3.972 47.6

pB 3.391 63.3 4.831 20.3 3.521 37.6

3.462 63.3 4.912 20.3 3.642 37.6

pAB 3.73 67.9 3.61 33.4 3.78 47.6
Entry pAB represents combined recordings. 1 and 2 denote RMSE values for

personalized and generalized models, respectively. nRMSE (%) is normalized as
RMSE/RoM × 100, using RoM from MOCAP angles and RMSE table III.

emerge as the dominant parameters. In contrast, for fα IRER,
parameters P1 and P3 are identified as the most influential. In
the fα INEV plane, the parameter P2 consistently hovers around
1.009 across participants, indicating a strong and stable
contribution from a specific orientation in the plane fitting.
Furthermore, the RMSE values for fα INEV are relatively low,
suggesting a good overall fit for this motion parameter. For
fα IRER, slight variations in P1 are observed across participants,
particularly between the individual models. While the RMSE
values for fα IRER are higher than those for fα INEV, they remain
moderate, reflecting a reasonable fit for this parameter.

Overall, participant pB’s lower RMSE values across all pa-
rameters indicate more consistent and controlled movement
patterns in relation to the exoskeleton encoders.

B. Range of Motion Analysis

For additional insights, Fig. 3 illustrates the distribution
of measurement points across the RoM for the three ankle

εBACK

εRIGHT

εLEFT

αPFDF

αINEV

αIRER

-40 -20 0 20 40
Angle (deg)

10√
σ

(\
)

pA
pB

Fig. 3: Visualization of the distribution of ankle joint angles
(αPFDF, αINEV and αIRER) measured using MOCAP and ex-
oskeleton encoder readings (εLEFT, εRIGHT and εBACK) for two
participants. The 10th root scaling of density values improves
visualization of data distribution, especially in regions of
high density.

angles (αPFDF, αINEV and αIRER) alongside the three exoskele-
ton encoders (εBACK, εLEFT and εRIGHT) for both participants.
To improve visualization and address uneven data density, a
10th root scaling is applied to the density values. The intra-
participant differences in the RoM for the αIRER and αINEV

angles reach up to 10◦. Notably, participant pB demonstrates
a narrower RoM for both angles.

The RoM of αINEV closely aligns with that of εBACK. Sim-
ilarly, the RoM of the εLEFT and εRIGHT align with the αPFDF

for both participants. However, discrepancies are observed
between the RoM of the εLEFT, εRIGHT, and αPFDF angles.

Given the direct alignment of εLEFT and εRIGHT with the
αPFDF axis, these differences may indicate either a mis-
alignment between the exoskeleton and the ankle joint or
limitations in the MOCAP angle measurement principle
described in [7] to fully capture the αPFDF movement.

A notable observation in Fig. 3 and Table II is the inter-
participant variation in both RoM and RMSE values. Table
III addresses this by normalizing the RMSE values to RoM,
aiming to reduce the impact of RoM variation. The table
presents nRMSE values for the correction factor ( fCPFDF)
and the two ankle angle estimates ( fα INEV, and fα IRER) for
two participants and two model types (personalized and
generalized).

Participant pB demonstrates a smaller RoM for the fα INEV

and fα IRER estimates compared to participant pA; however,
the RoM for fCPFDF is of similar magnitude between the
two participants. Following normalization of the RMSE,
participant pB exhibits lower nRMSE values for both fCPFDF

and fα IRER. In contrast, the nRMSE value for fα INEV is higher
in participant pB than in participant pA. The data indicate
that the nRMSE values for fα INEV and fα IRER are much closer
when accounting for the differences in RoM. Conversely, the
nRMSE values for fCPFDF remain distinct even after scaling
by RoM, suggesting that the discrepancies in this parameter
are more pronounced.

C. Ankle Rotation Estimate

This section examines the ankle joint motion of participant
pA, who exhibited higher RMSE values compared to the
other participant, necessitating closer analysis. Figure 4 com-
pares MOCAP-derived measurements with encoder-based
model predictions for three parameters: αPFDF, αINEV, and
αIRER. Both participant-specific (pA) and generalized (pAB)
models are assessed for normal walking (left column) and
stair ascending (right column).

The top row of Figure 4 shows the αPFDF parameter, with
three estimates compared against the MOCAP data. The first
estimate is derived as a simple average of the left and right
exoskeleton encoders ( εLEFT+εRIGHT

2 ). The second incorporates
a participant-specific correction factor ( fCPFDF,pA), while the
third applies a generalized correction factor ( fCPFDF,pAB).

For the walking task, correction factors don’t visibly
improve the α̃PFDF estimate, though slight improvements are
seen during stair ascending. Discrepancies include overesti-
mation of maximum dorsiflexion (DF) during heel touch in
walking and pronounced deviation at maximum DF during



stair ascending. However, the model accurately captures
minimum values in both tasks.

The α̃INEV parameter exhibits closer alignment with the
MOCAP measurements. Both walking and stair ascending
tasks show well-captured trends, but also features small dis-
crepancies. Interestingly, the results indicate no visible dif-
ferences between the personalized and generalized models,
suggesting comparable performance across both conditions.

For α̃IRER, the estimates demonstrate strong agreement with
the MOCAP measurements during walking but show a poorer
match during stair ascending. Larger deviations occur at
extreme angles or during rapid transitions. Similar to α̃INEV,
no visible differences are observed between the personalized
and generalized models.

IV. DISCUSSION

The proposed approach successfully estimates ankle an-
gles, with better performance for IN/EV and IR/ER com-
pared to PF/DF, where maximum dorsiflexion was not well-
captured. A major source of error presumably stems from
the misalignment between the exoskeleton’s axes and the
user’s biological joint axes. This misalignment is evidenced
by the discrepancies observed between the RoM ankle PF/DF
and the corresponding encoder (εLEFT and εRIGHT) readings

from the exoskeleton, as illustrated in Fig. 3. Based on
the exoskeleton design, the PF/DF axis of the exoskeleton
can be directly aligned with the PF/DF axis of the ankle
joint. However, despite efforts to position the exoskeleton in
relation to the outer malleolus of the ankle, challenges persist
in achieving accurate alignment with the center of rotation
of the ankle, particularly given the complexities associated
with the 3 DoF design of the exoskeleton. This misalignment
impacts the mapping of encoder readings to joint angles,
especially for PF/DF, where precise alignment is evidently
more critical than for the other two axes (IN/EV and IR/ER).
Although users reported a high level of comfort while using
the exoskeleton, any compliance in the shoe or attachment
mechanism may have further contributed to discrepancies
in alignment and motion, potentially affecting the overall
effectiveness of the device.

The RMSE values reveal inter-participant variability, with
participant pB demonstrating RMSE values nearly 30%
lower than those of participant pA, as illustrated in Table
II. Notably, RoM between the two participants exhibits
visible differences, as depicted in Fig. 3. This variability
suggests that individual factors, such as anthropometry and
walking style, may play a large role in influencing estimation
accuracy. These findings highlight the necessity for improved
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alignment protocols and the inclusion of larger sample sizes
in future studies to enhance the generalizability of model
performance. The RMSE values for PF/DF further emphasize
the critical importance of achieving proper alignment along
this axis to ensure accurate measurements. Consequently,
future designs of exoskeletons should prioritize mechanical
adjustments aimed at optimizing alignment, particularly for
PF/DF, as well as implementing strategies to mitigate the
effects of compliance and foot movement within the ex-
oskeleton.

The current methodology, which evaluates each angle
separately and relies on plane fitting, may limit the overall
accuracy of the model. Personalizing the model yielded
only marginal improvements compared to the generalized
approach, showing potential for simplifications and general-
ization. The observed inter-participant variability underscores
the necessity of a larger sample size for a robust evaluation of
the model. Additionally, observed discrepancies at the peaks
of motion indicate that factors such as velocity and dynamic
effects, including tissue compliance, need to be integrated
into future models. To address these limitations, a more
unified approach that combines the assessment of multiple
angles and incorporates additional parameters—potentially
through machine learning techniques—could enhance both
performance and generalizability.

V. CONCLUSION

This study demonstrates the potential of encoder-based
models for estimating ankle angles in parallel exoskeletons,
but challenges remain due to alignment issues, compliance
effects, and inter-participant variability. While the current
model is a step toward understanding the relationship be-
tween ankle motion and encoder readings, further research
is needed to refine the approach. This includes incorporating
additional parameters, testing with larger and more diverse
participant pools, and exploring more advanced machine
learning techniques. Ultimately, these efforts could improve
the accuracy and generalizability of the model, paving the
way for enhanced exoskeleton performance.
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