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Robot Programming by Demonstration (PbD) has been dealt with in the literature as a promising way to teach robots new
skills in an intuitive way. In this paper we describe our current work in the field toward the implementation of PbD system
which allows robots to learn continuously from human observation, build generalized representations of human demonstration
and apply such representations to new situations.

1 Introduction and Related Work

Learning of skills and behaviours that can be applied to solve a
given task regardless of the current configuration of the external
world is a difficult problem because the search space that needs
to be explored is potentially huge [1]. The size of the search
space depends both on the number of degrees of freedom of
the robot and on the objects involved in the action. Further-
more, external objects can affect the search space indirectly. To
overcome problems arising from high dimensional and continu-
ous perception-action spaces, it is necessary to guide the search
process. One of the most successful paradigms that can be used
for this purpose is imitation learning or robot programming by
demonstration [1, 2].

Several imitation learning systems and architectures based
on the perception and analysis of human demonstrations have
been proposed (see [3, 4, 5, 2, 6, 7]). In most of the pro-
posed approaches, the imitation process proceeds through three
stages: 1) perception and analysis of human demonstration, 2)
representation of the demonstration, and 3) reproduction of the
demonstrated task on the robot. Known approaches in the lit-
erature can be divided between two trends regarding the way
demonstrations are represented, and the way such representa-
tions are generated: trajectory-level representations in the form
of non-linear mappings between sensory and motor information
[8, 9, 10, 11, 12, 13, 14], and symbolic-level representations
that decompose demonstrations into sequences of more abstract
perception-action units [15, 16, 17, 18, 19, 20]. While trajectory-
level representations allow different types of motions to be en-
coded, they do not allow high-level tasks to be generated. On
the other hand, symbolic-level representations allow action hier-
archies and rules to be learned, however they require pre-definded
sets of motor controllers for reproduction.

A key issue in all these approaches is to find a generic ac-
tion representation which 1) express actions as a combination
of meaningful elements called motor primitives, 2) learn such
motor primitives, and 3) use them to recognize and synthesize
actions. In other words, such representations should allow ac-
tion planning, action recognition, and action synthesis. Sev-
eral representations have been proposed in the past; among the
most successful are nonlinear dynamic systems [11] and hidden
Markov models [21, 6, 13], which have been demonstrated to
enable both action recognition and action synthesis. Several ap-

proaches have dealt with the extraction of motor primitives from
observed human motion, the classification of demonstrated ac-
tivities and well as the learning and sequencing of the underlying
motor primitives ([22, 23, 24, 25, 26]). In addition, action de-
scription languages have been also proposed to express human
activities ([27, 28, 29]).

2 Overview

In Programming by Demonstration, two different lines of re-
search can be identified based on the representation of manip-
ulation knowledge: subsymbolic and symbolic. In this work, a
subsymbolic approach, see section 3, based on learning Dynamic
Movement Primitives (DMP) [11], and a partially symbolic ap-
proach, see section 4, based on learning the parameterization
of predefined movement primitives, are presented. In the first
approach, markerless human motion capture and a predefined,
general mapping interface, the Master Motor Map (MMM), are
used to map a human demonstration to a sequence of DMPs.
Each DMP represents an attractor landscape described by a sec-
ond order dynamical system, which is a single, abstract, subsym-
bolic representation of a set of demonstrations. In the second
approach, human demonstrations are mapped to sequences of
predefined motion primitives, i.e. grasp, ungrasp and move,
which are implemented using constrained motion planning. In
this context, symbolic pre- and post-conditions can be learned
automatically [16]. The identification of object features, which
are relevant for a given task, is a prerequisite for learning and
generalization of manipulation knowledge. In section 5, the re-
quired attributes to model interaction tasks of a service robot,
e.g. in a kitchen environment, are analyzed. The derived basic
actions contain movement primitives, like grasp, ungrasp and
move, and perception primitives, which can’t be learned in our
current system. The object attributes relevant to each each ba-
sic action are derived, which is the basis for assigning symbolic
information, e.g. labels like heavy or light, to movement prim-
itives and learn the dependence of subsymbolic information on
object properties.

The connection of both research lines, i.e. between high-level,
symbolic information and low-level, subsymbolic information, is
challenging. In the first approach, the learned DMPs are en-
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riched manually with symbolic information and a symbolic plan-
ner can be used to generated sequences of DMPs to solve a
problem on the task level. The subsymbolic information, which
can be efficiently adapted to changes in the start and goal, is
used to generate robot motions online. In the second approach,
the parameterization of the constrained motion planner, which
is used to implement grasp, ungrasp and move, is automatically
learned. The learned parameterization, which is called manipu-
lation strategy, is a flexible, constraint-based representation of
the search space.

The main advantage of the first approach is the fast, online
adaptation to perturbations in the environment and learning of
complex robot motions. The second approach offers generaliza-
tion based on symbolic information, e.g. object properties, and
planning of robot motions in the full configuration space of the
robot. In contrast to the first approach, global and self colli-
sion avoidance can be easily integrated but online adaptation
to fast changes in the environment is not possible since plan-
ning time dominates the execution time. The advantages and
disadvantages of both approaches are complementary. Current
research focuses on the connection of subsymbolic and symbolic
approaches. Future directions and current limitations will be
discussed in section 6.

3 Learning Imitation Strategies

3.1 Markerless Human Motion Capture

Markerless human motion capture is a prerequisite for learning
from human observation in a natural way. The sensor system
to be used for this perceptual capability is the wide angle cam-
era system built-in in the head of ARMAR-III. The two main
problems are to capture real 3D motion despite the small base-
line of 90 mm as well as to meet the real-time requirements for
online imitation learning. As probabilistic framework, a particle
filter is used. In our earlier work [30], we have introduced the
integration of a 3D head/hand tracker as an extra cue into the
particle filter. This additional cue allows to reduce the effective
search space by dragging the probability distribution into a rel-
evant subspace of the whole search space. In our more recent
work [31, 32] we have focused on improving the accuracy and
smoothness of the acquired trajectories by analyzing and solv-
ing the typical problems with markerless human motion capture
using particle filters. In order to achieve this goal, a priorior-
itzed fusion method, adaptive shoulder positions, and adaptive
noise in particle sampling have been introduced. Furthermore,
the redundant inverse kinematics of the arm, given a hand and
a shoulder position, were integrated into particle sampling, in
order increase robustness to unexpected movements, to allow
immediate recovery from mistrackings, and to support applica-
tion of the system at lower frame rates. After sampling a subset
of the particles according to the redundant inverse kinematics,
several runs of an Annealed Particle Filter [33] are performed to
refine the probability distribution.

3.2 Master Motor Map

To allow the reproduction of human motion acquired from dif-
ferent human motion capture systems on different robot em-

bodiments as well as to allow the development and evaluation
of action recognition systems independent from the data source,
we have specified the so-called Master Motor Map (MMM) as
an interface for exchanging motor knowledge between different
embodiment, and as a framework for decoupling data from var-
ious sources accounting for perception, visualization, reproduc-
tion, analysis, and recognition of human motion. The MMM
is defined as a three-dimensional reference kinematic model of
the human body enriched with body segment properties. The
strategy with respect to the kinematic model is to define the
maximum number of degrees of freedom (DoF) that might be
used by any applied module [34].

3.3 Action representations

To generate graping and manipulation tasks through imitation,
motor knowledge learned from human observation must be rep-
resented in a way, which allows the adaptation of learned actions
to new situations. For this purpose, we investigated and applied
Dynamic Motor Primitives (DMP) as proposed in [11]. A DMP
provides a representation of a movement segment by shaping an
attractor landscape described by a second order dynamical sys-
tem. Using this formulation, discrete and periodic movements
can be described. In [35], we applied a motion representation
based on dynamic movement primitives (DMPs), which has the
advantage that perturbations can be directly handled by the
dynamics of the system. Starting from the observation of a hu-
man performing a specific task, motion data is obtained, which
is segmented automatically regarding the velocity and position
changes of the hand or the object motion. After mapping auto-
matically these motion segments onto the robot using the MMM
Interface, DMPs are learned and stored in a motion library. Se-
mantic information is added manually to the movement primi-
tives such that they can code object-oriented actions. To repro-
duce these actions on a robot, a sequence of DMPs is selected
and chained, either manually or through a symbolic planner, to
achieve the task goal. The imitation of a pick-and-place action
consists e.g. of learned DMPs for the different movement seg-
ments: approach, place and retreat. At the moment, human
input is restricted to generating learning examples, defining the
MMM Interface, which is valid for all imitation tasks, and to
add semantic information to learned movement primitives.

3.4 Action reproduction

The proposed framework was used to implement grasp scenario
and a shell game scenario. For the grasp scenario, three primi-
tive classes of human movements have to be captured and added
to the library of DMPs: approach, pick and place, and retreat.
Concerning the approach and retreat movement, each class in-
cludes two DMPs assuming that, e.g. an approach movement
is targeting an object in front of the robot, while the object po-
sition may vary along the vertical axis. For the pick and place
class, we generate four DMPs, which enable placing of objects
from back to the front, from left to right and vice versa (see fig.1
and fig. 2). The shell game scenario features a higher complex-
ity, hence, in addition to the existing DMPs which were applied
on grasping, sliding movements were demonstrated to the robot.
For this purpose, the human user was asked to move the object
along a figure eight trajectory. Segmentation led to four dis-
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Figure 1: Image samples of demonstrated of human motions.

Figure 2: Image samples of the online imitation of human motion
by the humanoid ARMAR-IIIb.

tinct movements, which can be distinguished whether the cup
was moved from left to right, away or towards the robot. Adding
the four sliding DMPs to the library, a set of movement primi-
tives is obtained which cover the motion needed for performing
the shell game. As depicted in fig. 3, the shell game could be
reproduced successfully by the humanoid robot ARMAR-III. No
failures were encountered in both examples. The similarity of the
generated robot motions to the human demonstrations using the
DMP framework is described in [35].

4 Learning Manipulation Strategies

The PbD process is summarized in fig. 4. A human operator
demonstrates the task on real objects in an environment [36]
being observed by multiple sensor systems including a 6D mo-
tion tracking device for the wrist position and orientation and
two datagloves measuring 22 degrees of freedom of the human
hands. The sensor data is filtered, segmented and mapped to
the symbolic predefined movement primitives: grasp, ungrasp
and move. Each movement primitive is implemented using con-
strained motion planning. In general, the search space for grasp
and move differ in the dimensionality of the problem and two
different approaches are investigated. In the case of grasping,
heuristics for the constrained motion planning are learned from
the human operator, which is regarded as a complex parame-
ter of the grasp movement primitive. In the case of moving,
the search space itself depends on the task to learn and is au-
tomatically learned based on the human demonstration. The
search space is represented as a complex network of temporal
and domain constraints, which is regarded as the parameter of
the move movement primitive.

For each grasp operator, the example-trajectory is obtained by
storing the wrist and fingertip trajectories relative to the grasped
object. The demonstrated trajectories are mapped to the robot

hand by using virtual fingers [37], which abstract a group of real
fingers applying similar forces to the object to a single virtual
finger, and by locally solving an optimization problem, which
minimizes the distance of the robot finger tips to the tips of the
virtual fingers and the distance of the robot wrist to the hu-
man wrist. Based on this initial mapping a probabilistic model
based on factor graphs is learned, which explicitly models the
optimization and modeling errors. This learned variation model
represents a time dependent sampling distribution of the robot
configuration space, that is used in a probabilistic motion planer
to generate valid solutions for grasps of similar objects in new
environments. By explicitly modeling the outcome of the trans-
formation process as a stochastic process, an automatic weight-
ing between exploitation of the knowledge demonstrated by the
human operator and the fast exploration of the configuration
space is achieved. The complete process is shown in fig. 5.

In the execution environment, probabilistic motion planning
is used to generate grasping motions for the robot system based
on the learned variation model. The variation model is effi-
ciently evaluated by sampling from the product distribution of
the marginals, which are calculated using loopy belief propa-
gation. This non-uniform sampling distribution is used in the
probabilistic motion planner as a heuristic to guide the search
process, allowing for the automatic weighting between exploita-
tion of the learned task-dependent knowledge and the explo-
ration of the search space. The incorporation of variations into
the strategy representation allows for the flexible application of
the learned strategy to different objects and environments. The
advantages of using motion planning are generalization to en-
vironments with different obstacles and self collision avoidance.
The generality of the approach has been demonstrated on two
different experiments on a real anthropomorphic robot system
with seven different objects. Details are given in in [38].

For task knowledge representation we developed a partially
symbolic representation of manipulation strategies that explic-
itly describes the search space for trajectories consistent with
the strategy by a complex network of temporal and domain con-
straints. Based on the structure of constraints, manipulation
strategies can be efficiently learned using the PbD paradigm and
generalized to different robots, objects and environments on a
symbolic level. Recent advances in the field of constraint motion
planning are incorporated to plan robot trajectories based on a
given manipulation strategy.

A manipulation motion is defined as an unconditioned mo-
tion of the robot system. The most common representation is
a trajectory in the configuration space of the robot, that can be
learned by playback programming and directly executed on the
robot system. In general, generalization to different domains,
e.g. with different start, target and object positions is not pos-
sible. In order to improve generalization, allowed variations of
the trajectories can be learned based on multiple demonstra-
tions. In [39], Gaussian mixture regression is used to determine
a more flexible trajectory representation based on Gaussians.
The main advantages of purely subsymbolic representations are
fast learning times and low effort for the transformation to the
robot system. Generalization to new objects and environments is
complicated, due to the lack of understanding of what the goals
are and why the solution is structured in a specific way. On
the other hand, background knowledge can be easily integrated
into a symbolic, e.g. STRIPS-like, representation. The symbolic
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Figure 3: The humanoid robot ARMAR-IIIb playing shell game through learning from human observation

user 
interaction

motion & grasp 
planning

abstraction

Pouring

G

G

M U

U

perception

segmentation & interpretation

mapping

demonstration execution

Figure 4: Programming by demonstration: process overview, [38]

mapping

Virtual fingers

Local optimization

Variation model

Marginal distributions

Motion planning

New object & scene

Grasp quality

Figure 5: Mapping
of grasping strategies:
overview, [38]

description allows for the generalization based on symbolic prop-
erties, leading to a high degree of reusability, i.e. actions can
be applied to objects with equal properties. Due to the com-
plexity of robot manipulation, purely symbolic descriptions are
insufficient to represent manipulation motions as an input for
motion planning techniques. Consider the pour-in task, which
could be described by the target relation isFilled(Glass,Water)
and runtime constraint !isWet(Table). This simple symbolic de-
scription demands a powerful planning system taking the water
dynamics into account. By mapping the relation !isWet(Table)
to a subsymbolic constraint, that restricts the orientation of the
bottle to be ”upright”, the problem complexity can be heavily
reduced. Based on this observation, a representation capturing
symbolic and subsymbolic properties of manipulation motions
has been developed. In general, manipulation motions are heav-
ily constrained, e.g. pushing a button requires the robot to stay
in contact with a small part of an object. Instead of viewing
constraints as a way to restrict motions, we regard constraints
as the atomic element of manipulation motions and strategies,
which can be combined in sequence and in parallel to describe
the space of trajectories consistent with the manipulation mo-

tion. By introducing object depended constraints, e.g. staying
on the table top, we derive a representation, that can be easily
transformed to new environments based on its symbolic proper-
ties and easily executed based on the subsymbolic information
provided by domain constraints.

The novel representation of manipulation strategies is based
on atomic constraints. For each constraint, a formulation known
from motion planning has been employed, which restricts the set
of valid configurations by testing if a given point stays within a
given region. Learning of new manipulation motions is reduced
to learning the parameterization of a specific region type, which
optimally covers the trajectory of a predefined point. The set of
predefined points contains a.o. the position, orientation (and its
derivatives) of object features and the robot manipulators. The
set of region types considered in the learning process consists of
cones, spheres, cubes and cylinders. For each class, the smallest
representative containing all values of a point on a given trajec-
tory can be efficiently calculated using a search algorithm. The
result of the supervised learning process is a manipulation mo-
tion, that can be visualized as a strategy graph. By assigning
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regions to certain object features, the representation is (par-
tially) symbolic, which can be efficiently exploited to reproduce
the manipulation motion on different robot systems in differ-
ent environments. In the pour-in experiment, the environment
of the robot system contained additional objects and the robot
had grasped a different type of cup. The learned manipulation
motion was automatically transformed into this environment by
using the predefined cylindrical region of the new cup and the de-
veloped constraint motion planning algorithm to incorporate col-
lision avoidance. Consistent trajectories were planned, that dif-
fer fundamentally from the demonstrated trajectory, indicating
that the relevant features of the manipulation had been learned.
Further details are given in [40].

5 Learning Object Models

The goal of our research is to create an object model hierarchy
for robots. This hierarchy should be created by a human user
with little programming knowledge, supported by the modeling
system. As an application example, we use a typical kitchen
environment. The next two sections describe first the internal
structure of the object models in more detail and then lead to
the deduction of the different modeling tasks that need to be
solved in such environments by intuitive user interaction.

5.1 The Object Model Hierarchy

In order to represent all the different objects, an object model
needs to be very flexible and versatile. To achieve this, we devel-
oped a model consisting of four main parts [41]: object classes,
object instances, features and attributes. In this concept, object
classes consist of features (and potentially additional attributes),
whereas features in turn consist of one or more attributes. At-
tributes are low-level descriptions of object properties, such as
geometry, weight, texture, etc. Features describe higher level
properties of objects which combine different attributes, e.g.
the feature is container which implies attributes like filling state,
content type, etc. On the top end of the hierarchy, object classes
represent complete families of objects, such as cups, plates, forks
or chairs. Objects of the same object classes share characteris-
tic features and attributes. By setting special default values for
the attributes of the object classes, sub-classes like e.g. wooden
chair can be specified. Finally, object instances represent ob-
jects in a real world scene by instancing the appropriate object
class and thus, setting situation and object specific values for its
attributes. A more detailed explanation of this approach can be
found in [42]. Based on this object model concept, two ques-
tions need to be answered to create a model for a real world
scene: first, which attributes need to be modeled to describe
the objects in the scene properly? And second, how can appro-
priate default values for these attributes be set by the human
user in an intuitive way? The next section answers the first ques-
tion whereas the second part of this paper describes a possible
answer to the second question for two exemplaric attributes.

5.2 From Tasks to Object Attributes

To create meaningful object classes to represent real world ob-
jects, the core attributes that are common to all objects of the

domain in question need to be identified and modeled. The
identification of these attributes was achieved through a care-
ful analysis of possible interactions with the observed objects.
This analysis consisted of three steps: the identification of the
potential interaction tasks, the separation of the tasks into ba-
sic actions and finally the derivation of the attributes which are
necessary to execute these basic actions.

The setting of service robots in a kitchen was taken as ex-
emplary domain in our investigation. The analysis therefore con-
centrates on interaction tasks which service robots will be able
to carry out in the near future. In the following two subsections,
the derivation of basic actions from these tasks and of required
object attributes from actions are presented.

5.2.1 Deriving Basic Actions

For the chosen domain, we identified several important tasks:
For the fundamental recognition and localization of objects, the
encompassing task is perception. As fig. 6 exemplifies, percep-
tion tasks can be subdivided into three basic actions: classifi-
cation, identification and localization. Fig. 6 also shows that
other tasks like pick & place, too, partly employ the same ba-
sic actions, but rely on additional actions like approach, grasp,
move etc. In the same way, the remaining tasks of open/close,

Figure 6: Exemplary tasks and corresponding basic actions

fill/empty and utilize were broken down into several basic ac-
tions. The analysis revealed that many of the basic actions are
part of more than one task. The aforementioned classification,
identification and localization, for example, are integral parts of
each of the analyzed tasks.

5.2.2 Deriving Required Attributes

Now that the basic actions are known, the useful attributes re-
quired to perform these actions can be derived. Figure 7 shows
this process at the example of moving an object. In this case
spatial information is needed e.g. to avoid collisions. This can
be represented for example as a bounding box, in form of a ba-
sic shape representation or through highly detailed 3D geometry.
When moving the object, mechanical and physical information is
also crucial. Most important here are the movement restrictions,
i.e. tilting angles, maximum accelerations and maximum veloci-
ties. In this fashion all of the basic actions, derived from the set
of possible interactions in the environment, were analyzed and
thus necessary object attributes extracted.
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Figure 7: The process of action analysis (here: movement of an
object)

The most important resulting attributes for this domain
are: movement restrictions, basic shapes, weight, bounding box,
main axes, stable positions, grasp forces, grasp contact points,
deformability, environmental conditions, risk potential, texture,
colour graph, 3D geometry, type of locking mechanism, clos-
ability, graph of potential usages, container type and filling ca-
pacity. These attributes require different approaches to achieve
intuitive, fast and exact object modeling. Two such attributes,
namely stable positions and movement restrictions, and the way
of their modeling in an interactive way are described in [41].

6 Conclusion and Future Work

In Programming by Demonstration, the connection between high-
level, symbolic information and low-level, subsymbolic informa-
tion is challenging and remains unsolved. At the symbolic level,
generalization to different environments and objects is possible
based on properties and the relation of objects in the scene.
Subsymbolic information is missing to generate robot trajecto-
ries consistent with the symbolic goals and runtime conditions.
At the subsymbolic level, information to adapt trajectories to
perturbations in the start, goal and scene is present but gen-
eralization to different objects and environments is limited. In
our current work, these two different lines of research are rep-
resented by learning imitation strategies and learning manipu-
lation strategies. In both approaches, current work deals with
the connection of the symbolic and subsymbolic levels. In learn-
ing imitation strategies, the subsymbolic information represented
by the Dynamic Movement Primitives is enriched manually by
symbolic pre- and post-conditions. In future work, the human
teacher will be taken out of the learning loop by automatically
attaching symbolic information to the learned DMPs. In learning
manipulation strategies, the symbolic pre- and post-conditions
of predefined motion primitives are automatically learned. In this
line of research, current work focuses on learning the complex
parameterization of the predefined motion primitives, closing the
gap between the symbolic and subsymbolic level. Generalization
of learned manipulation knowledge to different objects and ob-
stacles is a prerequisite for the development of an autonomous

robot, which acts in a large domain, e.g. the human environ-
ment. In this work, relevant object attributes were identified
and future work will concentrate on learning the connection be-
tween object attributes and subsymbolic manipulation knowl-
edge, which is the basis for automatic generalization to different
objects.
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