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Abstract—In this paper, we present a system for the imitation of basic motor primitives. These are learned by clusterimd) a
of human motion on a humanoid robot, which is capable of incor  dimensionality reduction of visually acquired human motio

porating both vision-based markerless and marker-based han — yata  For reproduction, a movement is classified into motor
motion capture techniques. Based on the so-called Master Nar imiti hich | d back ntiall
Map, an interface for transferring motor knowledge between primiuves which are played back sequentally.

embodiments with different kinematics structure, the sysem is In [4] and [9] methods are introduc_ed, where Hidden
able to map human movement to a human-like movement on Markov Models are trained with a collection of observations

the humanoid while preserving the goal-directed characteistics of a demonstrated movement. To reproduce a newly observed
of the movement. To attain an exact and goal-directed imitabn movement, the observation is recognized based on a set of

of an observed movement, we introduce a reproduction module . . . -
using non-linear optimization to maximize the similarity between trained models. With the complying model, a generalization

the demonstrated human movement and the imitation by the Of th? r(_ecognize(_j movement is generateq. _
robot. Experimental result using markerless and marker-baed Imitation learning approaches emphasize the learning and

human motion capture data are given. understanding of human behaviour by its interpretationhgy t
humanoid. These methods require offline processing and due
to the loss of accuracy as a result of generalization, they ar

The interaction between robots and humans is one often limited to simple movements.
the main goals in humanoid robotics research. A successfulThe imitation of a complex motion requiring high precision
interaction depends on various factors like the acceptaficeand stability is addressed by approaches dealing with the
a humanoid robot by society, its capabilites to act in uncopure imitation of motion. In contrast to imitation learnjrthe
strained human-centered environments and its commuaicatiearning of any kind of behaviour is disregarded. Instehd, t
skills. As a consequence, to raise its acceptance in socidtycus is on finding a trajectory, which corresponds exadtly t
a robot needs to adapt human characteristics to its actiadhe data, that a humanoid obtains from a human motion capture
and skills. Especially, human-like motion and gestures ofsystem. [6], [7], and [8] present methods for motion imdati
robot are main contributions to its appearance, which hasaaich make use of artificial markers on the humanoid robot
strong influence on a user. Hence, under these circumstareesvell as the demonstrator. For the reproduction of motion,
controlling the motion of a robot is a very challenging taskorresponding marker positions between both subjects are
and still a major topic in humanoid robotics research. Thainimized leading to similar postures. Instead of exphajti
most intuitive solution for this problem lies in imitatiowhere marker positions, [9] and [10] calculate the joint anglesaof
the user adopts the role of a teacher by demonstrating hdemonstrators posture, which are transferred to the rabot f
to perform a certain action, while the robot tries to repeaiecution. Due to joint and velocity constraints, a scaing
this action on the basis of the observation. The benefit whnsformation process must be performed to obtain a fieasib
exploiting demonstration is clearly revealed in [1], whare joint angle configuration for the robot. In contrast to the
anthropomorphic arm is capable of balancing a pole in timeentioned motion imitation approaches mentioned above, a
first trial after observing a human. The concept of imitatiomore natural way of imitation using the humanoid robots own
can be understood in many ways. In [2], imitation of humarstereo vision system to record human trajectories by etipipi
in the field of robotics is divided into two categories: intitd  color markers on the demonstrators clothing is presented in
learning and motion imitation. [11].

Imitation learning sets the focus on the understanding ofEach of these approaches is focused on a specific hu-
actions. Following this scheme, which underlies imitatioman motion capture technique. Since every technique has its
learning methods, first, data is collected from multiple okadvantages and drawbacks, in our approach, we propose a
servations of a demonstrated action. From this data calect system for the imitation of motion within a framework that
features are extracted allowing the robot to draw conchssioallows integration of various marker-based and markerless
on the humans behaviour. Based on the learned behaviour, lthenan motion capture systems and the reproduction on a
robot should be able to reproduce a generalized versioreof tlobot. This compability leads to a high level of flexibility
demonstrated action. and versatility, which opens the system to a wide range of

In [3], a neuroscientific inspired approach is presentedifferent applications from motion analysis to imitatiofi o
which solves imitation learning of cyclic motion with a setighly complex motions in real-time.

I. INTRODUCTION



Concerning the reproduction of object manipulation acjon
one desires a module that produces trajectories that keep | Recognition - Human Motion Capturing (HMC)
goal-directedness of the observed movement while keepi
the human-like charactericstics of the motion. The terml-go:
directedness refers to the pose of the end effector rel&dive Markerless Marker-based
the object of interest. Since the pose of the object reldtive
the robot will always differ from the observed situation,eon 1 ==
needs the possibility to incorporate the currently deseed %
effector pose which can be derived from the currently olesérv Ll /18 v
object pose into the transformation procedure.

However, due to severe constraints of mechanical syste Joint Angle Joint Angle
and unknown environments, it becomes very difficult to $atis Recanstruction Sl
all requirements. Inspired by the previous works, a repcedL
tion module is developed based on a non-linear optimizatir
problem, which incorporates the robots hand in the taskesp:
as well as the joint angles. Similar to the previous imitatio
solutions, we focus on the optimization of the humanoic
posture in each frame. MMM Interface (91) (92)

The paper is organized as follows. Section Il describes t ¥\~ y \P
proposed imitation system and the human robot used in t Cf;g‘ﬁﬁﬁn ng‘ﬁmm
experiments. In Section Ill, an overview of markerless ar
marker-based human motion capture is given. The extens
of the Master Motor Map is described in Section V. Thi iastegiiotonltiap
generation of human-like movements from captured hum 7
motion using non-linear optimization techniques is présen P
in Section VI. Finally, experimental results are given in.VI ARMAR kinematic model

HMC-Modul 1 HMC-Modul 2

1. SYSTEM OVERVIEW (GARMAR)

Parmar

As depicted in Fig. 1, the proposed system consists

Y

three major components, which are coupled in consecuti | geproduction
processing stages: the acquisition of human motion, thetidvias Optimizing
Motor Map (MMM) interface [12], and the motion generatior

and reproduction.
As mentioned before, the proposed system allows data inj on ARMAR lllb

Reproduction in
ARMAR Simulation
k
Y
£330

from different human motion capture systems. For appbeesti
requiring highly accurate data, marker-based motion captt
systems are more suitable. In contrast, for online imitatio
a natural way, markers cannot be used. For the experime
performed in the context of this paper, the Vicon systel
[13] was used for marker-based motion capture (see Sectiun
I1-B) and the stereo-based markerless motion Captur@ﬂyStFig. 1. Overview of the proposed systef. denotes the joint angles, while
presented in [14] (see Section IlI-A) for natural imitation  p. describe the hand position in the Cartesian space.

In both cases, the acquired trajectories are first trarmstate
the unifying MMM format. In order to enhance both, human-
likeness and accuracy, the MMM joint angle configuratiorsrunobot ARMAR-Illa [15]. From the kinematics point of view,
through an optimization procedure, which fits the configorat the robot consists of seven subsystems: head, left armt, righ
to the kinematical structure and constraints of the robatrm, left hand, right hand, torso, and a mobile platform. The
By interpolation between the consecutive posture frameshead has seven DoF and is equipped with two eyes, which
smooth imitated movement is generated. If communciatidtvave a common tilt and can pan independently. Each eye is
between the single modules becomes necessary, e.g. weeuipped with two digital color cameras, one with a wide-
using an external Vicon system, UDP is used to establish thegle lens for peripheral vision and one with a narrow-angle
connection. lens for foveal vision. The upper body of the robot providas 3

DoF: 27 DoF for the arms and three DoF for the torso. The

A. ARMAR:-IIIb arms are designed in an anthropomorphic way: three DoF for

The humanoid robot ARMAR-IIIb, which serves as theach shoulder, two DoF in each elbow and two DoF in each
experimental platform in this work, is a copy of the humanoidrist. Each arm is equipped with a five-fingered hand with

l‘,,




3. Based on the output of the image processing pipeline, a
particle filter is used for tracking the movements in joingkn
space. For tracking the movements, a 3D upper body model
with 14 DoF (6 DoF for the base transformation3 Zor the
shoulders, and -2 for the elbows) consisting of rigid body
parts is used, which provides a simplified description of the
kinematic structure of a human. The model configuration is
determined by the body properties like the limbs length of
the observed human subject. The core of the particle filter
is the likelihood function that evaluates how well a given
model configuration matches the current observations, i.e.
stereo image pair. For this purpose, an edge cue compares the
projected model contours to the edges in the image. On the
basis of an additional 3D hand/head tracker, the distanee cu
evaluates the distance between the measured positionsand t
corresponding positions inferred by the forward kinensatt

the model. Various extensions are necessary for robust real
time application such as a prioritized fusion method, aglapt
shoulder positions, and the incorporation of the solutiohs
the redundant arm kinematics. The system is capable ofenlin
tracking of upper body movements with a frame rate of 15 Hz
Fig. 2. The humanoid robot ARMAR-IIlb. on a 3 GHz single core CPU. Details are given in [14].

eight DoF. The locomotion of the robot is realized using §- Marker-based Human Motion Capture

wheel-based holonomic platform. Marker-based human motion capture frameworks are
widespread systems in the robotics research community as
well as in the industry. One of the most popular commercially

In this section, a short outlir_1e of the integrated marksrleavauaue systems is provided by Vicon [13]. The technique,
and marker-based human motion capture methods is givenylfich is used here, relies on infrared cameras and artificial

addition to the brief descriptions of the techniques, theaa€l |ofioctive markers. The markers are placed on predefined

tages as well as the drawbacks are discussed. Furthermggyy parts of a human subject. In a defined workspace, the
possible applications are pointed out. subject is surrounded by a set of infrared cameras. Each
A. Markerless Human Motion Capture camera is_ quipped with a infrared strobe, emitting a I_ight
. . . signal, which is reflected by the markers. The reflected Jight
In the following, our real-time stereo-based human motiqp; distinguishes itself from the background, is registe
captu_re system presented_ln [14] will be sur_nmanzed br'EﬂH the cameras. The data from each camera consisting of 2D
The input t_o the sys_ter_n 'S a stereo color IMage Sequentlnrginates of each recognized marker position, is menmged i
captured with the built-in wide-angle stereo pair of the hyy,, station, which computes the 3D position by triangoiati
mano!d robot ARMAR-IIb, which can be seenin Fig. 2. Th nd the label of each visible marker. Besides the hardware,
Input images are pre—p.rocessed, genergtlng OUtDUt_ forge & e system contains a comprehensive software packageh whic
cue and a so—g:alle(_j d|_stance cue, as mtrqdl_Jced in [1_(_3]' Zilitates the calibration and handling of the system. Due
image processing pipeline for this purpose is illustrateHig. the high-speed and high-resolution properties of the casper
the Vicon system provides an accurate method for capturing
segmented shirt color gradient map human motion at high frame rates. Furthermore, since the use
of numerous markers allows capturing of barely visible woti
input image @ of unobvious joints, complex kinematic models are applieab
- - for the processing and representation of the motion data. Th
N i =EW"/ problem of occlusion of body parts is reduced to a minimum,
= e since multiple cameras are used, which deliver multiplevsie
2 of the same subject. However, the enormous equipment needs
== cause high costs. Furthermore, a time and space-consuming
preparation is essential to provide the necessary setup for
proper human motion capture. For our purpose, the jointeang|
are reconstructed by optimization of a human model based on
Fig. 3. lllustration of the image processing pipeline. the computed 3D marker positions. Details are given in [17].

IIl. HUMAN MoOTION CAPTURE

segmented skin color



IV. EXTENDED MASTERMOTOR MAP

Since each human motion capture system produces data in
terms of its own specific model and format, respectively, one
has to deal with a variation of different data formats. Liksay upper neck ( .base)j/\
for reproduction of movements, each robot system requires
data in terms of its own kinematics. One possible solution
could be the definition of an interface for each combinatibn o
a sensing system and a robot. However, doing so would restric
the robot and the utilization of the data. To overcome this
difficulties, in this work, a standardized interface is bfihed
by using the MMM, which features a high level of flexibilty
and combability. The MMM is introduced in [12] and provides doneeton |20 |
a reference kinematic model by defining the maximum number i
of DoF, that can be used by a human motion capture module
and a robot. A trajectory in the original MMM file format
consists of 52-dimensional vectors, each vector desgrihin -
joint angle configuration with a floating point number for gyve g—m
single DoF. Since we are able to recognize the human finger
movements using the Vicon system, the MMM is extended by
three DoF for coupled finger flexion, thumb flexion and thumb
abduction. The reference kinematic model of the extended
MMM is illustrated in Fig. 4. As a result of the extension, one
obtains a 58-dimensional vector for the description of atjoi
angle configuration of the model. Due to differences in the
Euler conventions, active joint sets, which can be corgll
and the order of the joint angle values between the modules,
a conversion module has to be implemented for each of the
systems in order to provide a proper connection via the MMM.
This conversion module transforms the module specific data
into the MMM file format and vice versa. As depicted in Fig.

1, for the proposed system, one conversion module is imple-
mented for each human motion capture system, converting the
motion capture data to the MMM format. A third conversion ) )
module is implemented for mapping the MMM data to theF|g. 4. Reference kinematic model of the Extended MasteroMbtap.
kinematics of ARMAR-IIIb. The focus of this paper lies on

this third module and is presented in the following. Furth
details on the MMM are given in [12].
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% Similarity Measure

One of the most crucial factors in the reproduction of
V. REPRODUCTION OFTRAJECTORIES human motion is the measure for rating the similarity betwee
Concerning the imitation of humanoid motion, the simpleshe imitated and the demonstrated movement. For the online
and most desired way to reproduce a movement from givegproduction of a human movement, one is more interested
joint angles consists of a one-to-one mapping between ian comparing the current postures at the timethan in
observed human subject and the robot. Unfortunately, dinwestigating a whole trajectory. In [7], it is proposed teter-
to the differences in the kinematic structures of a humanine the distance between the postures of the robot and the
and the robot e.g. differing joints and limb measurementsyuman by exploiting point correspondences between specifie
only in rare cases a one-to-one mapping shows acceptaidénts on both bodies. To infer useful statements concgrnin
performance regarding the functionality as well as the humahe similarity, accurate localization and identificatiohtbe
like appearance of the reproduced movement. In this work, Weabs are required, which makes the use of physical markers
address this problem by applying a postprocessing proeedimevitable. In [9], a similarity measure is introduced, @i
in joint angle space. In two stages, the joint angles, gimeghé only considers the joint angle relations. However, it dismels
MMM format, are optimized concerning the tool center poingtructural differences between human and robot like difter
(TCP) position and the kinematic structure of the robotst-at  limb lengths, which one has to take into account in order to
feasible solution is estimated, which serves as an intlatism preserve the goal of a movement when mapped on the robot.
for an optimization step in the second stage. Following thGombining both, the joint angle configuration and key point
scheme, one obtains a human-like motion on the robot, whderrespondences, for a joint angle configuratog R™ with
preserving its goal-directed characteristics. n joints, we define the similarity measure as follows:



Finding the best initial estimation causes some overhead
A 2 3 9 regarding processing time, but it is necessary to ensutte tha
w2 (¢i" —oi) 32 (" — i) the LM algorithm will provide an optimal solution.
S(O’) —9_ 1=1 : _ 1=1 . (1)
m (2 larm) C. Optimization Problem
with o;, ;" € [0,7] and pr, P’ € [~larm, larm), Whereas — For optimization of a reference joint angle configuration
lorm describes the robots arm length. The reference joint angégyarding the similarity measure, one can use the Levenberg
configuration is denoted by € R", while p € R?® stands for Marquardt algorithm. The algorithm, which was first intro-
the desired TCP position. The current TCP postionan be duced in [18], provides a standard technique for solving-non
determined by applying the forward kinematics of the robdihear least squares problems by iteratively converging to
to the joint angle configuratioar. minimum of function expressed as sum of squares. Combi-
nating the Gauss-Newton and the steepest descent method,

) . ) the algorithm unites the advantages of both methods. Hence,
To obtain a posture, which bears a high resemblance to

_ ng the LM method, a more robust convergence behaviour
one of the demonstrator and at the same time meets all {he_ hieved at points far from a local minimum, while a

mechanical constraints of the robot, the original jointlangg,gier convergence is gained close at a minimum. Due to its
configuration is optimized regarding the similarity me®sas ,;merical stability, the LM method has also become a popular

specified in Eq. 1. An optimal solution is found by applyingq tor solving inverse kinematics problems as demonatrat

a numerical optimization algorithm, namely the Levenbergs; [19]. For our problem, where, given the reference joint

Marquardt (LM). However, the efficiency of most of theangle configurations’, we seek as', which maximizes Eq.
numerical optimization algorithms strongly depends on the

_ L o o "I To interpret Eq. 1 as a function of sum of squares to be
initial estimation of the parameters to be optimized. Aridhi

o " ; ) . minimized, we define a functiog(os) : R® — R™ with
estimation within the neighbourhood of the optimal solatio,, < m as follows:

leads to a high chance that the algorithm converges fast

B. Estimation of an Initial Solution

. . . . . 1
directly towards the optimum without being trapped in local V3. b1
extrema. In this work, an initial estimation is determineohfi ﬁ p1
a preselection of candidate initial joint angle configuras, —L
. R V3-2:larm
which are generated and evaluated by means of the similarity s(o) = L @)

measure. To generate a candidate initial estimatién the ﬁ"_r

reference joint angle configuratian’ computed at time is

mapped into the robot joint angle space and projected on the J%w on
bound constraints: . L . .
o The corresponding optimization problem can be written & th
Cipin 67 <Ci,, following form:
6l =<6t if C;,,, <6t<Ci.. ) .
. subjectto C; ., <6;<C; .. 9
whereC;, . andC; __ denote the lower and upper joint angle

bounds of jointi. If the value ofs! exceeds the given boundswhich is equivalent to the maximization of Eqg. 1. Similar
the joint i is fixed at the closest of the two boundaries. Ao the Gauss-Newton method, in the LM method a Taylor
candidate is obtained by altering each non-fixed joint anfle expansion ofs is performed around-. For a smallp, s can
the mapped configuration by means of a ve&be R™ with be approximated by the following equation:

6t =6t — 671, Thus,s* describes the changes between two

consecutive frames. As a result, a candidate initial estima s(o +p) = s(o)+Jsp (10)
can be described as: where J, denotes the Jacobian of Based on the initial
UZJ’ =6l + a3 (3) 9uessoi,;: , & sequence of estimatios+ p is calculated

_ that converges to a solution of Eq. 9. Therefore, in each
with . . iteration, the optimization problem is reduced to finding.a
a; = {1 it Cipnin <07 < Cia (4) that minimizes||s(6*) — s(o) + Jsp||. For an adequatp the
0 else following condition must hold true:

Bi € {=0;,0,0;} (5) (s(6') = s(a) + Jyp) JT =0 (11)
Givenn joints to control, in the worst casel = 3" candidates

need to be calculated and evaluated. The best initial estima
satisfies the following equation:

Solving the least squares problem of Eq. 11 yields the sought
p. Based on Eq. 11, the LM algorithm solves following slightly
modified equation:

init = S(e7) - [l6" — o’ 6
oinit = argmax §(o”) —l&" ~ o7 ©) Tu+ JTJp = JTs(o + p) (12)



which includes a dampening term. If reduction of S’ B. Markerless Motion Capture Data
concerningp can be accomplished, then for the next iteration For the online reproduction and imitation of the observed

o := o + p holds and a smaller value is assigned;ido  pyman motion, the stereo camera system of ARMAR-11b was
achieve faster convergence. If reduction fajisjs set to a ygeq to capture the upper body movements with the method
higher value, which slows down the convergence. Furtheemogescribed in Section I1I-A. Using the onboard cameras alow
u prevents meeting singularites in the Jacobian. To obtains perform a more natural way of imitation, but limits the
fea_sible joint angle configuration: after each iterationis  number of DoF, which can be measured, since the system is
projected onto the bound constraints according to Eq. 2. Thgyre sensitive to noise and occlusion. A total number ofteigh
algorithm terminates ib’(o") < e, or ||p[| < €2 , and one can poF s used, four for each arm, three DoF for the shouldet join
seto’ = o. More practical details on the algorithm can bgng one for elbow flexion. The under arm rotation, the wrist,
found in [20]. and finger movements cannot be recognized with this system.
The online reproduction was tested with simple movements
) ) _ o like reaching, waiving, and approaching certain postusesie

_In this section, results of_ experiments of the imitationtsys  sample images showing the online imitation of human motion
with the two human motion capture systems introduced ¥y pe seen Fig. 7. Similar to the results achieved with the
Section_lll are dempnstrated._ The a_pproach was evaluated\Ryon system, applying the proposed motion imitation syste
comparison to an inverse kinematics method based on {Bggs to a tradeoff between the accuracy of the TCP position
Jacobian transpose and a one-to-one mapping of the captiygd the joint angle error. However, due to the reduced number
joint angles onto the robot. The results were generated Wiimeasured joints, one obtains results with a mean joinieang
the humanoid robot platform ARMAR-IIIb in real-world ase(ror of 2.7 degrees for each DoF, as shown in the left plot
well as in simulation. of Fig. 6, and a maximum deviation of 65 mm in the TCP
position of the right arm, as shown in the center plot of Fig.

6. The reason for the relatively large deviation is that the

The hardware setup which was used to capture the humgflized vision-based motion capture system is not yet bipa
motion consists of ten Vicon cameras. Since using a markgémeasuring the torso rotation. This lack information &
based approach allows to capture a large set of degrees,Qfecreased flexibility throughout the reproduction, assgm
freedom, the number of active joint angle adds up to 24 Dofre hip joint angles to be fixed. One solution would be to
ten for each arm, three DoF for the head and one DoF for tnﬁ:orporate the hip rotation into the optimization procedu

hip rotation. Concerning the arm, three DoF are assigned;fdorder to allow for the missing flexibility even if the torso
the shoulder rotation, two for the elbow, two for the wristlan,gtation cannot be measured.

three DoF describe the finger movements. The experiments
focused on the reproduction of actions in a kitchen scenario VIl. CONCLUSIONS
The data was generated within the work of [21]. The kitchen |n this work, we have presented a system for motion

actions included movements like stirring, cutting with af&n imitation with the goal of attaining a human-like motion tbu
sweeping, grinding coffee beans, grating, and pouring. &ig without loss of functionality. Based on the Master Motor Map
shows screenshots of cutting sequence, which was reprddugesystem was developed, which is capable of incorporating
on ARMAR in simulation. The results using the optimizationarious human motion capture techniques. In particulavait

as proposed in this work on marker-based captured motiggalt with the marker-based Vicon system and a markerless
data are illustrated in Fig. 5. The left plot of Fig. 5 shows thyision-based approach. Their output is transformed to the
joint angle error of a reproduced joint angle configuration ostructure of the robot platform ARMAR-IIIb by using a non-
the robot and the reference configuration. Due to redundangyear optimization technique in form of the LM algorithm. A
the inverse kinematics method produces results with highgstural way of motion imitation is demonstrated by applying
error, while a one-to-one mapping naturally leads to a maimthe system successfully for the online reproduction of olesk
error. In the center plot of Fig. 5, by the right arm TCP, thehotion. Furthermore, with the system, reproduction of com-
deviation of the TCP positioning is illustrated. Here, giveplex kitchen actions was achieved based on high-resolution
a TCP destination, the inverse kinematics method leads\fgon data. In the near future, the involvement of objects is
an exact positioning of the TCP, while using the one-to-ofjffanned to enable imitation of manipulation tasks. The pro-
mapping the destinated position is not reached. In bottsploposed system provides a solid basis for further studiesrtisva

it is shown, that the application of the optimization proseel human motion analysis. By incorporating machine learning

as proposed in Section V, a tradeoff is attained, which tesuethods, the system can be extended imitation learning.task
in a quite accurate TCP positioning with an maximum error

of 25 mm and an acceptable mean joint angle error of 2.0 VIII. A CKNOWLEDGMENT

degrees for each DoF. One of the most crucial joints which The work described in this paper was partially conducted
has a huge impact on the style of a trajectory is the shouldeithin the EU Cognitive Systems projects GRASP (FP7-
joint. Therefore, the right plot of Fig. 5 shows the joint g 215821) and PACO-PLUS (FP6-027657) funded by the Eu-
error for this joint in particular. ropean Commission.

VI. EXPERIMENTAL RESULTS

A. Marker-based Motion Capture Data
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Fig. 7. Image samples of the online imitation of human motigrthe humanoid ARMAR-IIIb.

Fig. 8. Image sequence of a cutting trajectory captured byMihon system and the reproduction in the ARMAR Il simudati



