Grasp Recognition and Mapping on Humanoid Robots

Martin Do, Javier Romero, Hedvig Kjellstrom, Pedram Azad,
Tamim Asfour, Danica Kragic, Riidiger Dillmann

Abstract— In this paper, we present a system for vision-based
grasp recognition, mapping and execution on a humanoid robot
to provide an intuitive and natural communication channel
between humans and humanoids. This channel enables a human
user to teach a robot how to grasp an object. The system com-
prises three components: human upper body motion capture
system which provides the approaching direction towards an
object, hand pose estimation and grasp recognition system,
which provides the grasp type performed by the human as
well as a grasp mapping and execution system for grasp
reproduction on a humanoid robot with five-fingered hands.
All three components are real-time and markerless. Once an
object is reached, the hand posture is estimated, including
hand orientation and grasp type. For the execution on a
robot, hand posture and approach movement are mapped and
optimized according to the kinematic limitations of the robot.
Experimental results are performed on the humanoid robot
ARMAR-IIIb.

I. INTRODUCTION

A humanoid robot’s capability of autonomously adapting
and acting in new and unstructured environments is very
limited. In the majority of cases, a skilled and experienced
user is needed for the programming in order to adapt an
existing action to a new situation. To enable teaching of
a robot by non-expert users, a natural intuitive interface
is needed. Since imitation presents an obvious solution for
tackling this problem, this field has received great interest in
humanoid robotics. The benefit of exploiting demonstration
is clearly revealed in [1], where an anthropomorphic arm is
capable of balancing a pole in the first trial after observing
a human.

A challenging problem where a robot could greatly benefit
from a human demonstration is an object grasping task. Such
a task involves the control of several degrees of freedom,
visual servoing, tactile feedback, etc., turning it to a highly
complex task. About the grasp action, a grasp can be divided
in two stages: an approach stage and final grasp stage. Due
to high object variety concerning shape, size, and mass,
determining an adequate approach movement and selecting
a suitable grasp type increase the chances that an object is
successfully grasped. Instead of telling the robot explicitly
which approach movement and which grasp type shall be
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used, it is desirable to have a system which enables the robot
to observe a human during grasp execution and to imitate
the demonstration. For the implementation of such a system,
various problems have to be tackled, like observation of the
human performing the grasp, the mapping of the grasp, and
the final execution on the robot.

An important part of the grasp imitation system is the
block in charge of getting information about the arm and
hand movements. In order to provide this information, the
approach movement of the arm as well as the hand pose have
to be recognized. Aiming towards ease of use, markerless
systems seem to be the most obvious solution for the
observation of human grasps since, besides vision sensors,
additional equipment is avoided and the preparation effort
is kept to a minimum. However, markerless 3D motion
capturing and reconstruction of hand pose based on image
data are extremely difficult problems due to unstructured
environments, the large self-occlusion, high dimensionality
and non-linear motion of the arm and the fingers.

Besides the perception modules, another crucial part of an
imitation system consists of the mapping and the execution of
an observed human grasp on a humanoid robot. Due to severe
constraints of mechanical systems and differences between
the human and the robot’s embodiment, a large number of
requirements arise, which are difficult to be satisfied at once.
Towards enabling a humanoid to imitate a human grasp,
our system integrates several subsystems and methods. First,
using a stereo camera setup human observation is initiated
by capturing upper body motion and scanning the scene for
known objects to attain information on the approach stage.
Subsequently, grasp classification and hand orientation are
provided through the estimation of the full hand pose in a
non-parametric fashion. Finally, the motion data is gathered
and mapped onto the robot for execution. The mapping is
accomplished via a standardized interface and the ensuing
execution is achieved by means of non-linear optimization.

II. RELATED WORK

Several approaches have been made to create a markerless
human motion capture system for humanoid robots. Espe-
cially, image-based approaches have been a major focus of
this field. These approaches are either search-based ([2], [3]),
utilize an optimization approach based on 2D-3D correspon-
dences [4], [5], or are based on particle filtering. In [6], it
was shown that human motion can be successfully tracked
with particle filtering, using three cameras positioned around
the scene of interest.



Towards imitation of human motion by a robot, the map-
ping and execution of motion capture data are issues whereas
possible solutions pursue strategies which either make use of
artificial markers and landmarks or which are based on the
transfer and post-processing of joint angles. Marker-based
approaches are presented in [7] and [8] where methods based
on minimization of the mismatch between robot and human
markers are introduced. However, in [9] and [10], joint angles
of a demonstrators posture are determined and transferred to
the robot for execution. Due to joint and velocity constraints,
a scaling and transformation process must be performed in
order to obtain a feasible joint angle configuration for the
robot.

Analysis of human hand pose for the purpose of learning
by demonstration (LbD), see [11] has been thoroughly inves-
tigated, almost exclusively with the help of markers and/or
3D sensors attached to the human hand. In the work by
Oztop [12] motion capture, color segmentation with artifi-
cially colored hands, and active-marker capture systems were
compared. Magnetic gloves have also been used extensively
because of their accuracy [13]. Another input source for LbD
systems is the passive joint measurements of the robot itself
[14]. However, the methods shown above all use invasive
devices. We envision a LbD scenario where the teaching
process can be initiated without calibration and where the
robot-user interaction is as natural as possible. For this
reason, we want to reconstruct the hand posture in a visual
markerless fashion.

Methods for hand pose estimation that are not constrained
to a limited set of poses can largely be classified into
two groups [15]: I) model based tracking and II) single
frame pose estimation. Methods of type I) usually employ
generative articulated models [16], [17], [18], [19]. Since the
state space of a human hand is extremely high-dimensional,
they are generally very computationally demanding, which
currently makes this approach intractable for a robotics
application. Methods of type II) are usually non-parametric
[20], [21]. They are less computationally demanding and
more suited for a real-time system, but also more brittle
and sensitive to image noise, since there is no averaging
over time. The method presented here falls into the second
approach. However, it takes temporal continuity into account
and it can be used for online real-time reconstruction.

III. GRASP OBSERVATION

As mentioned before, we assume that a grasp consists of
an approaching stage and a final grasp stage. The observation
of the whole grasping process involves recognition of the
grasp type, estimation of the approach arm movement and
object detection. Following the target of having an intuitive
and natural programming interface for robots, we use a
markerless human motion capture system for the observation
of human motion using the stereo vision system of the robot’s
head [22]. The head has two eyes and each eye is equipped
with two cameras, one with a wide-angle lens for peripheral
vision and one with a narrow-angle lens for foveal vision.

First, the robot recognizes known objects in the scene and
starts capturing human motion. The hand pose estimation
system is triggered as soon as the human hand is in the
vicinity of the object. To obtain a close-up of the hand, the
foveal cameras are used. The grasp observation is finished
with the classification of the observed human grasp.

A. Hand Pose Estimation

The input to the method is a sequence [I;],t =1,...,n
of monocular images of the human hand [21].

In each frame I, the hand is segmented using skin color
segmentation based on color thresholding in HSV space. The
result is a segmented hand image H;.

The shape information contained in H is represented with
a Histogram of Oriented Gradients (HOG). This feature has
been frequently used for representation of human and hand
shape [23], [24], [25]. It has the advantage of being robust
to small differences in spatial location and proportions of
the depicted hand, while capturing the shape information
effectively.

1) Non-parametric Pose Reconstruction: In this section,
we omit the time index and regard the problem of recon-
structing a single pose p from a single HOG x.

Our goal is to obtain the grasp class and orientation of the
human hand. We can infer this information from the pose
p of the hand, since all this information is stored for each
entry of the database. Therefore, we want to find the mapping
p = M(x), where p is the estimated 31D hand pose in terms
of global orientation (lower arm yaw, pitch, roll) and joint
angles (3 wrist joint angles, 5 joint angles per finger) , and x
is the observed 512D HOG representation of the hand view,
described in Section III-A.

The mapping function M can be expected to be highly
non-linear in the HOG space, with large discontinuities. Fol-
lowing [21], M is therefore represented non-parametrically,
i.e., as a database of example tuples {(x;,p;)},i € [1, N].
Due to the high dimensionality of both the HOG space
(512D) and the state space (hereafter denoted JOINT space,
31D), the database needs to be of a considerable size to cover
all hand poses to be expected; in our current implementation,
N = 90000. This has two implications for our mapping
method, as outlined in the subsections below.

2) Generation of Database Examples: Generating a
database of 10° examples from real images is intractable.
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Fig. 1. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ||p — p2|| < ||p — p1|| in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ||x —x1]| <
|| x —x2||. Note that the object in the hand just contributes with occlusion of
the hand in HOG extraction, as it is then colored uniformly with background
color.



Instead, we used the graphics software Poser 7 to generate
synthetic views HY™ of different poses. The database
examples are chosen as frames from short sequences of
different grasp types from different view points, different
grasped objects, and different illuminations.

The grasp types are selected according to the taxonomy
developed in the GRASP project!, which integrates the
Cutkosky [26], Kamakura [27], and Kang [28] taxonomies.
The whole database is also available at the same place.

From each example view H™ the tuple (x;,p;) is
extracted, where x; is generated from ijnth as described in
Section III-A, and p; is the pose used to generate the view
HY™™ in Poser 7.

3) Approximate Nearest Neighbor Extraction: Given an
observed HOG x, the goal is to find an estimated pose
p = M(x). With the non-parametric mapping approach, the
mapping task p = M(x) is one of searching the database
for examples (x;, p;) such that x; ~ x. More formally, X},
the set of k nearest neighbors to x in terms of Euclidean
distance in HOG space, d; = ||x — x;|| are retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [29] is employed. LSH is a
method for efficient e-nearest neighbor (¢NN) search, i.e. the
problem of finding a neighbor x.nN for a query x such that

[x — xenn|| < (14 €)[Jx — xnn| (D

where xnn is the true nearest neighbor of x. The com-
putational complexity of eNN retrieval with LSH [29] is
O(DN ﬁ) which gives sublinear performance for any € >
0.

4) The Mapping M is Ambiguous: The database retrieval
described above constitutes an approximation to the true
mapping p = M (x), robust to singularities and disconti-
nuities in the mapping function M.

However, it can be shown empirically that M is inherently
ambiguous (one-to-many); substantially different poses p can
give rise to the similar HOGs x [23]. An example of this is
shown in Figure 1.

Thus, the true pose p can not be fully estimated from a
single HOG x (using any regression or mapping method);
additional information is needed. In the next section, we de-
scribe how temporal continuity assumptions can be employed
to disambiguate the mapping from HOG to hand pose.

5) Time Continuity Enforcement in JOINT Space: We
now describe how temporal smoothness in hand motion can
be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [p:],t = 1,...,n,
that have given rise to a sequence of views, represented
as HOGs [x:],t = 1,...,n. Since the mapping M is
ambiguous, the k nearest neighbors to x; in the database,
i.e. the members of the set X, are all similar to x; but
not necessarily corresponding to hand poses similar to p;.
An important implication of this is that a sequence of hand
poses [p:],t = 1,...,n does not necessarily give rise to a
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Fig. 2. Grasp Classification with continuity enforcement in JOINT space

sequence of HOGs [x;],t = 1,...,n continuous in the HOG
space.

However, due to the physics of the human body, the speed
of the hand articulation change is limited. Thus, the sequence
of hand poses [p¢],t = 1,...,n, i.e. the hidden variables,
display a certain continuity in the JOINT space. This is
illustrated in Figure 2.

The hand pose recognition for a certain frame ¢ is therefore
divided into two stages; I) retrieval of a set of k nearest
neighbors X} using single frame non-parametric mapping,
as described in Section III-A.1; IT) weighting of the members
of X, according to their time continuity in the JOINT space.

Let Pj, be the set of poses corresponding to the kNN set
X}, found in stage I). Moreover, let p;_1 be the estimated
pose in the previous time step. In stage II), the members
p;,j € [1,k] of Py are weighted as

_lpj—Pr—1ll
wj=e 202 . )

where o2 is the variance of the distance from each entry pose
p; to the previous estimated pose p;_;.

The pose estimate at time ¢ is computed as the weighted
mean of Py:

k k
B =D _wip))/O_wy) - 3)
j=1 j=1

The grasp class estimation G; is obtained through a
majority voting process within the IV, poses with the highest
weight w; (for our experiments N, = 15). G, is then
smoothed temporally taking the majority vote in a temporal
window of Ny frames (Ny = 10 in our experiments). This



can be seen in Figure 2. The whole system runs at 10 Hz on
a 1.8 GHz single core CPU.

B. Object Recognition

For the robust recognition and accurate 6D pose estimation
of single-colored objects, in our previous work, we have
developed a model-based approach based on a combination
of stereo triangulation, matching of global object views and
online projection of a 3D model of the object [30]. The
requirement for the approach is global segmentation of the
objects, which is accomplished by color segmentation. For
training, a 3D model of the object is used to generate views
with different object orientations in simulation. Each view is
stored along with its corresponding orientation. For recog-
nition, each region candidate obtained by the segmentation
routine is matched against the database. An initial orientation
estimate is given by the stored orientation information with
the matched view. An initial position estimate is given by
the stereo triangulation result of the segmented regions in
the left and right camera image. The triangulation result of
the centroids depends on the view of the object and thus
cannot serve as a constant reference point. In order to solve
these problems, a pose correction algorithm is applied, which
make use of online projection of the 3D model. This pose
correction algorithm is an iterative procedure, which in each
iteration corrects the position vector by computing the tri-
angulation error in simulation and correcting the orientation
estimate on the basis of the updated position estimate.

C. Markerless Motion Capture

In the following, our real-time stereo-based human mo-
tion capture system presented in [31] will be summarized
briefly. The input to the system is a stereo color image
sequence, captured with the built-in wide-angle stereo pair
of the humanoid robot ARMAR-IIIb, which can be seen
in Figure 5. The input images are preprocessed, generating
output for an edge cue and a so-called distance cue, as
introduced in [32]. The image processing pipeline for this
purpose is illustrated in Figure 3. Based on the output of
the image processing pipeline, a particle filter is used for
tracking the movements in joint angle space. For tracking
the movements, a 3D upper body model with 14 DoF (6
DoF for the base transformation, 2-3 for the shoulders, and
2-1 for the elbows) consisting of rigid body parts is used,
which provides a simplified description of the kinematic
structure of the human upper body. The model configuration
is determined by the body properties like the limbs length of
the observed human subject. The core of the particle filter
is the likelihood function that evaluates how well a given
model configuration matches the current observations, i.e.
stereo image pair. For this purpose, an edge cue compares
the projected model contours to the edges in the image. On
the basis of an additional 3D hand/head tracker, the distance
cue evaluates the distance between the measured positions
and the corresponding positions inferred by the forward
kinematics of the model. Various extensions are necessary
for robust real-time application such as a prioritized fusion
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Fig. 3. Illustration of the image processing pipeline.

method, adaptive shoulder positions, and the incorporation of
the solutions of the redundant arm kinematics. The system
is capable of online tracking of upper body movements with
a frame rate of 15 Hz on a 3 GHz single core CPU. Details
are given in [31].

IV. GRASP MAPPING

Before the execution on the robot, the approach movement
in the form of joint angle configurations and the recognized
grasp type are mapped onto the robot. In order to map
motion onto the robot, we proposed in our previous work
(see [33]) the Master Motor Map (MMM), a standardized
interface which features a high level of flexibility and
compatibility, since it allows mapping from various motion
capture systems to different robot embodiments. The MMM
provides a reference kinematic model of the human body
by defining the maximum number of DoF, currently 58, that
can be used by a human motion capture module and a robot.
Trajectories in the MMM file format can be represented in
joint angle space as well as in Cartesian space. Concerning
movements in Cartesian space, in order to enable grasping
and manipulation tasks, the MMM provides mapping of the
desired 6D pose and the grasp type on the robot’s end
effector. A proper connection via the MMM of a motion
capture module to a robot requires the implementation of a
conversion module which transforms module specific data
into the MMM file format and vice versa for overcoming
different Euler conventions, active joint sets and orders of
the joint angle values between the modules. As depicted in
Figure 4, in the current system one conversion module has
been implemented for each human motion capture system,
converting the motion capture data to the MMM format. A
third conversion module is implemented for mapping the
MMM data to the kinematics of ARMAR-IIIb.

Along with the approach movement in the form of joint
angle values the grasp type and the estimated hand orien-
tation are passed from the hand pose estimation system to
the robot through the MMM interface. According this data,
from a set of preimplemented grasp the corresponding one is
selected to be executed. To complete the grasp mapping, the
grasp type to be performed is adjusted regarding the extent
of the object shape. For this purpose, a rudimentary grasp
type adjustment is implemented, which projects the object
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shape onto the thumbs position such that the thumbs tip lies
on the shapes margin. The aperture of the fingers is scaled
in a way that the positions of the remaining finger tips also
approximately meet the margin of the shape. This method
works on objects with simple shape properties.

A. Grasp Execution

The grasp reproduction of ARMAR-IIIb is performed in
three different stages. The first stage describes the approach
movement of the end effector towards the object based on
the observed movement, while in the second stage the end
effector is placed at the final grasp pose. The reproduction
concludes with the execution of the recognized grasp type.
Regarding the approach stage, by mapping these joint angle
movements onto the robot, through forward kinematics one
obtains a trajectory of the TCP in Cartesian space. The
resulting trajectory is not sufficient for a goal-directed repro-
duction due to differences in the kinematic structure between
the embodiments of the robot and a human e.g. mechanical
joint constraints, differing joints and limb measurements.
Therefore, the TCP trajectory for movements such as grasp-
ing is stretched and directed towards the object position to
be reached. In order to attain a goal-directed reproduction,
which additionally should feature a high similarity to the
demonstrated human movement, in each frame, joint angles
as well as desired TCP position of the modified trajectory
have to be considered during execution. In [34], we devel-
oped an approach, which supports reproduction of observed
human motion on the robot using non-linear optimization
methods. In order to formulate an optimization problem
which comprises displacements in Cartesian space regarding
the TCP position as well as in joint angle space, a similarity
measure is defined as follows:

n 3

Ly (64 —a) 52 (v — )’
o i=1 k=1

S(O') =2 772 (2 . larm)Q

with n representing the number of joints, oy,d;" € [0, 7]
and pi,Pr’ € [~larm,larm), Whereas lo.,, describes the
robot’s arm length. The reference joint angle configuration
is denoted by & € R™, while p € R? stands for the desired
TCP position. The current TCP position p can be determined
by applying the forward kinematics of the robot to the joint
angle configuration o. Based on Equation 4 and the joint
constraints {(Chnin, Crmaz)} of a robot with n joints, one
obtains following constrained optimization problem:

min S’'(o) =2 — S(o) (5)
subjectto  C; . <6, <C; . (6)

For solving Equation 5, we apply the Levenberg-Marquardt
algorithm, since it features numerical stability and more ro-
bust convergence compared to other optimization algorithms
such as the Gauss-Newton and the steepest descent method.
Following this optimization approach a trade-off is attained,
which on the one hand results in an accurate TCP positioning
with small displacement error while it provides on the other
hand a feasible robot joint angle configuration resembling
the observed human configuration. This way goal-directed
imitation of the approach movement is achieved. For further
details, the reader is referred to [34]. For the execution
of the final grasp phase, due to errors and inaccuracies
originating from the object localization and the robot’s
mechanical elements, a displacement error arises between
the TCP and the object that has to be diminished. To achieve
exact alignment of the end effector and the robot, we make
use of visual servoing methods as presented in [35]. Within
this approach the hand and object are tracked. The resulting
distance between both is reduced and the hand orientation is
controlled. The hand orientation estimate coming from the
grasp recognition module is used to determine if the grasp
should be executed from the top or from the side. Therefore,
the hand is placed over the object if the palm orientation was
similar to the table plane, or next to the object otherwise.

min

V. EXPERIMENTS
A. Experimental Setup

The humanoid platform ARMAR-IIIb, a copy the hu-
manoid robot ARMAR-IIIa [36], serves as the experimental
platform in this work. From the kinematics point of view, the
robot consists of seven subsystems: head, left arm, right arm,
left hand, right hand, torso, and a mobile platform. The head
has seven DoF and is equipped with two eyes, which have
a common tilt and independent pan. Each eye is equipped
with two digital color cameras, one with a wide-angle lens
for peripheral vision and one with a narrow-angle lens for
foveal vision. The upper body of the robot provides 33 DoF:
2.7 DoF for the arms and three DoF for the torso. The arms
are designed in an anthropomorphic way: three DoF for each
shoulder, two DoF in each elbow and two DoF in each wrist.
Each arm is equipped with a five-fingered hand with eight
DoF. The locomotion of the robot is realized using a wheel-
based holonomic platform.

The proposed approach was integrated on the humanoid
plattorm ARMAR-IIIb and was successfully applied. For



Fig. 5. Left: The humanoid robot ARMAR-IIIb. Right: Position-controlled
right hand with 8 DoF.

the experiments, objects were used which can be easily
identified such as single-colored cups. The experimental
setup stipulates that demonstration of the grasp is performed
in front of the robot. Observation is initiated by scanning the
scene for known objects. Once an object is found, tracking of
the human upper body is triggered leading to the capturing
process of movements in the approach stage. This process
is finished once the hand is positioned within a tolerated
distance to a specific object. At this point, observation is
switched to the hand pose estimation whereby its classifica-
tion and the outcoming orientation complete the motion data
of the grasp. As described in Section IV, the data is mapped
onto robot, optimized to its embodiment and executed. In the
execution phase, the robot searches for the same object which
was grasped in the demonstration and approaches it. Based
on the classification of the grasp type, an adequate instance
is selected from the set of implemented grasp on the robot
which is modified to the objects appearance. The hand pose
recognition system was running on an external computer,
while the rest of the system was running on ARMAR-IIIb.
The communication between the two systems was performed
through UDP sockets. It is possible to run the whole system
on the robot, but this setup was more preferable for debug-
ging purposes. Two sets of experiments were performed: in
the first one, the whole system (grasp observation, mapping
and execution) was tested with a reduced set of grasps:
power grasp from top, power grasp from side, and pinch
grasp(see Figure 6). In the second one, the set of grasps
was extended to five of them (power sphere, prismatic wrap,
parallel extension, tripod, and pinch). However, the execution
of the grasp was reduced to the hand pose, keeping the arm
still (see Figure 7).

B. Experimental Results

As depicted in Figures 6 and 7 the robot successfully
imitated the demonstrated grasp including approach and
grasp type. Since a non-linear optimization method is ap-
plied during approaching, we attained a trade-off between
the similarity of the reproduced movement concerning the
demonstration and accuracy in terms of positioning of the
end effector regarding goal-directed tasks. Furthermore, the
applied method provided a unique solution in terms of joint
angles, which standard inverse kinematics methods fail to

do due to singularities and redundancies. Nevertheless, in the
approach phase, we experienced a displacement error of max
65mm caused by kinematic inaccuracies which varies de-
pending on the cups distance regarding the end effector. The
displacement could be recovered by using visual servoing.
In order to test the grasp classification module, each grasp
was executed 20 times for the Experiment 2. The results
are shown in Table I. An overall classification accuracy
of 72% was achieved, clearly over the human baseline for
grasp recognition with similar grasps [21], with four out of
five grasp types with accuracies over 80%. The differences
between human model and synthetic had a stronger effect
in the parallel extension grasp, lowering the accuracy for
that particular grasp. Results of the grasp recognition, map-
ping and execution on the humanoids robot ARMAR-IIIb
are shown in the accompanying video submission, which
is also available under wwwiaim.ira.uka.de/users/
do/GraspRecognitionDivx.avi.

Correct

Grasp Type Tllustration Classification

Rate
Power Sphere ‘ 80 %
Prismatic Wrap # 95 %
Parallel extension ‘ 50 %
Tripod ‘ 85 %
Pinch ’V 80 %

TABLE I
GRASP TYPE CLASSIFICATION RESULTS.

VI. CONCLUSIONS

In this paper, we presented a system for grasp recognition,
mapping and execution on a humanoid robot. Human grasp-
ing activities are captured using markerless motion capture
system and mapped to the humanoid robot ARMAR-IIIb.
Human upper body tracking, object tracking and hand pose
estimation techniques are applied to perceive human object
grasping movements. The recognized grasps are mapped and
executed on a humanoid robot with a five-fingered hand.
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