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Abstract— In this paper, we present a grasp representation in
task space exploiting position information of the fingertips. We
propose a new way for grasp representation in the task space,
which provides a suitable basis for grasp imitation learning.
Inspired by neuroscientific findings, finger movement synergies
in the task space together with fingertip positions are used
to derive a parametric low-dimensional grasp representation.
Taking into account correlating finger movements, we describe
grasps using a system of virtual springs to connect the fingers,
where different grasp types are defined by parameterizing the
spring constants. Based on such continuous parameterization,
all instantiation of grasp types and all hand preshapes during
a grasping action (reach, preshape, enclose, open) can be
represented. We present experimental results, in which the
spring constants are merely estimated from fingertip motion
tracking using a stereo camera setup of a humanoid robot. The
results show that the generated grasps based on the proposed
representation are similar to the observed grasps.

I. INTRODUCTION

The acquisition of novel grasping skills plays an essential

role in enabling humanoid robots to fully interact with the

environment and the human. Considering the variety of

objects and the different ways that an object can be dealt

with, grasping strategies have to be developed which go

beyond simple closure grasps towards a complete projection

of the numerous possible grasps associated with each object.

In order to bootstrap this process, imitation learning provides

a fast alternative in terms of acquisition of new skills.

Learning from human demonstration features the possibility

of generating a representation of a demonstrated action which

encodes human-likeness and subtle characteristics such as

constraints which are satisfied during the execution of a

specific task by a human.

Therefore, an essential issue in imitation learning that

has to be addressed, is the question of what features have

to be stored and processed and how, in order to obtain a

generalized representation, which can be adapted and applied

to new objects and situations. This issue becomes even more

evident, when we look at the grasp problem for a robot hand

where the motion of a highly complex system with several

degrees of freedom (DoF) has to be controlled.

In [1], an early attempt of a generalized grasp repre-

sentation in joint space is given by the concept of the

grasp taxonomy which describes the assignment of grasp

hand postures to a finite number of classes. Based on this

grasp taxonomy [2] provides an extension which additionally
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incorporates a number of hand posture patterns common in a

manufacturing environment. This concept suggests that given

a class, represented by an exemplary posture, for a specific

object, an instance in the vicinity of the posture can be found

which forms a good grasp. In previous works such as [3]

and [4] grasp taxonomies are applied to grasp synthesis.

However, due to large number of DoF being involved, the

configuration space remains huge.

Neuroscientific studies (see [5]) demonstrated that a lesser

number of DoF needs to be actively controlled to cover the

range of possible human hand postures during daily grasping

activities, due to consistent covariations between the finger

joints, known as postural hand synergies. In previous works

([6],[7],[8]), this concept has been applied to control the

entire hand by a lower dimensional set of base postures

commonly extracted by applying dimensionality reduction

algorithms such as Principal Component Analysis. A similar

approach is proposed in [9] where a grasp representation is

generated in the form of manipulation manifolds consisting

of hand postures and a mapping from joint space onto

manipulation parameter in task space.

Nevertheless, these approaches operate in joint angle

space, respectively in its projection to a lower dimensional

subspace, which features unfavorable characteristics in terms

of imitation learning through the observation by a humanoid

robot. One major issue lies in the high complexity of observ-

ing and tracking human hands in joint space. Vision-based

tracking algorithms which can be used with a stereo camera

setup of a humanoid head do not provide the necessary

performance and accuracy, while highly accurate motion

capture systems involve high costs and time-consuming

operation. Furthermore, the question arises how and whether

the continuous reach movement in task space can be prop-

erly aligned with discrete hand postures in joint space. As

stated in [10] and [11], the preshape and the enclose phase,

respectively the final grasp phase, are accompanied by the

reaching movement. Therefore, from the kinematic point of

view, it seems to be reasonable to treat the whole grasping

process as a single unit in which the three phases persist in

permanent correlation to each other. Hence, attaining human-

likeness is contradictory to the decoupled processing of the

preshape, reach, and enclose phase. Ordinary task space

representations (see [12], [13]) considering merely contact

points and fingertip positions do not address this issue, while

representations in the form of separate finger trajectories

neglect correlating finger movements.

Hence, this work proposes a task space representation

which incorporates synergies between the fingers by means
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Fig. 1. Visualization of the bodies representing the fingertips. The virtual
springs are visualized in black and denoted by the corresponding spring
constant ki j . VF describes the virtual finger while thumb (T), index (I),
middle (M), ring (R) and pinkie (P) are indexed with 0, 1, 2, 3, 4.

of mass-spring-damper systems whose parameters form the

representation of a grasp. Furthermore, we will show that this

representation can be an initial building block for a grasp

imitation learning framework which allows the parameter

estimation from human observation, mapping to a humanoid

platform, and the execution by reaching and grasping.

The paper is organized as follows. Section II describes the

proposed representation of a grasp consisting of the model of

the fingertip motion and the reach movement. In Section III,

the experimental setup is explained containing a description

of the humanoid platform, the observation mechanism and

mapping to the robot platform. Finally, experimental results

are given in IV. In conclusions, the work is summarized and

notes to future works are given.

II. REPRESENTATION OF A GRASP

A. Concept

In this work, we suggest a representation which exploits

synergies in task space by exploring and modulating fingertip

movements during the grasp process. To establish synergies,

one has to ensure that the trajectory of each fingertip is

influenced by the motion of the remaining fingers, especially

the neighboring ones. To model these relationships, ordinary

mass-spring-damper systems are introduced as virtual springs

between the fingertips as depicted in Fig. 1. The motion at

time t of finger i at position pi ∈R
dim connected to a finger j

at position pj ∈R
dim via a virtual spring can be inferred from

following second order system of differential equations:

ẍij(t) = −
ki j

mi

xij(t)−
d

mi

ẋij(t), (1)

with

xij(t) =
pi −pj

‖pi −pj‖
(‖pi −pj‖− li j), (2)

describing the displacement concerning the equilibrium

length li j along the spring direction and ẋij(t) and ẍij(t)
representing the corresponding velocity and acceleration. mi

denotes the mass of the physical body which represents

the fingertip i while ki j denotes the spring constant and d

the damping constant. Auxiliary springs, which link each

finger to its supposed contact position ci are added to the

system reducing oscillations in order to maintain stability

and to retain the system centered around the contact points.

The forces of each auxiliary spring can be determined by

following equation:

ẍci
(t) = −kcxci

(t)−dẋci
(t), (3)

where xci
(t) is obtained by replacing pj with ci in Eq. 2. kc

is constant and holds the same value for all auxiliary springs.

In order to grasp an object, we desire a smooth, simultaneous

movement of all finger towards their corresponding contact

points. According to neuroscientific studies (see [14]), during

the grasp process humans tend to focus on a mainly fixed

spot on the object surface which corresponds to the thumb

contact position. Therefore, the thumb is assumed to lead the

reaching movement of the end effector towards the object.

Following a concept introduced in [15], the remaining fingers

form the virtual finger whose forces are supposed to build

up an opposition force to the force exerted by the thumb

in order to achieve a stable grasp. Based on these findings,

to attain balanced, simultaneous finger movements, a central

force fcen(t) is applied on the entire system, which exerts a

force fi,ext(t) on each auxiliary spring resulting in:

fi,ext(t) =







fcen(t) , i = 1
(

∑
N
i=2 ‖xci

(t)‖

(N−1)‖xc1
(t)‖

)2

fcen(t) ,else,
(4)

with finger i = 1 indexing the thumb. For the description

of the entire system, we introduce a connection matrix K

with K(i, j) = ki j and a damping matrix D with D(i, j) = di j

where ki j > 0, di j = d if two fingers are connected by virtual

spring, and ki j = 0, di j = 0 otherwise. Furthermore, a vector

c is introduced indicating whether a finger is involved in a

grasp by setting c(i) = 1, and c(i) = 0 otherwise. To obtain

the complete equation for the motion of the body i, Eq. 3 and

Eq. 4 are added to Eq. 1 which leads to following equation:

ẍi(t) = −Kxij(t)−Dẋij(t)+ cT(ẍci
(t)+ fi,ext(t)). (5)

By solving Eq. 5 one obtains the displacements xi(t) by

which the position pi is updated. Due to stability reasons

the implicit fourth-order Runge-Kutta method is used as a

solver.

In case contact points are not available, the proposed

system can be applied on simple shaped objects by modifying

the xci
(t). Replacing each contact point with the object center

co and introducing the mean distance d̄({ps},co) between

relevant surface points {ps} and co as equilibrium length

one obtains:

x̄ci
(t) =

pi − co

‖pi − co‖
(‖pi − co‖− d̄({ps},co)). (6)

Applying Eq. 6 to Eq. 5 instead of Eq. 3 leads to the desired

system equations. Relevant surface points can be extracted

e. g. from a silhouette which one obtains when intersecting
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Fig. 2. Blue line, starting from positive, describes the acceleration for a
reaching movement towards the object. The red line is the derived force
trajectory. Left: Grasp from above the object. Right: Grasp from the side of
the object.

a plane orthogonal to the reach direction of the end effector

with a volumetric object representation.

Most of the parameters within the system are assumed to

be constant or can be calculated except for the central force

fcen(t) whereas fcen(t) plays a crucial role in the modulation

of the system. For fcen(t) < 0 finger movements are generated

which lead the fingertips away from the object whereas

this process can be considered as the preshaping of the

hand. The enclosing movement is initiated when fcen(t) > 0,

causing the system to progress towards the final grasp pose.

Therefore, fcen = {fcen(0) . . . fcen(t)} can be interpreted as a

force trajectory which controls the execution and transition

of the different grasp phases. The trajectory can be inferred

from the acceleration profile of the reach movement as

follows:

fcen(t) =

{

−‖a(t)‖ , t < tamin

‖a(t)‖ ,else,
(7)

where tamin
denotes the moment where the acceleration

magnitude becomes minimal. The force trajectories for two

different reach movements are depicted in Fig. 2.

B. Parameterization

The shape of the the finger trajectories emerging from the

modulation of the system mainly depends on the spring con-

stants of the virtual springs. For M springs the constants are

collected in a vector k = (k1, . . . ,kM)T . A major advantage of

the proposed representation is that k can be estimated from

the observation of the fingertip motion. For N fingers given

their observed trajectory {pi = {pi(0) . . .pi(t)}|i = 1 . . .N}
and the force trajectory fcen of the human hand, in order

to estimate the springs constants, one has to rewrite Eq. 5

resulting in:

Xtk = −ẍi(t)−Dẋij(t)+ cT(ẍci
(t)+ fi,ext), (8)

where matrix Xt ∈ R(N·dim)×M describes the displacements of

each fingertip along the spring m:

Xt(i∗dim+1,m) = xmi
(t)

...

Xt(i∗dim+dim,m) = xmi
(t), (9)

with n = 1, ...,dim · N and xmi
(t) = xi j(t) if body i is

connected to j via spring m, and xmi
(t) = 0 otherwise.

ẍi represents the accelerations of the fingers in task space

calculated from the observed finger trajectories. Since Eq. 8

forms a linear regression problem, we apply Singular Value

Decomposition to produce X̂−1
t , the generalized inverse

matrix of Xt. Subsequently, by multiplying X̂−1
t on both sides

an estimation for k is obtained.

C. Representation of the reach movement

For a complete grasp representation, the reach movement

extracted from human observation has to be represented in

a way, which allows the adaptation of learned action to new

situations. We investigated different approaches for the rep-

resentations of movement primitives based on splines [16],

Hidden Markov Models [17] and applied dynamic motor

primitives (DMP) as proposed in [18]. A DMP provides

a representation of a movement segment by shaping an

attractor landscape described by a second order dynamical

system. In [19], a motion representation based on DMPs

is applied to represent pick-and-place actions. Similar to a

linear spring system, using second order dynamics the basic

point attractive system can be written as follows:

τ v̇ = k(g−x)−dv− k(g−x0)s+ k f (s) (10)

τ ẋ = v, (11)

where x and v are position and velocity of the system;

x0 and g are the start and goal position; τ is a temporal

scaling factor; k acts like a spring constant; the damping

term d is chosen such that the system is critically damped.

To enable the encoding of arbitrarily complex movements,

the non-linear function f is introduced which is defined as

follows:

f (s) =
∑i wiψi(s)s

∑i ψi(s)
, (12)

where ψi(s) = exp(−hi(s− ci)
2) are Gaussian basis func-

tions, with center ci and width hi, and wi are adjustable

weights. The function f depends on a phase variable s, which

monotonically changes from 1 towards 0 during a movement

and is obtained by following equation:

τ ṡ = −α s , (13)

where α is a pre-defined constant. Eq. 13 is referred to as

canonical system. Based on a demonstrated movement x(t)
with time steps t = 0, . . . ,T and its corresponding velocity

and acceleration profile v(t) and v̇(t), a DMP can be adapted

to a movement by adjusting the weights wi within f . Since f

can be computed from Eq. 11 with the demonstration param-

eters and s can be obtained through integrating the canonical

system, the adjustment of wi is reduced to a linear regression

problem. The DMP formulation features several advanta-

geous properties such as guaranteed convergence towards the

goal, spatial and temporal invariance and robustness against

perturbations. However, the most important property lies in

the simple adaption towards a new situation, which is mainly

accomplished by specifying new start and goal positions.

Once specified, the execution of the movement is attained

through integration and evaluation of s(t). The obtained
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Fig. 3. Left: The humanoid robot ARMAR-IIIb. Right: Position-controlled
right hand with 8 DoF.

phase variable then drives the non-linear function f which in

turn perturbs the linear spring-damper system to compute the

desired attractor landscape. Regarding the concept introduced

in Section II-A, the acceleration profile v̇(t) of the DMP can

be used to derive the force trajectory fcen as defined in Eq. 7.

For each specific grasp type a DMP is generated and stored

in motion library along with the parameters of the grasp

representation.

III. EXPERIMENTS

A. Experimental Platform

The humanoid robot ARMAR-IIIb, which serves as the

experimental platform in this work, is a copy of the humanoid

robot ARMAR-IIIa [20]. From the kinematics point of view,

the robot consists of seven subsystems: head, left arm, right

arm, left hand, right hand, torso, and a mobile platform.

The head has seven DoF and is equipped with two eyes,

which have a common tilt and can pan independently. Each

eye is equipped with two digital color cameras, one with a

wide-angle lens for peripheral vision and one with a narrow-

angle lens for foveal vision. The upper body of the robot

provides 33 DoF: 2·7 DoF for the arms and three DoF for

the torso. The arms are designed in an anthropomorphic

way: three DoF for each shoulder, two DoF in each elbow

and two DoF in each wrist. Each arm is equipped with a

pneumatic-actuated five-fingered hand with eight DoF. The

locomotion of the robot is realized using a wheel-based

holonomic platform.

B. Observation

In the following, a method for capturing the human

fingertip motion is presented. Based on [21] and [22],

we implemented a real-time tracking algorithm combining

particle filter and mean shift based on color information.

The input to the system is a stereo color image sequence,

captured with the built-in wide-angle stereo pair of the

humanoid robot ARMAR-IIIb. To obtain accurate and robust

position estimations of the fingertips, markers in the form of

green caps are attached to the fingers. In the first frame,

the color information of the markers is exploited to segment

the images in order to determine the regions of interest

surrounding the N fingertips. These regions are labeled and a

color histogram model in HSV space is calculated. A single

particle filter instance is applied to obtain an estimation

for all fingertip positions based on the previous observation

and the weighted particles. Each particle represents a set of

N candidate regions whereas the corresponding weight is

calculated by comparing the regions color histograms to the

histogram model and the posture of these candidates to the

one in the previous frame. The estimation is refined using an

ordinary mean shift algorithm driving each region towards

the maxima of the density distribution within the color

histogram. Since the markers are of the same color, overlaps

and false labeling might occur. For grasp observation, the

assumption is made that the palm is facing towards the

camera where in most cases the finger order Thumb →
Index → Middle → Ring → Pinkie is valid. By representing

the coordinates in polar space, it can be checked easily if

this order is violated. If so, a search for candidate regions

for the false estimated fingers is initiated in the vicinity

of the previous configuration. Since this algorithm operates

on monocular images, for each view a tracking instance is

created whereas the 3D positions of the fingers are calculated

by exploiting epipolar geometry. The presented framework is

capable of online tracking of fingertip motion with a frame

rate of 23 Hz on a 2 GHz dual core CPU. Sample images

during the tracking process are depicted in Fig. 4.

C. Mapping and Execution

The grasp reproduction on ARMAR-IIIb is performed in

several stages. In the first stage, the DMP for the reaching

movement is adapted to position and the orientation of the

object to be grasped. Subsequently, the force trajectory is

derived to modulate the grasp representation resulting in

the fingertip trajectories. The trajectories are mapped and

scaled to fit the coordinate system of an intermediate hand

model. For this purpose, the Master Motor Map (MMM),

introduced in [23] and extended in [24], is used. The core

feature of this framework is a reference kinematic model

which facilitates the mapping from a human motion capture

system to the kinematic structure of a robot. The model

incorporates a biomechanical hand model with 21 DoF. By

solving the inverse kinematics problem for the MMM hand

model, one obtains the joint angle configuration respective to

the given fingertip positions. Due to different measurements

and less DoF of the robot hand, in order to attain a goal-

directed reproduction, which additionally features a high

similarity to the demonstrated human hand movement, joint

Fig. 4. Left camera views of the tracking method. Red denotes thumb
region, light blue the index, blue the middle, pink the ring finger, and red
pinkie region

485



angles as well as the desired fingertip positions have to

be considered during execution. In [25], we developed an

approach, which supports reproduction of observed human

motion on the robot using non-linear optimization methods.

To formulate an optimization problem for each finger which

comprises displacements in Cartesian space regarding the

fingertip position as well as the finger joints, a similarity

measure is defined as follows:

S(σ) = 2−

1
n

n

∑
i=1

(

σ̂i
t −σi

)2

π2
−

1
3

3

∑
k=1

(p̂k
t − pk)

2

(

2 · l f inger

)2
(14)

with n representing the number of finger joints, σi, σ̂i
t ∈ [0,π]

and pk, p̂k
t ∈

[

−l f inger, l f inger

]

, whereas l f inger describes the

considered finger length. The reference joint angle config-

uration is denoted by σ̂ ∈ R
n, while p̂ ∈ R

3 stands for the

desired fingertip position. The current fingertip position p

can be determined by applying the forward kinematics of the

robot to the joint angle configuration σ . Based on Eq. 14 and

the joint constraints {(Cmin,Cmax)} of a robot with n joints,

one obtains following constrained optimization problem:

minS′(σ) = 2−S(σ) (15)

subject to Cimin
≤ σ̂i ≤Cimax (16)

For solving Eq. 15, we apply the Levenberg-Marquardt

algorithm. Following this optimization approach a trade-off is

attained, which on the one hand results in an accurate finger

positioning with small displacement error while it provides

on the other hand a feasible robot joint angle configuration

resembling the observed human configuration.

D. Results

The N-body system of the grasp representation is im-

plemented in 2D. Therefore, currently only planar grasps

which only require fingertip contact can be represented. For

the reproduction of grasp, the force trajectory defined in

Eq. 7 is applied to modulate the systems. The trajectories

emerging from this modulation describe a fingertip posture in

x,y direction in task space of the hand. The pose of the hand

needed for grasping is obtained from the DMP movement

and represented in the robot’s platform coordinates. The

proposed grasp representation is evaluated for a pinch, tripod,

power, and lateral grasp. Based on image sequences captured

by the humanoid robot, in addition to the fingertip trajectories

the hand movement was determined by segmenting and

tracking the hand by means of skin color information. From

the resulting trajectory, a DMP is generated which, due

its properties, allows the adaptation to new targets and the

reproduction of smooth trajectories. The results of the motion

reproduction of are depicted in Fig. 5.

Based on the fingertip trajectories, it is possible to estimate

the spring constants of each virtual spring. The constants

of the remaining springs are fixed independently of the

considered grasp type. To maintain stability and avoid os-

cillation during the modulation, the system is assumed to be

over-damped. For our experiments, the trajectories emerging
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Fig. 5. Top: From a DMP reproduced reach trajectories towards different
goals. Bottom: From a DMP reproduced place trajectories starting from
different start points towards different goals.

from a grasp instantiations are compared to the observed

movements. Due to the small number of contact points, the

fingertip movements during a pinch grasp reproduction are

highly informative in terms similarity to the human demon-

stration. As depicted in Fig. 6, using the virtual spring grasp

representation, for thumb, index, middle, and ring finger,

fingertip movements could be generated which are similarly

shaped as the observed trajectories. Due to noisy motion

data regarding the pinkie movement, the spring constants

linked to the pinkie could not be estimated accurately enough

leading to a slightly diverse trajectory. Furthermore, it could

be observed that due to the integration of springs, we were

able to produce smooth finger trajectories. To complete the

specification of the grasp representation, the equilibrium

lengths between the fingers were measured at a human

subject whereas the hand is to be maintained in a very

relaxing posture. On the platform, we were able to reproduce

grasping movements where the hand preshapes and contact

with the object is made at the end of the reaching movement.

However, due to small number of DoF of the ARMAR-

IIIb hand and its unstable pneumatic control mechanism, the

optimized joint angle configuration could not be accurately

reproduced. Results of the grasp reproduction for a pinch

and power grasp are depicted in Fig. 8 and Fig. 7.

IV. CONCLUSION

In this work, we have presented a grasp representation

which exploits finger movement synergies in task space and,

hence, allows the formulation of grasps in a goal-directed and
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Fig. 6. Plots showing the trajectory of each finger during observation (red) and reproduction (green) of a pinch grasp. The star symbol denotes the start
of each trajectory, whereas the box symbol represents the end. The measurements are given in mm. From left to right: index finger; middle finger; ring
finger; pinkie.

low dimensional fashion facilitating several processes such as

the observation of the human hand, which is a cumbersome

task in joint space. Along with the parameter estimation

procedure, a grasp can be learned and represented from

human demonstration, even online. In order to reduce the

dimensions of the control variables for trajectory generation,

synergies on task space level were successfully established

by means of the virtual springs. The result is a continuous

grasp representation, which unifies the different grasp stages

(preshape, reach, and enclose) leading to a smooth, human-

like movement reproduction. In the near future, we focus on

extending our implementation of the dynamical system from

2D to 3D in order to represent grasps which require addi-

tional contact areas besides the fingertips. Furthermore, we

will extend our library of represented grasps and investigate

how complex object representations can be integrated.
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Fig. 7. Top: Image sequence depicting the capture human fingertip motion for a power grasp. Middle: The MMM hand model maintaining a hand posture
that matches the fingertip motion. Bottom: Reproduction of the represented power grasp.

Fig. 8. Top: Image sequence depicting the capture human fingertip motion for a pinch grasp. Middle: The MMM hand model maintaining a hand posture
that matches the fingertip motion. Bottom: Reproduction of the represented pinch grasp.
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