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Abstract— In this paper, we address the question of gen-
erative knowledge construction from sensorimotor experience,
which is acquired by exploration. We show how actions and
their effects on objects, together with perceptual representations
of the objects, are used to build generative models which then
can be used in internal simulation to predict the outcome of
actions. Specifically, the paper presents an experiential cycle
for learning association between object properties (softness and
height) and action parameters for the wiping task and building
generative models from sensorimotor experience resulting from
wiping experiments. Object and action are linked to the
observed effect to generate training data for learning a non-
parametric continuous model using Support Vector Regression.
In subsequent iterations, this model is grounded and used to
make predictions on the expected effects for novel objects
which can be used to constrain the parameter exploration.
The cycle and skills have been implemented on the humanoid
platform ARMAR-IIIb. Experiments with set of wiping objects
differing in softness and height demonstrate efficient learning
and adaptation behavior of action of wiping.

I. INTRODUCTION

The efficiency with which humans perform manipulation

tasks in unstructured and dynamic environments is unattained

by robotic systems. The key to this remarkable performance

lies in the human cognitive capabilities which enable the

autonomous acquisition of knowledge by processing complex

sensor information and the application of this knowledge

to rapidly explore unknown scenes, objects, and actions.

Intelligent robots must be able to rapidly create new concepts

and react to unanticipated situations in the light of previously

acquired knowledge by making generative use of experience

utilizing predictive processes. This process is largely driven

by internal models based on prior experience (Inside-out).

Such robots must also be able to help and learn from

others by sharing these generative, experience based theo-

ries through teaching and interaction. During development,

stimulus driven outside-in and internally driven inside-out

processes need to interact with each other at the earliest

possible moment to drive the development of cognitive

capabilities. The development of such cognitive capabilities

has to be embedded in a learning process in order to verify,

extend, and revise this knowledge. Hence, in order to make

a crucial step towards more autonomy, robots have to be

equipped with similar capabilities.

In [1], the concept of Structural Bootstrapping has been

introduced to address how generative mechanisms which
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rely on prior knowledge and sensorimotor experience can

be implemented in robotic systems and employed to speed

up learning. Structural Bootstrapping – an idea taken from

child language acquisition research – is a method which

provides an explanation of how the language acquisition

process in infants is initiated. Hence, in a robotic context,

Structural Bootstrapping can be seen as a method of building

generative models, leveraging existing experience to predict

unexplored action effects and to focus the hypothesis space

for learning novel concepts. This developmental approach

enables rapid generalization and acquisition of new knowl-

edge about objects, actions and their effects from little addi-

tional training data. Entities of the world are represented in

form of Object-Action Complexes (OAC) – affordance-based

object-action associations that are understood as semantic

sensorimotor categories, which are computable (learnable)

and storable in a robotic system (see [2]). OACs are

related to state-actions transitions and incorporate object as

well as action affordances. This allows the specification of

actions based object percepts and vice versa enables the

grounding of object representations based on the execution

and observation of the actions and their effects. Based on

the OAC representation, knowledge structures in the form

of internal models are generated and intrinsically grounded.

The benefit of this knowledge acquisition approach becomes

particularly evident on the sensorimotor level where object

and action embedded in a situational context are closely

intertwined. The experience gained by actively exploring and

interacting with the environment, objects and other agents

and by observing the effect of actions is characterized by the

specific embodiment. Therefore, representations and models

emerging from this experience are better adapted to the

robot’s morphology and more suitable to capture the sen-

sorimotor contingencies than those generated by traditional

disembodied methods. The continuous grounding of internal

models and representations through exploration provides a

suitable basis for prediction and simulation. In this paper, we

provide an example for Structural Bootstrapping and demon-

strate the validity of the approach on the sensorimotor motor

level. Embedded in a learning cycle we show how generative

models describing the relation between object properties and

action parameters can be learned from experience and how

the these models can be used to make predication using

internal simulation. More specifically, we show in the context

of table wiping task how action parameters can be predicted

and adapted based on the object’s softness and size.



II. RELATED WORKS

Several approaches in the literature deal with the problem

of exploration-based learning and generative model construc-

tion. In the following, an overview on approaches related

to the work presented in this paper is given. In [3], an

affordance learning framework is introduced which models

dependencies between action and object features in the form

of a Bayesian Network. Using a set of manipulation actions

(grasp, tap, touch) and based on perceived object features

the expected effect of an action to be performed could be

estimated. In [4], an interactive learning scheme is introduced

which allows the identification of object grasp affordances.

Grasp primitives represented in the form of a Dynamic

Movement Primitive (DMP) are learned from human grasp

demonstrations are grounded based the observed effect (grasp

successful or not). Towards structural bootstrapping, in [5],

an approach is presented for the learning object grasp affor-

dance through exploration. These affordances are represented

by grasp densities which are determined based on the visual

features (3D edges) of the object to be grasped. The object

grasp affordances are grounded and the grasp densities are

refined based on exploration and observation of grasping

actions performed by the robot. In [6], an approach is

introduced which enables a robot to learn a grasping behavior

based on initial reflex-like motor primitives. The execution

of these primitives at different speeds and the observation

of the tactile feedback when touching an object leads to

the generation of further behavior primitives. To link the

resulting behavior to different intrinsic and extrinsic object

properties, the primitives are executed and the observed

effects are categorized using the Support Vector Machine

(SVR). For the scenario of object-pushing, in [7], a method is

proposed which enables a robot to learn goal-directed push-

locations on multiple objects. Using a the SVR method a

model is learned from explorative pushing which allow the

prediction of the effect of certain pushing action considering

the current object shape and pose.

III. THE LEARNING CYCLE

In order to enable a robotic system to learn and refine

sensorimotor knowledge within a developmental process,

a learning cycle has to be formalized which incorporates

perceptual and motor skills. As suggested in [8], the pre-

sented learning cycle consists of four stages. For our work,

we define the initial stage to be the exploration stage.

Given generalized representations of objects and actions, the

robot explores the scene in order to obtain instantiations

of both, object and action. The resulting action and object

representation A1 and P1 form the basis of an experiment

which is conducted in the subsequent stage to create data

from which concrete experience can be generated. The robot

applies the action A1 and observes its effect E1 on object,

environment, and on the robot itself. In the third stage,

based on the data D = (P1,A1,E1) experience is created by

grounding and adapting the representations. In the modeling

stage, knowledge in the form of internal models fE and fA.

In subsequent iterations i with i > 1, the grounding is

transferred to novel perceived object representation Pi. Using

fA and fE the parameters for action Âi and the expected effect

Êi for (Pi, Âi) can be predicted. Âi can be used to constrain

and control the exploration of the action parameter space

within the repeated experiment and with Êi less, however,

more relevant additional training data can be created which

has to be considered for the re-grounding the representations

and revision of the internal models. Hence, this learning

cycle allows the continuous acquisition, validation, and re-

finement of internal knowledge in long term association

through exploration and predictive reasoning.

A. Instantiation of the Learning Cycle for Wiping

Based on the learning cycle described in Sec. III, a

behavior is implemented which enables a robot to efficiently

learn wiping movements with different objects. Using skills

which have been implemented on our platform, the learning

cycle has been instantiated as depicted in Fig. 1. To accel-

erate the learning process, observations of human wiping

demonstrations trigger the bootstrapping process and provide

data based on which a coarse representation of the wiping

action can be inferred. The wiping action is represented in the

generalized form of a periodic DMP (see Sec. IV-A). In the

initial iteration, the robot is focused on the adaptation of this

representation to environmental circumstances, namely the

surface to be wiped. This step corresponds to the grounding

of the action representation.

In subsequent iterations, the robot attempts to establish the

link between a object, action, and effect. For the object per-

ception, a skill (as described in Sec. IV-B) is applied which

enables the robot to deform an object. Based on the extent

of the deformations the object’s height h and softness s is

determined. Thus, a potential wiping object is represented by

(s,h)∈R
2. To generate differently scaled wiping movements,

the amplitude parameter incorporated in the learned periodic

DMP representation can be varied. Especially, regarding the

movement of the endeffector directed towards the table, the

amplitude has to be scaled according to the specific softness

parameter. The search for the optimal amplitude parameter

a entails considerable effort since it involves the variation of

a, the subsequent parameterization of the wiping primitive,

and the reproduction of a wiping action. To assess the effect

of a wiping movement the robot visually determines the

dirt level (see Sec. IV-C) describing the ratio between the

amount of remaining dirt enclosed by an area to be wiped

and the entire wiping area size. Hence, the action parameter

space is explored for the movement primitive in order to

generate a wiping movement with which the wiping success

can be maximized. For each stage, a separate experiment is

specified. However, the goal for both experiments remains

the same: wipe until the dirt level does not change. For a

dirt levels di,di−1 ∈R determined in iteration i and i−1, the

goal can be formalized as follows:

di −di−1 ≤ dε (1)

where dε denote a threshold at which the dirt level change



Fig. 1: Left: Abstract learning cycle. Right: Instantiated learning cycle for the learning of wiping.

can be disregarded. To enhance the adaptation of a wiping

primitive to novel objects, based on sensorimotor experience

gathered in previous iterations, internal knowledge structures

are derived. In the form of models, these are used for the

prediction of the expected wiping effect for a specific object-

action complex. Given a desired effect, these models allow

the estimation of the amplitude parameter. Ideally, the action

parameter search is conducted in the vicinity of the amplitude

estimate.

B. Surface Adaptation

The grounding of the wiping DMP corresponds the adap-

tation of the DMP in order to attain goal-directed wiping

movement. In the context of wiping, one prerequisite is

constant contact of the object and the surface to be wiped.

Therefore, wiping movements can only be adequately evalu-

ated and adapted based on the forces exerted on the robot’s

end effector. Based on a wiping primitive which encodes a

periodic movement pattern pw in a (x,y)-plane parallel to

the surface, we wish to adapt the movement to the shape of

the surface. Following the force profile adaptation method

introduced in [9], a force-feedback control mechanism is

implemented which moves the end effector towards the

surface while executing the wiping pattern. In this work,

we restrict ourselves to the wiping of flat surfaces. Hence,

for a periodic wiping trajectory pw(t) = (xw(t),yw(t)) with

Ts < t < Te and Ts,Te denoting the start and end time of a

period, a movement zw(t) with each discrete time step δ t is

determined according to following equation:

żw(t) = k f ( fzw(t)− f0) (2)

zw(t) = z0 + żw(t)δ t. (3)

Here, z0 stands for the initial height from which the wiping

movement is initiated, f0 denotes the desired force with

which the robot should press an object towards the surface,

fzw(t) is the measured force on the end effector, and k f

describes a force gain factor. A further simplification which

allows which allows a safer execution of the experiment

is to replace fzw with fzw =
√

f 2
x + f 2

y + f 2
z , since it forces

the robot to move upwards when the robots collides with

anything from any direction. As a result, the experiment leads

to data triplet center of the wiping area p0 = (x0,y0):

(P,A,E) = (p0,(pw,zw),d) (4)

based on which the action representation is grounded and

extended.

C. Action Parameter Exploration

To attain an optimal wiping behavior with a specific object,

the wiping action has to be parameterized according the

object properties. This can be accomplished by specifying

the amplitude with which a wiping action is executed. To

find a suitable parameterization, the action parameter space

is explored within the wiping experiment based on the forces

acting on the robot. Starting from an initial estimate a0, the

amplitude is varied according following rules:

a(t) =























b−a(t −1) , fzw(t)− f0 > ρ , żw < 0

b+a(t −1) , fzw(t)− f0 > ρ , żw > 0

b+a(t −1) , fzw(t)− f0 <−ρ , żw < 0

b−a(t −1) , fzw(t)− f0 <−ρ , żw > 0

a(t −1) else

(5)

where 0 < b− ≤ 1 and b+ = 2− b− denotes a scalar fac-

tors which decreases respectively increase the amplitude

according the current movement direction and exerted forces.

To accommodate potential noise contaminating the force

torque sensor readings, instead of fixating the desired surface

pressure on f0, ρ is introduced into the amplitude update rule

to define a range of force values [ f0 −ρ, f0 +ρ] in which

the forces acting on the endeffector are considered to be

optimal. a(t − 1) represents the amplitude estimate made

in the previous time step. For each iteration i, the overall

amplitude factor ai is calculated by ai =
1

TE−TS
∑

TE
t=TS

a(t). The

data which results from the experiments, can be described

as follows: for the current object wiping:

(P,A,E) = ((s,h),a,d). (6)

This data matrix provides the basis for the inference of an

internal model.



D. Learning of Internal Models

To generate an internal model representing the relation-

ships between perception, action, and effect, computational

methods have to be applied which are suitable to identify

structures from non-linear data of arbitrary dimensionality

without any prior knowledge. In this work, the Support

Vector Regression, a supervised learning technique which

is described in [10], is applied to approximate such a model,

since it allows to capture complex relationships between

the training data points. Furthermore, a sparse model can

be obtained by applying the Support Vector method which

facilitates the processing of large datasets and enhances the

prediction and simulation using the internal model. Based

on our experimental data collection {(Pn,An,En)}i=1,...,N , for

the training of fE , a dataset D with N input/output pairs is

formed as follows::

D = {(xn,yn)}n=1,...,N , xi = (Pi,Ai), yi = (Ei). (7)

The internal model is described by fE : x → y. Finding

a non-linear mapping appropriate function fE solves the

learning problem and leads to desired model enabling the

mapping of an arbitrary input pair (P,A) on expected effect

Ê. Usually, the search for fE is performed by determining

an approximation f̂E which minimizes the risk functional:

Remp

[

f̂E

]

:=
1

N

N

∑
n=1

d( f̂E(xn),yn) (8)

with d( fE(x),y) being a distance function to define the

relation between the model’s output f̂E(x) and the correct

output y. Using the Support Vector method, the non-linear

regression problem incorporated in Eq. 8 is transformed

into linear problem by introducing a non-linear mapping

θ : R → R
Nh which projects the original dataset D into

a feature space of higher dimensionality. Hence, the SVR

consists of finding a hyperplane (w,b) which satisfies:

g(x,w) =
Nh

∑
j=1

w jθ j(x)+b. (9)

To determine a linear model which captures most training

samples within an ε-margin, an ε-loss-insensitive functionis

defined as follows:

Lε(g(x,w),y) =

{

0 if |g(x,w)− y| ≤ ε
|g(x,w)− y|− ε else

(10)

is introduced into the risk functional. Hence, our goal is to

find a function fE whose distance to any given data point

does not exceed ε while being as flat as possible. This

optimization problem can be described:

minimize τ(w) =
1

2
‖w‖2 +C∑(ζ +ζ ∗) (11)

subject to yi − (g(xi,w)−b)≤ ε (12)

subject to (g(xi,w)+b− yi)≤ ε (13)

where ζ are slack variables which are introduced to the

problem in order to relax the constraints and to add a soft

margin to the hyperplane and thus to tolerate a small error. C

is a constant which controls the trade-off between the flatness

of fE and the tolerated deviations larger than ε . Since θ is

unknown according [10] a suitable kernel function such as

the Radial Basis Function:

k (x,xi) = exp(−γ‖x− xi‖) (14)

can be used to instead in order to project the data into

high-dimensional space. The main parameters controlling

the performance of the SVR method are C and the kernel

parameter γ .

IV. IMPLEMENTATION

The implementation of the wiping learning behavior is

based on skills which already exist on the robot which

allow learning and cognition. In the following, the skills and

eventual modifications which have been made in order to

combine them are briefly described.

A. Wiping Skill

To enable a robot to learn and adapt wiping movements,

a skill has been implemented which creates a generalized

action representation of a wiping movement. In this work,

wiping movements are encoded as periodic DMP using a

slight extension of the DMP formulation as suggested in [11]

which allows the representation of a periodic motion as well

as its corresponding discrete transient movement. In general,

a DMP consists of two parts:

{

ṡ(t) = Canonical(t,s),

v̇(t) = Transform(t,v)+Perturbation(s).

(15)

(16)

The perturbation term in (16) is adapted to a demonstrated

trajectory where the transformation system allows the gen-

eralization of the learned trajectory to new start and goal

conditions. The encoding of both, periodic and transient

motion, is accomplished by introducing a two-dimensional

canonical system in the DMP formulation: a dimension r to

describe distance from the periodic pattern and φ denoting

the phase of the periodic pattern. This yields the state of

the DMP s(t) := (φ(t),r(t)) as the solution (φ ,r) of the

following ordinary differential equation:

(17)

{

φ̇ = Ω,

ṙ = η(µα − rα)rβ
.

(17a)

(17b)

Here, µ > 0 denotes the radius of the limit cycle and

η ,α,β > 0 are constants. The value of Ω > 0 defines the

angular velocity of φ and has to be chosen according to the

period p of the desired trajectory, i.e. Ω= 2π
p

. The value of φ
is linearly increasing whereas r converges monotonously to

µ . Thus, by interpreting (φ ,r) as polar coordinates the solu-

tion of (17) converges towards a circle with radius µ around

the origin on the phase plane. To encode a demonstrated

wiping action described by (xw(t),yw(t),zw(t)), a transforma-

tion system in the form of a critically-damped spring system

which converges towards a global point attractor g is defined.

Therefore, for the encoding of xw(t) which circulates around
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Fig. 2: Left: The wiping pattern pw extracted from human

observation. Right: A generated displacement trajectory zw.

the attractor gx =
δ t

Ts−Te
∑

Te
t=Ts

xw(t), the transformation system

is specified as follows:

{

ẋw = Ω

(

αz

(

βz(gx − v)− xw

)

+a · fx(φ ,r)
)

,

v̇ = Ωxw.

(18)

The constants αz,βz > 0 are chosen according the ratio
αz

βz
= 4

1
in order to ensure critical damping. By adapting

fx corresponding to the demonstrated trajectory the system

oscillates around gx in a similar manner as featured the

demonstration. Here, fx is defined as

fx(φ ,r) =
∑

M
j=1 ψ j(φ ,r)w̃x, j +∑

N
i=1 ϕi(φ ,r)wx,i

∑
M
j=1 ψ j(φ ,r)+∑

N
i=1 ϕi(φ ,r)

, (19)

where Wx := (wx,1, . . . ,wx,N , w̃x,1, . . . , w̃x,M)T ∈ R
N+M con-

tains the weights which can be adjusted to fit the desired

trajectory xw(t). The basis functions ψ j encode the transient

part of the motion while the periodic part is modeled

using ψ j. The transformation systems yw(t),zw(t) are defined

analogously. With f ≡ 0 the system state v converges to the

anchor point (gx,gy,gz) ∈ R
3. The factor a > 0 is changed

on-line during the reproduction of the motion to modulate

the amplitude.

The learning of a wiping movement is decoupled in two

phases: the learning of the wiping pattern from human ob-

servation and the adaptation of a wiping movement primitive

to the surface to be wiped. In the first phase, motion data

representing human wiping demonstrations gets segmented

to identify the transient part and the periodic pattern. The

weights in (19) are calculated to make the system reproduce

the demonstration. Initially, the wiping movement demon-

strated in task space is learned in the (x,y)-plane disregarding

the surface contact which yields a wiping DMP with two

transformation systems.

In the second phase, an additional transformation system

is learned which encodes the movement zw(t) needed for the

adaptation to the surface. To obtain zw(t), the wiping DMP

is repeatedly reproduced until the force torque measurements

during the execution of zw(t) meet predefined constraints

which guarantee that the endeffector applies a specific pres-

sure on the surface to be wiped. In Fig. 2, the trajectory

(xw(t),yw(t)) which features the periodic wiping pattern as

well as trajectory of the zw(t) are depicted.

Fig. 3: Left: Robot view on the scene. Center: Segmented

view of the scene in the beginning of the wiping execution.

Right: Segmented view on a ”clean” table.

B. Softness Skill

To check the deformability and softness of an object the

robot uses his ability to control the grasping force of the

pneumatic actuated hand with a model based force position

control [12]. When the object is in the hand and grasped

between the fingertips with a low grasping force, the distance

between the fingertips of the index finger, middle finger

and thumb is measured using the joint encoders and the

forward kinematics. Then the grasping force is increased

which results in a deformation of the object. After the fingers

have stopped moving, the distance between the fingertips is

measured again and the difference of the distances is used

as a measure for the softness of the object.

C. Dirt Level Skill

As mentioned before, the effect of a wiping action is

described by the dirt level d within area O to be wiped.

For the sake of simplicity, it is assumed that dirt features a

specific color. Therefore, to determine the size and position

of O, using the stereo camera setup the robot explores

the table and performs a color segmentation in order to

localize the largest blob. A bounding box Bi around that

blob provides the image coordinates of O. Transformed

into the world coordinate system, one obtains Bw which

provide the global coordinates of O. In order to determine

the current dirt level at any time t during the execution of

the wiping experiment, Bw is transformed back onto image

coordinates Bt
i . Hence, based on Bt

i d one can calculate

according following equation:

d =
ymax

∑
i=ymin

xmax

∑
j=xmin

k(i, j)

(xmax − xmin)(ymax − ymin)
. (20)

Since the hand might occlude a considerable area of the

surface, a reliable assessment of the dirt level cannot be

performed at guaranteed at any time during the execution

of a wiping movement. Hence, to control the experiment,

the current dirt level at tc is set to d(tc) := dmax,i which is

defined as follows:

dmax,i = max{di(t)}Tsi
<t<tc

(21)

with i denoting the index of the current period. The exper-

iment is finished when following conditions are fulfilled as

described by



Fig. 4: The humanoid platform ARMAR-IIIb wiping the

table with a sponge.

V. EXPERIMENTS

As depicted in Fig. 4, the implemented learning behavior

has been evaluated on our humanoid platform ARMAR-IIIb

(see in[13]). The learning of the wiping primitive in the

initial iteration is described in. In subsequent iterations, to

facilitate the environmental perception, the color of the dirt

(pink sand) has been specified. Based on this information,

the robot initializes each learning iteration by localizing the

dirty area O. The corresponding bounding box Bi is used to

specify the target configuration of the DMP. In the following

step, the robot determines the object softness and height

by grasping the object of interest at the bottom and top

side of the object. The object exploration process is assisted

by human operator since for wiping the object has to be

reoriented in the robot’s hand, so that the object is grasped

from the side enabling the bottom to touch the table. Given

the internal models, predictions are made for the amplitude

and the expected effect. Subsequently, the robot performs a

wiping movement with a and compares the observed effect

with the expected effect. If the observations does not coincide

with the expectation, a parameter exploration procedures as

described in Sec amplitude is initiated in order to create

further data for the grounding of the internal models. For

now, the grounding of an internal model is done by updating

the data set and retraining the entire model. We are aware that

the learning cycle has to incorporate an incremental learning

algorithm in order to be effective for the longer term and

with an increasing amount of data.

Therefore, in this section, results of preliminary experi-

ments are presented showing the effectiveness of the expe-

rience learning cycle for the implementation of a cognitive

learning behavior for robots, in particular, in the context of

wiping. The wiping experiments have been conducted on

set of twelve objects which includes instances designed for

wiping (sponges, towel, toilet paper) and other household

items (box, bottle, ball, can) that are less suitable. We restrict

ourselves on objects whose height and weight are within

are within a predefined range in order to prevent damage

to the robot. Based on experimental data originating from

wiping experiments with this object set, internal models fE

and fA are generated using the SVR method. In this work,

we used the LIBSVM library introduced in [14] for the

training. The relevant parameters for the training of fA have

be determined to be C = 50 and γ = 0.5 whereas fE has been

trained with C = 10 and γ = 0.33. The data and predictions

of the amplitudes and the expected dirt levels are listed

in Table I. It is interesting to see that for soft objects the

amplitude could be reliably re-estimated. The main reason

for the variation of the amplitudes for harder objects lies in

the increased sensitivity towards forces exerted on the object

respectively the end-effector. A slight difference of the object

pose in hand can produce very different results. Regarding

the prediction of the expected dirt level, good estimations

could be made for cubic objects. For spherical and cylindric

objects, less useful predictions have been inferred.

Given a percept of a specific object, the corresponding

amplitude estimate can be used to considerably reduce the

adaptation effort of a wiping movement. The plots depicted

in Fig. 5 indicate that with increasing knowledge leading

to more accurate estimations of the action parameter the

execution of an action converges faster towards the desired

behavior. With regard to the forces exerted on the end-

effector, a force trajectory is desired which oscillates around

the predefined force threshold of f0 = 25 whereas regarding

the dirt level we wish to minimize the dirt level as fast as

possible. The learning phase denotes the initial phase where

the movement primitive is adapted to the environment. In

the adaptation phase, based on a default value of a0 = 1 the

amplitude is varied in order to attain the desired effect. In the

execution phase, the task is performed using the estimated

amplitude parameter and without any adaptation.

VI. CONCLUSION

An approach for the implementation of a cognitive learn-

ing behavior enabling robots to create individual knowledge

structures based on experience gained through physical ex-

ploration, interaction, and observation has been proposed.

The behavior manifests in the form a learning cycle which

Object h s â a d̂ d

sponge (s) 79 0.0343 1.0 1.0 0.162 0.117
sponge (m) 91 0.0384 0.957 0.948 0.129 0.132
sponge (l) 102 0.0358 1.13 1.139 0.139 0.09
styrofoam cube (s) 87 0.00474 0.701 0.696 0.270 0.258
styrofoam cube (l) 91 0.00774 1.0 1.0 0.13 0.177
rolled towel 89 0.0213 1.215 1.057 0.229 0.142
styrofoam ball 100 0.00639 1.497 1.496 0.384 0.422
cardboard box 91 0.0171 1.072 1.072 0.240 0.178
plastic bottle 87 0.0263 1.453 1.453 0.310 0.568
metal can 86 0.00843 1.04 1.366 0.352 0.529
toilet paper 101 0.0232 0.887 0.887 0.162 0.128
foam 91 0.041 0.999 1.0 0.13 0.177

TABLE I: Object properties and the corresponding action and effect parameter. h

denotes the object height in mm and s the softness of an object. â and a represent the

estimated and the actual amplitude of an adapted wiping movement. d̂ and d stand for

the expected and actual dirt level which indicates the effect of wiping.
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Fig. 5: Left: Trajectories of forces exerted on the end effector in various phases of the wiping learning cycle. Right: Dirt

level evolution in various phases of the wiping learning cycle.

incorporates perceptual and motor skills in order to con-

tinuously acquire data based on which internal models are

generated and grounded. For the scenario of table wiping,

we have showed that with these internal models wiping

primitives can be efficiently learned and adapted to different

task and object-specific constraints.

However, we have also experienced cases in which the

estimation of action parameters and the prediction of the

expected effect failed. This is mainly due to the simple object

representation which merely relies on the object softness

and height. As indicated in our results, for deformable

objects, these features might suffice in order to determine

the affordance in the context of wiping. By redefining the

experiment, the application of the for the learning and the

adaptation of other actions is limited to actions that are

mainly controlled by the amplitude and for which the object

softness has a tremendous effect on the outcome of an action

such as kicking or throwing. Therefore, a more universal

implementation of the structural bootstrapping approach is

attained by extending the action parameter space and by

incorporating an enriched visuo-haptic object representation

which considers further object properties have to be con-

sidered such as geometry and weight. Therefore, in the

future we will focus on the integration of an enriched object

representation which allows the estimation of further action

parameters such as different hand orientations or wiping

patterns. Furthermore, we will conduct extensive experiments

with numerous objects with the goal of enabling a robot to

extend the knowledge structures.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union Seventh Framework Programme

under grant agreement no. 270273 (Xperience).

REFERENCES

[1] “Xperience Project,” Website, available online at http://www.
xperience.org.
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