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Vision-Based Online Adaptation of Motion
Primitives to Dynamic Surfaces: Application to an

Interactive Robotic Wiping Task
Athanasios C. Dometios1, You Zhou2, Xanthi S. Papageorgiou1, Costas S. Tzafestas1, and Tamim Asfour2

Abstract—Elderly or disabled people usually need augmented
nursing attention both in home and clinical environments,
especially to perform bathing activities. The development of
an assistive robotic bath system, which constitutes a central
motivation of this work, would increase the independence and
safety of this procedure, ameliorating in this way the everyday
life for this group of people. In general terms, the main goal of
this work is to enable natural, physical human-robot interaction,
involving human-friendly and user-adaptive on-line robot motion
planning and interaction control. For this purpose, we employ
imitation learning using a leader-follower framework called
Coordinate Change Dynamic Movement Primitives (CC-DMP),
in order to incorporate the expertise of professional carers for
bathing sequences. In this paper, we propose a vision-based wash-
ing system, combining CC-DMP framework with a perception
based controller, to adapt the motion of robot’s end-effector
on moving and deformable surfaces, such as a human body-
part. The controller guarantees globally uniformly asymptotic
convergence to the leader movement primitive, while ensuring
avoidance of restricted areas, such as sensitive skin body areas.
We experimentally tested our approach on a setup including
the humanoid robot ARMAR-III and a Kinect v2 camera. The
robot executes motions learned from the publicly available KIT
whole-body human motion database, achieving good tracking
performance in challenging interactive task scenarios.

Index Terms—Motion and Path Planning; Learning and Adap-
tive Systems; Human-Centered Robotics.

I. INTRODUCTION

MOST advanced countries tend to be aging societies,
with the percentage of people with special needs for

nursing attention being already significant and due to grow.
Health care experts are called to support these people during
the performance of Personal Care Activities such as shower-
ing, dressing and eating [1], inducing great financial burden
both to the families and the insurance systems. During the last
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Fig. 1: The I-Support system installed in a clinical environment
(Santa Lucia Foundation, Rome, Italy). This system constitutes of a
soft robotic manipulator (courtesy of Sant’Anna School of Advanced
Studies), a motorized chair (courtesy of Robotnik Automation, Va-
lencia, Spain) and three Microsoft Kinect cameras.

years health care technology is developing towards assistive
and adaptable robotic systems designed for both in-house
and clinical environments, aiming at supporting disabled and
elderly people with special needs in terms of Personal Care
Activities. There have been very interesting developments in
this field, such as the Oasis seated shower system [2] and
Poseidon robotics care system [3], with either static physical
interaction [4], or mobile solutions [5].

However, body care (showering or bathing) is among the
first activities of daily living (ADLs) which incommode an
elderly’s life [6], since it is a demanding procedure in terms
of effort and body flexibility. In this context, an assistive
robotic application involving direct human-robot physical con-
tact (such as showering) is way more demanding in terms
of safety than other assistive robotic systems. These high
safety standards include operation of the robot on curved and
deformable human body parts in a dynamic environment, since
unexpected body-part motion may occur during the robot’s
operation. In addition, the showering task should be executed
in a human-friendly way in terms both of motion and force
exertion on each body part, in order to increase the comfort of
an elderly user. Therefore, proper washing motions for each
task should be learned by demonstration of health care experts.

Learning a complicated motion by demonstration includes
choosing appropriate motion representations and correspond-
ing learning strategies [7]–[9]. Previous works based on the
motion primitives for learning robot’s interactive motions can
be found in [10]–[13]. As a popular method, Dynamic Move-
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ment Primitive (DMP) [7], [14] with its simple parametrized
formulation supports not only imitation learning but also
reinforcement learning. Considering its simplicity and po-
tential extension, in this work, we choose DMP to encode
washing movement primitives. Based on the DMP formulation,
we developed in our previous work [15] a leader-follower
framework to take also the user’s movement into consideration.
Furthermore, in order to realize proper robot’s motion and
human-friendly interaction according to clinical requirements,
we learn washing actions demonstrated by professional carers,
which are recorded in KIT whole-body motion database [16].

The spectrum of applications, which involve a robotic
manipulator executing surface interactive tasks with the envi-
ronment using visual feedback, is wide. Examples are from au-
tomotive industry, in which industrial manipulators are respon-
sible for transferring or spraying actions on car parts [17] or
service robotic interacting with household environment [18].
Famous surgical robotic platforms also follow a master-slave
design and consist of manipulators tele-operated by surgeons
with a visual aspect of the scene. Another interesting applica-
tions of semi-autonomy in cardiac surgery is the beating heart
motion compensation [19].

However, close and tight physical interaction with a human
being is a much more delicate task and requires advanced
perception capabilities. The progress of RGB-D sensors to-
gether with sophisticated computer vision algorithms have
increased radically the perception abilities of robotic systems.
In particular, approaches based on Deep Learning techniques
have presented very detailed results on human perception
and specifically body-part segmentation. In [20], [21], pixel-
level human body parts semantic segmentation is presented,
whereas in [22] their sparse pose is calculated with close
to real-time computational performance. These recent results,
have motivated the development of a vision-based motion
controller in [23], which uses a Navigation Function approach
to guarantee the proper execution of the task within the body
part limits and to achieve the adaptation of simple motions on
moving, deformable surfaces.

In this paper, we propose a vision based washing system,
which integrates the leader-follower framework of motion
primitives (CC-DMP) with a vision-based controller to adapt
reference path of a robot’s end-effector and allow the execution
of washing actions (e.g. pouring water, scrubbing) on moving,
curved and deformable surfaces, like human body-parts. This
system incorporates clinical carer’s expertise by producing
motions which are learned by demonstration, using data from
the publicly available KIT whole-body motion database. More-
over, the perception based controller uses navigation functions
to guarantee globally uniformly asymptotic convergence to
the leader movement primitive and obstacle area (e.g. skin
injuries) avoidance. In addition, on-line motion adaptation
from depth data realizes user motion compensation and local
surface estimation, which allows the regulation of the distance
and the orientation of the robot’s end-effector perpendicularly
to the surface. This regulation enables the execution of both
contactless actions (such as water pouring) and actions involv-
ing physical contact with indirect (open-loop) application of
forces (such as wiping or scrubbing).

In our experiments, we use humanoid robot ARMAR-III
developed at KIT [24], which applies washing actions on a
planar whiteboard and over a male subject’s back region. We
choose this robot with known kinematic model and mature
low-level controller to provide an efficient proof-of-concept
demonstration and show-case the developed methodology. In
the context of the I-Support project, a soft arm robotic ma-
nipulator is under development and will be used for validation
experiments in the near future. Nevertheless, by using a hu-
manoid robot in our current experiments we further showcase
the diversity of our method and its potential application in the
household service robot of the future.

II. PROBLEM STATEMENT

The I-Support robotic shower system, which is currently
in development and initial validation stage (Fig. 1), aims to
support both elderly and people with mobility disabilities dur-
ing showering activities, i.e. pouring water, soaping, body part
scrubbing, etc. The degree of automation will vary according
to the user’s preferences and disability level. In Fig. 1, system’s
basic parts are presented. The robotic system provides elderly
showering abilities enhancement, the motorized chair ensures
the safe transition of the user in the shower room and three
Microsoft Kinect sensors are used for user all-around visual
perception and Human-Robot Interaction (HRI) applications.

The motion adaptation problem of a robotic manipulator’s
end-effector on a moving, curved and deformable surface (e.g.
user’s body part), in a workspace equipped with a depth-
camera, is considered. The core of this motion adaptation
task is to calculate at each time step the reference pose for
the end-effector of a robotic arm, which will let the robotic
manipulator execute proper human friendly surface tasks (e.g.
wiping the user’s back) and at the same time to be compliant
with this body part. We assume that the field of view of
the depth camera includes the workspace of the robot and
the obstacles in the workspace are visible from the camera
perspective. Obstacle areas may regard restricted areas, either
on the user’s body part subject to washing (e.g. local injury) or
on other body parts, which may interfere to the robot’s motion
(e.g. the hands of the user) and should be avoided during the
washing sequence.

The boundaries of each body-part can be found on the
image plane with simple color filters or more robust semantic
segmentation techniques [22], which are based on Deep Learn-
ing. These boundaries will differ from user to user, therefore
adaptability to different users is also a very important feature
of the system.

Moreover, each human has unlike preferences and needs
during the washing sequence. It is crucial for the user to
feel comfortable and safe during the operation of the system.
Therefore, proper and human friendly washing motions for
each subtask should be learned by demonstrations of health
care experts. This procedure might raise some requirements for
each task, in terms of execution time and motion complexity.
However, decomposition into simpler primitive motions (e.g.
periodic and discrete) is necessary for a robotic device for
technical reasons. The fusion of such primitive actions with
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different parameters (e.g. duration, amplitude e.t.c.) can repro-
duce more delicate and human-friendly actions.

In the next section, we will briefly provide the preliminaries
of our works, based on which, we develop an integrated
perception-based motion planning and interactive control sys-
tem, which is able to incorporate the recent advances of
visual human perception algorithms (in particular on-line
segmentation and reconstruction of human body parts) and
can simultaneously, in the context of the envisaged application,
imitate and execute proper washing actions.

III. PRELIMINARIES

A complete perception-based washing system consists of
two main parts, a vision-based controller and an adaptable
motion representation. The former one enables the system to
perceive and handle the change of the environment, especially
in our scenario the moving, curved and deformable washing
surface. The latter one introduces the possibility of imita-
tion learning and reinforcement learning by demonstration of
health-care experts and generates adaptable washing actions.

A. Perception-Based Motion Planning

The basic goal of the perception based motion planning
is to calculate on the fly the leader reference pose, around
which each learned washing motion will be applied. This ap-
proach commences with the planning of the leader movement
primitive’s path on a fixed 2D “Canonical” space, which is
spatially normalized, as depicted with blue color in Fig. 2.
This space can be considered as a canvas on which any path
can be inscribed, in order for the robot to be able to navigate
on any part of the surface that needs to be washed (e.g. the
back of the user). This path is followed by using a controller
U = H (−∇ϕ), where H is a function as defined in [23], and
ϕ is a navigation function of the form:

ϕ(q, t) =
γ(q, t)

[γκ(q, t) + β(q, t)]
1/κ

(1)

where κ > 0, γ is the distance to the 2D leader DMP,
β(q) is the product of obstacle areas described as functions
resulting from visual feedback, q is the position vector in
“Canonical” space and U is the vector of velocity inputs.
Globally uniformly asymptotic convergence to the leader path
is guaranteed within the body-part and proved in [23].

Adaptation of the controller’s result on the operating surface
is implemented with two bijective transformations. In particu-
lar, at each time step one point from the “Canonical” space is
transformed in the visually segmented boundaries of each body
part in Image space using affine transformation T1 (rotation
and anisotropic scaling). In this approach we define the Image
space (IM ) as the subspace of R2

+ with boundaries imposed
by the resolution of the depth camera (e.g. Kinect camera’s
basic resolution is 512 x 424).

The latter step of the adaptation includes the transformation
T2 of the point on the Image space to the Task space (V ),
i.e. the R3

+ subspace which lies within the camera field of
view (FOV ). Basic assumption of this approach is that the
body part which will be washed lies within the Task space

Fig. 2: Perception-based motion planning. A leader DMP point
(i,j) from the Canonical space is transformed with bijective trans-
formation T to the point (u,v) of Image space and then with
bijective transformation T to the point (x,y,z) of the body-part. From
the neighborhood of (x,y,z) we are able to calculate the reference
orientation.

and the workspace of the robot at the same time. This means
that the camera extrinsic parameters are known and the user
is properly positioned and oriented with respect to the robot
and the camera. In general, calibration of camera extrinsic
parameters is a challenging task and can affect the accuracy
of the algorithm, but this assumption can be fulfilled in a static
set-up such as the I-Support system, Fig. 1.

Proposition 1: The transformation T2 (which is represented
by the camera projection) from the Image space (i.e. IM =
{(u, v) : u ∈ [0, µ], v ∈ [0, ν]}, where µ, ν are the image
width and height respectively, to the Task space (i.e. V =
{(x, y, z) ∈ FOV }) at each time step is a bijection.

Proof: We provide a descriptive and intuitive proof. The
basic idea results from the fact that a ray starting from the
camera’s optical center passes through the Image space and
meets a point in the Task space. The latter is always true in an
indoor environment. Therefore, ∀(u, v) ∈ IM ⇒ ∃ (x , y , z ) ∈
v . Using ray-casting technique it is easy to show that this
point is unique, since the same ray cannot meet two points in
the Task space at the same time. From the previous we can
conclude that the transformation T2 : IM → V is one-to-one
(injective) and onto (surjective), so it is bijective. �

In order to calculate the leader reference position and
orientation, we use depth information of the pixel (u, v) and
its neighboring pixels in the Image space, collecting a group of
3D points. This group of points in the Task space forms a small
planar segment of the body part surface. For the reference
position we calculate the percentile median point, whereas
for the reference orientation we apply Principal Component
Analysis to the covariance matrix of the collected points and
use the eigenvectors as a local reference frame, as described
in detail in [23].

One major issue of this approach is the visual occlusion of
the surface, which occurs during the robot’s operation. This
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Fig. 3: The procedure of learning CC-DMP by human demonstration
includes the separation of the motion into discrete and periodic part.
Left: A demonstrated washing action Middle: Separation of the
demonstrated motion into primitive discrete and periodic motions.
Right: The reproduced motion by the CC-DMP method (blue) is
similar to the demonstrated one (dashed).

problem is tackled by adjusting the size of the neighborhood of
pixels mentioned above. The larger occlusion occurs, the larger
the neighborhood should be so we can locally reconstruct the
missing depth information from the surrounding pixel’s depth.

Remark 1: The size of the robotic end-effector should be
related to the curvature of the surface area. For example, if
the robotic arm is large and causes a large visual occlusion,
the local estimation of surface’s curvature would be coarse in
a highly curved area.

Remark 2: The reconstruction of the missing depth data
from Kinect sensor can be solved with efficient image in-
painting techniques presented in [25], [26]. The implemen-
tation of these computer vision algorithms is out of the scope
of this paper. In our implementation we apply a planar fit in
the missing data. In addition, the problem of missing visual
data is highly reduced in multi-camera systems such as the
I-Support, Fig. 1.

The described bijective transformations serve as a feedback
to the controller as well. For example obstacle areas in the
Task space (e.g. the hands of the user, or injuries on the back
region) which are visible by the camera can be transformed
back to the “Canonical” space by using the inverse procedure.
In more detail, the black region in Fig. 5 represents a bandage
on a body-part, which covers an injured region. This region
is visually perceived and is transformed back and maximizes
the values of the navigation function vector field in the
corresponding coordinates. This modification will affect the
execution (blue path) of a demonstrated leader DMP (red
path) which passes through this area, preventing the robot
from washing this sensitive area. Therefore, the described
approach provides augmented perception properties to the
washing system, which include user motion compensation,
adaptability to different body-part size together with obstacle
avoidance.

B. Learning and Motion Adaptation

Instead of hard-coded trajectories, the robot can achieve
more human friendly washing motion by observing human

demonstrations. We choose DMP to represent washing move-
ment primitives as mentioned before, [7]. DMP is a damped-
spring system coupled with a nonlinear term: τ · v̇ =
K · (g − y) − D · v + scale · f , with the spring factor K,
the damping factor D and the nonlinear force term f , which
can be learned by observing the demonstration. The temporal
factor is τ , and g is the goal for discrete movement or the
anchor point for periodic movement. Also, v, v̇ and y specify
the current state of the motion. The scaling factor scale is
used for changed g or start position y0.

However, the traditional DMP cannot handle interactive
actions, such as wiping a dynamic surface. Hence, we devel-
oped a leader-follower framework called Coordinate Change
Dynamic Movement Primitive (CC-DMP), [15]. The idea of
CC-DMP is that we learn the follower’s DMP in the leader’s
coordinate system. In order to get the follower’s motion in
the global coordinate system, we multiply both sides of DMP
transformation system with a coordinate transformation RLG, as
in (2), where the superscript G denotes the global coordinate
and L denotes the local coordinate. The leader’s motion can
also be encoded by an another DMP, which, together with
the follower’s DMP, constructs a leader-follower framework
realizing the adaptation of the follower’s movements to the
leader’s behavior.

τ ·RLG,t+1 · v̇G = RLG,t · (K · (gG − yG)−D · vG+

scaleG · fG)

τ ·RLG,t+1 · ẏG = RLG,t · vG
(2)

In order to learn a washing action and keep its capacity of
generalization, we first detect and separate periodic pattern of
motion from its discrete part by performing signal analysis
such as Fourier transformation described in [15]. The discrete
part of a washing motion encodes the action direction such as
top-down, left-right or some special movement. The periodic
pattern encodes the functional primitive, which can be a cyclic
motion, Fig. 3. In the extreme case, a motion whose periodic
pattern has zero amplitude is a simple discrete motion. By
this separation and representing both parts with DMP, we can
modify the motion according to the user’s preference or task
constraints. Fig. 3 shows one simple way to extract both
parts of a washing action and reproduce it with CC-DMP. The
accuracy of the reproduction is dependent on both separation
and learning. Despite the accurate learning properties of DMP,
signal splitting might cause information loss. Nevertheless,
signal splitting can be avoided by customizing the expert’s
demonstration strategy.

Hence, a complete washing system based on CC-DMP has
multiple leaders and followers. In the high level, the user’s
movement is the leader and a periodic motion is the follower.
However, since the user’s movement is not predictable in the
general case, we need sensor feedback to perceive the change
of the surface instead of learning user’s movement with a
DMP. In the low level, the discrete part of the motion is
leader and the periodic pattern is the follower, both of which
can be learned by demonstration with DMPs. However, in our
previous work [15], we have not included the perception of
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Fig. 4: Perception-based washing system. The output of the body-
part visual segmentation and the depth data provided by the camera
is the input of this system, while the output is the target washing
action of the robot’s end-effector.

the environment. All the experiments mentioned in that paper
are conducted in the simulator, in which the movement of the
user is known by the system.

IV. PERCEPTION-BASED WASHING SYSTEM

If the desired washing movement is simple and predefined, a
vision-based controller described in Sec. III-A can successfully
adjust trajectory points one-by-one on a dynamical surface
to generate a desired action. In the meantime, if the surface
has known structure and does not change significantly during
the motion evolution, CC-DMP described in Sec. III-B can
flexibly generate complex trajectories learned by demonstra-
tion and adapt the movement to the surface’s already modeled
dynamic behavior.

However, in a washing case study, the size of each body-part
differs among users and the body shape may change during the
washing procedure, thus, we cannot generate an appropriate
motion by pure imitation learning which cannot generalize
for a relatively large change in the environment. On the
other end, a pure perception-based controller cannot generate
human-demonstrated washing trajectories. Furthermore, the
preferences of each user may differ or change during the
washing procedure, which requires the online modifications
of motion parameters (e.g. amplitude, velocity). Therefore,
this online motion modification requires the properties of a
dynamical system such as CC-DMP.

Hence, we create a hierarchical washing system, shown in
Fig. 4, by merging the described approaches, to achieve more
robust behavior and to increase the capabilities of the system.
In this system, we consider the discrete part of a washing
action as the leader and the periodic pattern as the follower.
The learned leader’s motion primitive outputs a reference point
in the “Canonical” space, which is followed by the Navigation
Function controller. The output is adjusted in the body-part
extends and then transformed on its surface, Fig. 2. The leader
global pose is calculated by the analysis of camera’s depth
data in a small neighborhood of the visually segmented target
area as described in Sec. III-A. In the latter step of this
workflow, the follower movement primitive calculates the next
point in the leader’s local coordinate system, then transforms
it to the global or robot’s coordinate system. The final step is

Fig. 6: Adaptation of a linear leader DMP (red) on a deformable
surface (PointCloud view). The normal vector (blue) and the ap-
plication of a follower periodic washing action is demonstrated on
several segments of the path. Perspective and top views of a surface
are depicted, subject to several unknown levels of deformation.
Top: No deformation. Middle: Medium deformation. Bottom: High
deformation.

to use inverse kinematics to calculate the next required joint
configurations of the robot and its low-level controller to drive
the robot’s end-effector to the next desired pose.

The time and spatial adaptation, together with the decompo-
sition of the learned washing actions allows for planning of a
large repertoire of motions and adaptation on deformable sur-
faces as well. This repertoire includes different combinations
of discrete and periodic actions, which may vary according to
the washing sequence (e.g. pouring water, scrubbing, soaping
etc.) decided by the user or the healthcare expert. It also in-
cludes the capacity of the perception-based system for on-line
adaptation on large and a-priori unknown surface deformations
of the target part. An indicative example is presented in Fig. 6,
in which a linear discrete motion (red) is adapted on a surface
formed by a plane paper of unknown, but visually perceived
curvature and deformation. The estimated local vector (blue)
and the execution of a cyclic periodic pattern (green) are
also demonstrated in several segments of the leader’s path.
The local curvature estimation at each time step not only
compensates the surface’s motion and deformation, but also
permits the regulation of the perpendicular distance of the
robot’s end-effector to the surface. This regulation enables
the execution of actions that involve physical contact (e.g.
scrubbing), thus also indirectly involving the application of
forces without any additional feedback, as well as actions that
involve no contact with the surface (e.g. pouring water).

V. EXPERIMENTAL STUDY

An experimental setup, suitable for validating the perfor-
mance of the proposed approach with similar configuration
to the I-Support system, is employed that includes a single
Kinect-v2 camera providing depth data for the back region of
the subject, with accuracy analyzed in [27]. The segmentation
of the washing surface is implemented, for the purposes of
the following experiments with a color filter to the pixels of
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Fig. 5: Scenario I: ARMAR-III wipes a static whiteboard. Left: An obstacle area (e.g. injury depicted with black patch) is detected in the
Task space and transformed back to the Canonical space. The Navigation Function potential field is maximized in the corresponding area
and the boundary of the workspace. Middle: The leader DMP path (red) is defined and an attractive vector field leads to the target point.
Right: The controllers output is the blue path and is executed by the robot, avoiding the sensitive injured area. After the obstacle avoidance
the end-effector’s motion converges again the indicated linear motion primitive.

the image obtained from Kinect-v2 camera. The setup also
includes an ARMAR-III robot.

A. Experimental Scenarios

In order to test our methods, we consider the following
experiments:

• Scenario I: ARMAR-III wipes a static whiteboard. The
discrete part of this washing action is a vertical top-down
movement. Obstacle avoidance is demonstrated in this
experiment, Fig. 5.

• Scenario II: ARMAR-III wipes a dynamic whiteboard,
which is held by a person and rotated/translated from time
to time, Fig. 7.

• Scenario III: ARMAR-III wipes a male subject’s back.
He is moving his back during the experiment to demon-
strate the adaptation of the robot motion to the subject’s
movement. For safety reasons, ARMAR-III has no real
contact with the person, Fig. 10- 11.

We choose a whiteboard for this experimental procedure in
order to bypass difficulties imposed by image segmentation,
which is out of the scope of this paper, and as a reference
surface for validation purposes.

B. Results & Discussion

In Figures 5 – 11, the results of all experimental scenarios
are presented. ARMAR-III uses all 7 DOFs of its right
arm and its hip yaw joint to generate functional washing
actions. A washing task with obstacle avoidance (Scenario I)
is demonstrated in Fig. 5, in which an obstacle area indicated
with a black patch (e.g. an injury on the back region) intersects
with the motion of the robot if a leader top-down path (red)

Fig. 7: Scenario II: ARMAR-III is wiping a dynamic whiteboard
and a person moves the board. ARMAR-III is holding a yellow
sponge, which keeps contact with the surface. The wiping movement
is adapted to the surface’s motion. Top: PointCloud view of the
whiteboard and the robot’s end-effector showing instances of the
adaptation of the wiping motion with the green trajectory. Bottom:
Side camera view of the wiping action indicating with the red arrow
the motion of the whiteboard implied by the human.

is directly executed. In particular, the injured area is visually
perceived and is transformed back to the Canonical space using
the inverse T and T transformations. This information is
inserted into the Navigation function as in (1), maximizing the
values of the potential field in the corresponding coordinates.
As soon as the leader DMP path (red) is defined, an attractive
vector field is formed and leads to the target point. The robot
executes a modified path (blue) and avoids to wash the obstacle
area.

In addition, the results of Scenario II are intuitively vi-
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Fig. 8: Evolution of the reference position for the wiping motion
and the executed robot end-effector position, during Scenario II that
involves a moving planar surface.

Fig. 9: Evolution the reference orientation for the wiping motion and
the executed robot end-effector orientation, during Scenario II that
involves a moving planar surface

sualized in the top of Fig. 7, using the Point cloud view
provided by the Kinect camera and a sequence of green
points showing the evolution of the circular motion and its
adaptation to the movement of the whiteboard. In order to
validate the performance of the robot during the periodic
action, we compared the reference path computed by the
washing system with the end-effector path calculated from the
robot’s forward kinematics. More specifically, Fig. 8, 9 depict
the time evolution of the reference pose (position & orientation
quaternion) in red color and the executed robot end-effector
pose in blue color during the wiping motion of the planar
surface (Scenario II). It is apparent, that the robot manages
to follow the surfaces pose compensating with it’s motion and
simultaneously execute the wiping action. Furthermore, the
executed path quickly converges to reference with bounded
error both in position and orientation.

In Scenario III, the robot executes the washing trajectory
over the back region of a male subject. In more detail, in
Fig. 10 the subject moves to the right, while in Fig. 11 he
moves backwards. In both cases the robot with the aid of the
proposed motion planning approach manages to compensate

Fig. 10: Scenario III: ARMAR-III is wiping a male subject’s back
region. The subject is moving to the right and the robot follows
the motion. Left: Side camera view of the subject performing a
translation to the right. Right: Zoomed Point cloud view of the
experiment highlighting the adaptation of the wiping motion (green
trajectory) to the movement of the subject. Safe distance is kept
between the back and ARMAR-III’s end-effector.

Fig. 11: Scenario III: ARMAR-III is wiping a male subject’s back
region. The subject is moving backwards and the robot follows
the motion. Top: Side camera view of the subject performing a
translation backwards. Bottom: Point cloud view of the experiment
highlighting the adaptation of the wiping motion (green trajectory) to
the movement of the subject. Safe distance is kept between the back
and ARMAR-III’s end-effector.

with the movement of the subject, without interrupting the
washing task indicating the applicability of this approach to
real life scenarios.

VI. CONCLUSION AND FUTURE WORK

This paper presents a vision-based washing system, which
is capable of adapting the motion of a robotic end-effector to
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a moving and non-rigid surface, such as the back region of
a person. This goal is achieved by merging two methods, a
leader-follower motion primitive framework (CC-DMP) with
a visual perception based controller. This fusion carries out
human-friendly washing tasks, by incorporating the expertise
of health-care experts with imitation learning techniques, while
enhancing on-line adaptation to dynamic moving and de-
formable objects (in our case, body parts). We conducted sev-
eral experiments with a humanoid robot ARMAR-III, which
applies washing actions on a planar surface (either static or
moving) and over the back region of a subject.

For further research, we intent to ameliorate this system
by expanding the repertoire of learned washing actions and
smoothly integrate them to the technical requirements of a
multi-camera robotic system, which will reduce the occlusion
problem. We can also make the system more interactive by
applying shared control techniques and by letting the user
adjust on the fly the parameters of the robotic motion and
the contact forces according to his/her feeling. In the future,
we aim towards smoother and more robust contact with the
human body, by incorporating force based control approaches
[28]–[30] to the current method, fusing information from both
vision and tactile sensors.

The system will be further integrated and experimentally
validated using the soft arm shower robot developed in the
frames of the I-Support project.
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