
Learning Temporal Task Models
from Human Bimanual Demonstrations

Christian R. G. Dreher and Tamim Asfour

Abstract— Learning temporal relations between actions in
a bimanual manipulation task is important for capturing
the constraints of actions required to achieve the task’s
goal. However, given several demonstrations of a bimanual
manipulation task, the problem of identifying the true temporal
dependencies between actions – if there are any – is very
challenging due to contradictions. We propose a model-driven
approach for learning temporal task models from multiple
bimanual human demonstrations that represents temporal
relations on two levels. First, temporal relations between sets
of actions that exhibit a tight temporal coupling, and second,
temporal relations between these sets of actions. We build on
Allen’s interval algebra as a representation to express relations
between temporal intervals. Semantically defining these interval
relations allows us to soften their formulation to deal with
inaccuracies in real data obtained when observing humans
demonstrating the task. Our temporal task models can be
learned incrementally from multiple modalities, and allow us to
reason about viable alternatives during task execution in case
of unexpected events. We evaluated the approach quantitatively
on two datasets and qualitatively on a humanoid robot. The
evaluation shows how inherent properties of bimanual human
manipulation tasks can be exploited to derive a model useful
for the reproduction by humanoid robots.

I. INTRODUCTION

For a human, a humanoid robot is supposed to assume the
role of another fellow human with human-like capabilities
in order to be a useful help in common tasks, or completely
take care of them. Humans often transfer knowledge about
a task simply by showing it to others, and correcting the
other during imitation if needed, for example kinesthetically,
verbally, or by showing the task again. It is reasonable to
expect such capabilities from a humanoid robot interacting
with a human, too, especially since (re-)programming the
robot by non-experts is generally not feasible. In robotics, the
discipline endeavored to endow robots with such capabilities
is referred to as Programming by Demonstration [1]. One
integral component in the programming by demonstration
cycle is concerned with the question of how to model what the
robot perceives in such a way that it can reproduce the task at
hand. These task models are representations of tasks, encoding
all essential information needed to successfully execute the
task in novel situations and contexts. Especially symbolic or
geometric constraints to be derived from demonstration are
important since they must be obeyed to ensure a successful
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Figure 1. ARMAR-6 solving a clean-up task in a way not seen before in
human demonstrations. A temporal task model 1⃝ is used to infer temporal
constraints between actions 2⃝. In this scenario, the robot could initially
not locate the brown box of cereal bars, discarding the initial plan 3⃝ and
preferring an unseen action order instead 4⃝, which is in compliance with
the derived temporal constraints.

task execution. Apart from that, these constraints are essential
for generalization to novel situations.

Consider for example the task of making muesli by pouring
some cereals, milk, as well as banana slices into a bowl. The
order in which the ingredients are poured into the bowl does
not matter, as long as the banana has been cut into slices
before pouring them into the bowl. Let’s assume that the
robot has a complete temporal task model that represent
actions and their temporal relations, and it observes a human
preparing muesli by cutting a banana, the robot could then
proactively help the human by already pouring cereals or
milk into the bowl. The robot can also make use of the
learned temporal constraints to mitigate problems during the
execution by replanning the order of actions to be executed.
For example, if the robot temporally lost track of the milk
due to occlusions, it might just fall back to pour the cereals
instead until the bottle of milk is visible again. A similar
problem is depicted in Figure 1.

In this work, we explore the question of how to model
temporal relations between actions in human bimanual
demonstrations in order to extract temporal constraints that
are useful for the reproduction of the task on a humanoid
robot. We propose a model-driven approach for learning
and inferring relevant temporal information between actions



in demonstrated tasks by exploiting inherent properties of
them. Specifically, we show how the decomposition of a task
into subtasks can help identifying temporally tightly coupled
human bimanual manipulation actions.

Our contributions are: (i) A temporal task model that
is used to identify true temporal relations of actions from
human demonstration for the reproduction of a task, (ii) a
softened formulation of temporal relations that is usable for
real-world data, (iii) an evaluation of the formulation of our
temporal task model on two new publicly available datasets
for learning temporal relations of complex manipulation
actions, one manually labeled, one synthetic, as well as on the
humanoid robot ARMAR-6, (iv) a synthetic dataset creation
tool, datasets and source code for the implementation of
the temporal task model are publicly available under an
open-source license.

II. RELATED WORK

Pivotal works on temporal relations were published by
Allen in [2] and [3], who introduced a calculus to reason
about all possible temporal relations two intervals can have,
resulting in 13 temporal relations such as before, during, etc.
A formal definition of this calculus follows later in Section III.
These relations are often used in the context of temporal
planning, however, the formalism is generally defined on
intervals, and can be applied to non-temporal domains as
well, such as modeling spatial occlusions [4]. For many real-
world applications, Allen relations, which are defined on
crisp intervals (meaning intervals whose elements have a
definitive membership), are not flexible or expressive enough.
To circumvent this, many extensions to Allen relations were
proposed, defined on fuzzy time intervals, e. g., by Schockaert
et al. [5]. In this work, we also build upon Allen relations as
a way to represent temporal task knowledge.

We structure the related work in two parts. First, we
discuss works including action precedence relations and action
ordering, i. e., works that do not consider concurrent actions
or multiple agents in Section II-A. Second, works considering
complex and concurrent temporal relations are addressed in
Section II-B.

A. Precedence Relations and Action Ordering

Nicolescu and Matatrić [6] proposed a system, which is able
to generalize the precedence relations of actions across several
demonstrations by finding the longest common sequence.
Alternative sequences are represented in a directed acyclic
graph, and new demonstrations can be added incrementally.
The purpose of this system was to identify falsely detected
actions in demonstrated tasks, not to solve the problem of
finding precedences between actions. Ekvall and Kragić [7]
presented an approach for temporal constraint generalization
by identifying precedence relations and eliminating contra-
dicting precedence relations from several demonstrations. A
similar approach was followed by Pardowitz et al. [8], where
Precedence Graphs were proposed to model observed action
precedence relations. Here, nodes represent the actions, and
a directed edge denotes a precedence relation. When a new

demonstration is observed, which contradicts the precedence
graph, the corresponding edge is removed from the graph,
thus lifting the constraint. Both works follow a version space
[9] approach by excluding contradictions in the transitive hull
of precedence relations of all actions as they are observed in
a task. Similarly, Kramberger et al. [10] tackle the problem
of learning precedence constraints in assembly scenarios in
combination with geometrical constraints.

Xiong et al. [11] propose the use of And-Or graphs to
model spatial, causal, and temporal constraints. For temporal
relations, either an and relation or an or relation between ac-
tions is defined. Here, an and relation is a precedence relation,
while an or relation denotes mutual exclusiveness (i. e., the
actions are conflicting). A stochastic framework was used to
populate And-Or graphs with new demonstrations. Racca and
Kyrki [12] propose a probabilistic approach to incrementally
learn user-preferred task orders using a Dirichlet-multinomial
model to learn Markov chain parameters. While demonstrating
a task, the robot is able to ask questions about optional actions
(so-called frequency queries) or to get the preferred action
precedences of the user (so-called disambiguation queries).
The authors provide a mapping of answers to these queries
onto the Dirichlet-multinomial model to get an updated set
of Markov chain parameters.

Especially the works based on version space approaches
require perfect data, as they work on the assumption that
contradictions imply that constraints can be lifted. In reality,
contradictions may simply emerge from errors, whether they
come from humans themselves during demonstration, or from
a preprocessing step of the data. Additionally, all these works
have in common, that they only consider precedence relations,
i. e., no concurrency between actions. Thus, the inherent
concurrency in human bimanual manipulation tasks cannot
be represented with such models. Compared to these works,
we consider all possible temporal relations between each pair
of actions in a task, especially concurrent actions, to allow
modeling bimanual demonstrations.

B. Complex and Concurrent Temporal Relations

Allen builds a temporal model represented as a graph,
referred to as a network, where nodes represent actions, and
edges all possible temporal relations [2], [3]. As already
mentioned, these 13 relations (details in Section III) fully
describe how two temporal intervals qualitatively relate to
each other. The work aimed at the iterative construction of
graphs, which capture all temporal relations that hold between
a set of intervals. For this, a version-space-based approach was
proposed, deducing new relations after new demonstrations,
referred to as facts, are added using a transitivity table. In
the context of temporal planning, Rossi et al. learn local
temporal preferences of to-be scheduled activities in order
to get better-suited plans without posing hard constraints
to the planning problem. These preferences are modeled
with functions, so-called preference functions, and pose
soft temporal constraints which can introduce quantitative
constraints [13], [14]. Talukdar et al. use a large text corpus to
reason about temporal constraints between binary predicates.



The considered constraints are before or simultaneous, and
are evaluated under the assumption that particular verbs in
text indicate certain temporal relations [15].

In the context of robotics, Asfour et al. detect keypoints
in bimanual manipulation tasks. Common keypoints across
several demonstrations are used to infer temporal relations for
the reproduction and temporal coordination of trajectories for
the left and the right hand [16]. Ye et al. propose Manipulation
Precedence Graphs, a graph structure very similar to other
works [7], [8]. Their approach considers, which actions can
be executed in parallel by finding nodes in the precedence
graph, which do not have any incoming edges. This approach,
however, only works under the assumption that the actions
are both temporally and spatially independent, and also that
each end-effector is able to perform all actions independent
of the other end-effectors. Thus, the model cannot capture if
actions must be executed concurrently, or any other specific
degree of concurrency [17]. Carpio et al. [18] propose an
n-gram-based model considering the current temporal context
given via Allen relations to reason about the next action.

Similar to the version space approaches for sequential
actions, the formulation of Allen assumes perfect data. For
the work of Rossi et al., this is also the case. Compared to
that, we build a temporal task model by encoding temporal
relations observed between actions in a human demonstration,
reasoning about which relations most likely hold. This is
similar to the idea of Talukdar et al., except that information
from human demonstration is much sparser than large text
corpora. Compared to Ye et al., our model fully captures the
qualitative temporal arrangement between actions. Contrary
to Carpio et al., we infer true temporal relations from the
complete set of all demonstrations, building a temporal task
model, which allows to replan and reevaluate the next actions
of the robot during execution in case of unexpected events.

III. BACKGROUND

In this work, we define temporal relations following Allen’s
formulation [2], also referred to as “Allen’s interval algebra”,
or “Allen relations”. These are 13 relations on intervals, 7
basic ones, namely before, meets, overlaps, starts, finishes,
during, equals, as well as 6 inverse relations, namely after,
met by, overlapped by, started by, finished by, contains. The
equals relation is symmetric and thus its own inverse.

An interval is a tuple i = (is, ie) with is, ie ∈ R and
is < ie. Here, is is the start of the interval i, and ie its
end. The 13 Allen relations on intervals x and y can then be
defined as shown in Table I. Further, the size s of an interval
is defined as s(i) = ie− is. The set of all intervals is denoted
as I . In the following we will use the notation R(x, y) ⇔ c
as a short-hand to express that two intervals x, y ∈ I are part
of the relation R iff the condition c holds.

Instead of the definition provided in Table I, we seman-
tically define the 7 basic Allen relations on intervals x
and y over 8 point relations, precisely on interval starts
and ends, as shown in Table II. The inverse Allen rela-
tions are defined through their respective basic counter-
parts. These point relations can be defined as shown in

TABLE I
THE 13 TEMPORAL RELATIONS ON INTERVALS AFTER ALLEN [2].

Allen Relation Condition Example
Inverse Relation

before(x, y) ⇔ xe < ys
x

y
after(y, x)

meets(x, y) ⇔ xe = ys
x

y
met by(y, x)

overlaps(x, y) ⇔ xs < ys ∧ xe < ye x
y

overlapped by(y, x) ∧ xe > ys
starts(x, y) ⇔ xs = ys ∧ xe < ye

x
y

started by(y, x)
finishes(x, y) ⇔ xs > ys ∧ xe = ye

x
y

finished by(y, x)
during(x, y) ⇔ xs > ys ∧ xe < ye

x
y

contains(y, x)
equals(x, y) ⇔ xs = ys ∧ xe = ye

x
y

equals(y, x)

TABLE II
SEMANTIC DEFINITION OF THE 7 BASIC ALLEN RELATIONS.

# Allen Relation Condition

1 before(x, y) ⇔ x ends before y starts(x, y)
2 meets(x, y) ⇔ x ends when y starts(x, y)
3 overlaps(x, y) ⇔ x starts before y starts(x, y)

∧ x ends before y ends(x, y)
∧ x ends after y starts(x, y)

4 starts(x, y) ⇔ x starts when y starts(x, y)
∧ x ends before y ends(x, y)

5 finishes(x, y) ⇔ x starts after y starts(x, y)
∧ x ends when y ends(x, y)

6 during(x, y) ⇔ x starts after y starts(x, y)
∧ x ends before y ends(x, y)

7 equals(x, y) ⇔ x starts when y starts(x, y)
∧ x ends when y ends(x, y)

TABLE III
THE 8 POINT RELATIONS USED TO DEFINE THE ALLEN RELATIONS.

# Point Relation Condition

1 x starts before y starts(x, y) ⇔ xs < ys
2 x starts when y starts(x, y) ⇔ xs = ys
3 x starts after y starts(x, y) ⇔ xs > ys
4 x ends before y starts(x, y) ⇔ xe < ys
5 x ends before y ends(x, y) ⇔ xe < ye
6 x ends when y starts(x, y) ⇔ xe = ys
7 x ends when y ends(x, y) ⇔ xe = ye
8 x ends after y starts(x, y) ⇔ xe > ys

Table III to get an equivalent point-based formulation of
the Allen relations from Table I. Later we will redefine
the meaning of these 8 point relations to cope with the
properties of real data. Theoretically, only 6 point relations
are needed, since the relations x starts before y starts(x, y)
and x starts after y starts(y, x), as well as the relations
x ends before y starts(x, y) and x ends after y starts(y, x) ex-
press the same condition respectively, and their equiva-
lence is given by swapping the arguments. Thus, one has
x starts before y starts(x, y) = x starts after y starts(y, x), and
x ends before y starts(x, y) = x ends after y starts(y, x). For
the sake of clarity, and similarly to the inverse Allen relations,
two redundant point relations were defined for these cases.



IV. APPROACH

We will present our approach to build temporal task models
from real data. We start with the concrete problem formulation
in Section IV-A and describe how we derive temporal relations
suitable for real data, where actual temporal equality is hardly
observed in Section IV-B. Using these sets of relations, we
show in Section IV-C, how a temporal task model describing
temporal relations between actions in a task is built up. Finally,
in Section IV-D we conclude by showing how subtasks,
temporally tightly coupled sets of actions a task is composed
of, can be identified from such a temporal task model.

A. Problem Formulation

An action in the context of this work is an elementary
manipulation movement and always intertwined with an
object. For example, we consider the actions pour milk and
pour water to be different. This assumption is important
to establish a temporal task model and is motivated by the
concept of Object-Action-Complexes [19], which postulate
that movements alone do not describe a manipulation action,
but that an action is defined by a movement applied to an
object, a fundamental aspect to consider.

A task is a set of actions, which need to be performed on
objects in order to achieve the task goal. A task consists of
one or many subtasks, which are elementary building blocks
of a task. We assume in this work, that actions inside one
subtasks may feature concurrent actions, but that the temporal
relations between subtasks are either precedence relations
such as before, after, meets, or met by or none at all, i. e., the
execution order does not matter. A task aims at achieving
a specific goal, e. g., the task prepare muesli, with the goal
to have a prepared muesli ready. A subtask achieves a sub-
goal, which contributes towards this goal but is usually not
meaningful on its own, e. g., the subtask cut banana to have
banana slices to put it in a muesli as an ingredient.

A demonstration of a bimanual manipulation task is a
two-track sequence of observed actions, one action sequence
for each hand. Here, an action is always associated with a
temporal segment, i. e., an interval with a temporal start and
end point. To account for non-manipulation actions (such as
approaching an object, retreating from an object, . . . ), as well
as for potentially incomplete segmentation or classification
of an action recognition system, we do not assume that
the temporal segmentation is complete. Additionally, we
assume that one hand can only execute one action at a time,
hence the temporal relations between actions of one such
track (e. g., for the left or right hand) are purely precedence
relations (before or meets) and do not overlap. Theoretically, a
demonstration can be extended to multi-track (or multi-agent)
demonstrations, for example, to also account for platform
movement in mobile manipulation scenarios.

In this work, we address the problems of building a model
of temporal constraints between actions from multiple demon-
strations, a temporal task model and using it to infer true
temporal relations in subtasks (intra-subtask temporal rela-
tions) and between subtasks (inter-subtask temporal relations).
The temporal constraints are based on Allen relations and

should be able to capture bimanual manipulation tasks. These
temporal task models allow identifying subtasks in human
demonstrations, which are essential for the reproduction on a
robot system. We represent the temporal task model as a fully-
connected directed graph Gn = (V,E), where the nodes V
represent actions, and edges E the temporal relations between
actions. Specifically, each edge (a1, a2) ∈ E tracks the
absolute frequencies of occurrence of the temporal relations,
which were observed between the actions a1 ∈ V and a2 ∈ V
across all demonstrations. This is done by assigning edge
attributes to each edge for each temporal relation. Inferring
true temporal relations between actions requires us to discard
edges that show contradictory relations, and to fix exactly
one temporal relation for each remaining edge given the
frequencies of occurrence from all demonstrations. This
means that we commit to one temporal relation from the
distribution of all relations observed between a given pair of
actions. This problem is hard, because naively choosing the
most likely relation may lead to contradictory constraints.

B. Soft Allen Relations

When learning temporal task models from human demon-
stration, temporal constraints should be extracted from real
sensor data which does not allow the exact identification
of the starts and ends of actions. This makes the Allen
relations not suitable to model temporal constraints in real-
world applications.

To address this problem, we soften the Allen relations by
allowing for a margin m wherein co-occurring starts or ends
of intervals are still considered to be simultaneous. We derive
the Allen relations from the semantic definition from Table II
together with softened definitions of the 8 point relations
from Table III using an interval-size-normalized margin
mn(x, y) = min(s(x), s(y),m). The softened conditions
for the 8 point relations are shown in Table IV. With this
approach, we change the meaning of what is considered equal,
accounting for various sources of imprecision when dealing
with intervals derived from real data.

TABLE IV
REDEFINITION OF THE 8 POINT RELATIONS TO SOFTEN EQUALITY.

# Point Relation Condition

1' x starts before y starts(x, y) ⇔ ys − xs > mn(x, y)

2' x starts when y starts(x, y) ⇔ |xs − ys| ≤ mn(x, y)
3' x starts after y starts(x, y) ⇔ xs − ys > mn(x, y)
4' x ends before y starts(x, y) ⇔ ys − xe > mn(x, y)
5' x ends before y ends(x, y) ⇔ ye − xe > mn(x, y)

6' x ends when y starts(x, y) ⇔ |xe − ys| ≤ mn(x, y)
7' x ends when y ends(x, y) ⇔ |xe − ye| ≤ mn(x, y)

8' x ends after y starts(x, y) ⇔ xe − ys > mn(x, y)

In our work, we empirically set m = 330ms. Note that a
margin m = 0 would recreate the behavior of the original
definitions of the Allen relations given in Table III. For
small intervals, which are roughly the size of the margin,
this approach might result in more than one relation that
holds. In this case, we re-evaluate the possible relations after
reducing the margin by one. We do this recursively until only



one temporal relation holds. This happens at the latest when
m = 0. As mentioned, this is then equivalent to evaluating the
original Allen relations, which are mutually exclusive given
a concrete pair of intervals, and thus always unambiguous.

C. Building a Temporal Task Model from Demonstrations

As posed in Section IV-A, we define a temporal task model
as a graph Gn = (V,E), where the nodes V represent actions,
and edges E track the absolute frequencies of occurrence
of the temporal relations, which were observed between the
actions. Note that the handedness will be abstracted away in
the temporal task model. This allows for better generalization
between left and right-handed demonstrators, and better data
efficiency since we can assume that bimanual robots are
ambidextrous, and we think that a task representation should
abstract from human motor limitations.

Consider for example the case where 10 demonstrations of
a muesli-making task were observed. In 7 cases, the human
demonstrator poured the cereals into a bowl before they
poured the milk into it, while in the remaining 3 cases they
poured the milk first. Then the edge attributes for the edge
(pour cereals, pour milk) in the graph would exactly reflect
these numbers: before: 7, after: 3, meets: 0, ..., equals: 0.
Similarly, the contrary edge (pour milk, pour cereals) would
reflect the inverse: before: 3, after: 7, meets: 0, ..., equals: 0.

The temporal task model can incrementally be updated
with new demonstrations simply by incrementing the ab-
solute occurrence frequencies, i. e., the edge attributes of
the corresponding edges. Most importantly, the updates of
the temporal task model can also be weighted. This is a
very important feature to better reflect user preferences,
to adequately consider very representative demonstrations,
negative examples, or even incorporate direct user commands
from different modalities such as speech. For example, the
command “Never pour the milk before the cereals into the
bowl!” could be mapped straight-forward to the temporal task
model simply by freezing the absolute occurrence frequency
of the before relation in the edge attributes of (pour milk, pour
cereals) at zero (adjusting the contrary edge accordingly). The
robot could also ask questions about unclear or contradicting
temporal relations similar as done in other works [12].

D. Inferring Subtasks from the Temporal Task Model

Each edge in the temporal task model is a superposition
of all observed temporal relations from all demonstrations
between the actions. The process of inferring subtasks from
a temporal task model involves fixing one temporal relation
between each pair of actions in the temporal task model or
discarding it if no temporal relation is evident. Naively fixing
the most likely temporal relation in each edge is generally not
promising, since it could introduce inconsistencies. Hence,
in order to infer subtasks from the temporal task model, we
perform the following steps on a mutable copy of it.
1. Remove contradictory precedences: Edges in the temporal
task model that primarily show contradicting precedence
relations (before and after) in approx. the same amounts are
removed (similar to [7], [8]).

2. Identify execution threads: These threads are defined
as paths in the temporal task model, where the primarily
observed relation is meets and the same object is manipu-
lated. In real demonstrations, it is unlikely that both hands
simultaneously start/stop with an action. However, the meets
relation naturally occurs when one hand stops with one action
and transitions into another. Exploiting this property allows
implicitly reconstructing sequences of actions, which were
executed by one hand using the same object. The execution
threads serve as seeds to identify subtasks and are the first
relation to be fixed.
3. Identify concurrency: From all edges which were not
fixed yet, and given the sequential execution threads, we
search for predominantly concurrent temporal relations. The
following temporal relations are considered: equals, starts
and finishes, during and overlaps in that order. Here, we only
fix those relations which do not contradict any already fixed
relations and discard contradicting ones. The chosen order
ensures that relations requiring a tighter temporal coupling
are preferred (e. g., equals over starts).
4. Identify subtasks: The constructed graph is divided into
its weakly connected components, which are parts of a graph
not connected by any edges. We interpret these components
as subtask candidates, that potentially need to be split further
(e. g., along a common action which occurred several times
in demonstrations). To test if a split is necessary, we count
the number of execution threads of each subtask candidate
by dividing it again into its weakly connected components
while only considering edges fixed to meets. If the number of
resulting execution threads is 1 or 2, the subtask candidate is
a unimanual or bimanual subtask, respectively. If the number
is larger than 2, several subtasks collapsed at one common
action and thus require to be split for bimanual execution
along the common action. Note that multi-manual robots could
exploit this property to execute bimanually demonstrated tasks
multi-manually.
5. Identify subtask temporal relations: We identify potential
temporal relations between subtasks by pairwisely considering
the temporal relations between all actions of one subtask to
all actions of another subtask. The result can either be a
trivial temporal relation (before or after), or none at all.

Note that for each update of the temporal task model, the
procedure described above needs to be repeated to identify
the temporal intra- and inter-subtask relations. In Figure 2,
this process is shown for a temporal task model built with
data from a muesli preparation task.

V. EXPERIMENTS AND EVALUATION

We present two quantitative evaluations of the approach
on two new datasets, one synthetic dataset (Section V-A),
and one from real data (Section V-B), as well as a qualitative
evaluation, showcasing the usefulness of our approach on the
humanoid robot ARMAR-6 (Section V-C). Both datasets are
publicly available for download on our homepage1, together
with links to open source implementations.

1https://bimanual-actions.humanoids.kit.edu

https://bimanual-actions.humanoids.kit.edu
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Figure 2. Depiction of the 5 steps to infer the temporal intra- and inter-subtask constraints from a temporal task model shown in 0⃝. Top row: 1⃝ Removal
of contradictory precedence relations. 2⃝ Identification of execution threads. 3⃝ Identification of concurrency. Bottom row: 4⃝ Identification of subtasks.
Output: Intra-subtask temporal relations. 5⃝ Identification of precedence relations between subtasks. Output: Inter-subtask temporal relations. Note that each
of these gray areas outlines one graph, even though not all parts of them are connected.

A. Synthetic Dataset

Experimental Setup: For this evaluation, we define a
hypothetical scenario with actions and their temporal relations.
For this, a generator was implemented, which takes as input
a set of actions, together with a set of temporal constraints
between these actions, and outputs all possible demonstrations,
which are valid given the set of temporal constraints. We
perform a benchmark of the temporal task model using this
synthetic data. New demonstrations are iteratively added to
the temporal task model, after which subtasks and temporal
constraints are identified. The proposed temporal constraints
of our approach are compared against the ground truth
temporal constraints used to generate the dataset. For each
constraint identified by our approach or in the ground truth
data, there can be 4 possible outcomes: (i) True positive: A
temporal constraint is identified, which is in the ground truth
data. (ii) False positive: A temporal constraint is hypothesized
to be there, but it is not in the ground truth. (iii) False negative:
A temporal constraint is in the ground truth, but it was not
identified. (iv) True negative: No temporal constraints were
identified between two actions, and there is no corresponding
constraint in the ground truth. We report on the precision, as
well as the recall scores. Note that false positives can and
should occur by design because they can only be eliminated
after several demonstrations. False negatives, on the other
hand, should not occur. Thus, we aim for a recall as close
to 1 as possible, and only secondarily for a high precision.
The dataset consists of 216 demonstrations in an electric
motor disassembly scenario, where the motor housing and
the gearbox lid can be disassembled in any order. For this
experiment, 100 learning scenarios were simulated, starting
with one demonstration and consecutively adding a random
demonstration, which was not seen before. All demonstrations
were weighted equally.

Results: In Figure 3, the mean precision and recall with
standard deviation over all 100 learning scenarios are plotted
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Figure 3. Mean precision and recall with standard deviation over 100
simulated learning scenarios, beginning with 1 demonstration, and with
previously unseen demonstrations added consecutively.
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Figure 4. Number of learning scenarios over the number of demonstrations,
which correctly identified ground truth temporal relations between subtasks
for the synthetic dataset as well as for the KIT Bimanual Actions Dataset.

over the number of demonstrations considered for building
the temporal task models. As can be seen, our approach shows
straight from the beginning a saturated recall. As expected,
the precision value increases with more demonstrations,
as contradictions or different task variations lead to the
elimination of earlier erroneously hypothesized constraints.



The false positives derived from the temporal task model
mostly stem from before relations, which are not in the ground
truth, for example lift screwdriver before lift motor. This
becomes evident in Figure 4, where the number of learning
scenarios is plotted over the number of demonstrations
considered for building the temporal task model, which
correctly identified that the unscrew/place gearbox lid subtask
is temporally independent of the unscrew/place motor housing
subtask. As can be seen, after only 10 demonstrations over
80% of the learning scenarios are already able to identify
this independence.

B. KIT Bimanual Actions Dataset

Experimental Setup: In this experiment, a subset of the
KIT Bimanual Actions Dataset [20] was used, namely all
recordings of the prepare muesli task. In total, 6 subjects
demonstrated the task 10 times, resulting in 60 demonstrations
with a total of 8 unique observed ways to achieve the goal.
The subjects were asked to prepare muesli, given a banana, a
pack of cereals, a bottle of milk, and a bowl. Additionally, a
cutting board and a knife were on the table to cut the banana
to put it as an ingredient into the muesli. In total, 4 subtasks
could be observed, namely cut banana, etc., pour banana,
etc., pour cereals, etc., and pour milk, etc.. This is depicted in
Figure 2 5⃝. Note that the subtasks are abbreviated after their
effective actions (+ etc.) for simplicity, as the subtasks actually
model a complex temporal arrangement of bimanual actions
(cf. Figure 2 4⃝). In contrast to the synthetic dataset, though,
the possible subtask sequences are not equally distributed, as
can be seen in Table V. The data was re-labeled with ground
truth object information and is available for download on
our homepage. For this dataset, we do not have ground truth
temporal relation data between actions of the demonstrated
task, so an in-depth evaluation of all temporal relations is not
feasible. Even more so, because these real demonstrations
also include human errors, making it impossible to define
a set of temporal constraints valid for all demonstrations.
Similar to the evaluation on the synthetic dataset, though,
we can define the desired outcome qualitatively, namely to
identify that only the cut banana subtask temporally depends
on pour banana.

TABLE V
DISTRIBUTION OF OBSERVED SUBTASK SEQUENCES IN THE DATASET.

Subtask Sequence (etc.-suffix omitted) Number

pour cereals → cut banana → pour banana → pour milk 17
cut banana → pour banana → pour cereals → pour milk 15
cut banana → pour banana → pour milk → pour cereals 10
pour milk → pour cereals → cut banana → pour banana 8
pour cereals → pour milk → cut banana → pour banana 5
pour milk → cut banana → pour banana → pour cereals 3
cut banana → pour cereals → pour banana → pour milk 1
cut banana → pour milk → pour cereals → pour banana 1

Total 60

Results: Similar to the synthetic dataset, we also show in
Figure 4 the number of learning scenarios, which correctly
identified the true temporal relations between the subtasks
over the number of demonstrations. It is evident, that the curve

is not so steep in this case, mostly because of three reasons.
First, the KIT Bimanual Actions Dataset features 4 subtasks,
of which only 2 have a temporal dependence on each other,
compared to the 2 subtasks from the synthetic dataset. Second,
as already mentioned, the data is unbalanced, which can lead
to wrong assumptions in terms of keeping constraints in the
model, which later turn out to be false positives. Third, this
dataset also features human errors, which leads to ground
truth action segments very different from the others or even
contradictory.

C. Robot Experiment

Experimental Setup: The approach was evaluated on the
humanoid robot ARMAR-6 [21], which was tasked to clean
up a table. Specifically, the task was to clean up the table by
lifting and dropping a pack of rusk, a pack of cereal bars,
and a bag of soy milk into a box as shown in Figure 5 1⃝.

1 2

Figure 5. 1⃝ Scene of the clean-up task involving 3 objects, namely a
pack of cereal bars, a bag of soy milk, and a pack of rusk. The soy milk
needs to be cleared before the rusk. The cereal bars can be cleared at any
time. 2⃝ Scene given to ARMAR-6 with obstructed cereal bars pack.

In the scenario, the soy milk is on top of the rusk, hence
the soy milk needs to be cleared before lifting the rusk. The
robot received a predefined temporal task model built with 9
synthetically generated demonstrations, which all showed the
same action sequence, resulting in 3 subtasks: (i) lift cereal
bars meets drop cereal bars, (ii) lift soy milk meets drop
soy milk, and (iii) lift rusk meets drop rusk with the subtask
relations: (i) lift/drop cereal bars before lift/drop soy milk, and
(ii) lift/drop soy milk before lift/drop rusk. Afterwards, the
human demonstrated a different way to solve the task by first
lifting and dropping the soy milk, which was weighted in this
scenario to account for the valuable human demonstration
data, leaving only one subtask relation: lift/drop soy milk
before lift/drop rusk. To localize the objects we used the
ArmarX [22] integration of SimTrack [23], while a rule-
based action recognition system was used to extract action
segments. After updating the temporal task model with the
new demonstration, the robot was asked to execute the task by
itself. For the execution, however, the cereal bars were placed
in such a way that the view is obstructed by the soy milk (cf.
Figure 5 2⃝), preventing the employed object pose estimation
system from localizing the object and thus presenting the
robot with the problem of a partially unobservable scene.
Results: During the reproduction, the robot would try to
execute action candidates, which do not violate any temporal
constraint until all actions are executed. In this concrete
qualitative evaluation, the robot first tried to locate the cereal
bars to lift them and drop them in the box. Since the view to
the cereal bars was obstructed, the robot was not able to locate
them, thus resulting in a rejection of the action candidate and



a consideration of the next candidate involving a different
object. In accordance with the temporal task model, the robot
instead lifted and dropped the soy milk, clearing the line of
sight to the cereal bars. After successfully dropping the soy
milk, the action candidate generator once again proposed to
lift and drop the cereal bars, which could then successfully be
located and executed. Finally, the rusk is lifted and dropped.

This evaluation shows, how the humanoid robot ARMAR-6
was able to utilize the constraints in the temporal task model
to solve the clean-up task in a new way that was not seen in
the demonstrations, born out of the necessity of not being able
to locate a particular object. The initially strict constraints
in the robot’s temporal task model were relaxed with one
demonstration, which was specially weighted to account for
the importance of real demonstration data. Additionally, we
showed how properties of our approach can be exploited
to achieve the desired behavior with very limited human
demonstration data (one real demonstration in this case). The
weights used in this experiment were predefined, but can also
stem from verbal commands or simply from the fact that
real human demonstrations have to be weighted higher than
other sources of information. Please also refer to our video
attachment for this experiment.

VI. CONCLUSION AND FUTURE WORK

We presented an approach to build a temporal task model
from multiple human bimanual demonstrations that allows
inferring subtasks of the demonstration as sets of actions
with distinct temporal relations. To this end, we proposed
a semantic and soft formulation of Allen’s interval algebra
to allow building temporal task models that represent the
semantics of the task and extracting temporal constraints from
real sensor data. We evaluated the approach quantitatively
on two datasets and qualitatively on a humanoid robot. The
knowledge about the temporal constraints between actions in
a task is essential and can be used by a robot to achieve the
task goal in new ways that are not seen in the demonstrations.

In future work, we will work on enriching the temporal
task models with both temporal, as well as spatial/geometric
information. For example, temporal keypoints in trajectories
or motion primitives could be assessed to allow for a
spatio-temporally coordinated bimanual execution of subtasks
(e. g., similar to [16]). Additionally, we plan to use a more
sophisticated representation of temporal relations in the future,
by including quantitative information to reason about relations
on a larger temporal horizon. In this work, we relied on
simplifications such as a rule-based action recognition system
and a known mapping of a symbolic action label to the
execution. In the future, we plan to integrate a state-of-the-
art action recognition system and learn bimanual actions as
motion primitives from human demonstration.
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“The Robot Software Framework ArmarX,” it – Information Technology,
vol. 57, no. 2, pp. 99–111, 2015.

[23] K. Pauwels and D. Kragic, “SimTrack: A Simulation-Based Framework
for Scalable Real-Time Object Pose Detection and Tracking,” in
Intelligent Robots and Systems, 2015, pp. 1300–1307.


	Introduction
	Related Work
	Precedence Relations and Action Ordering
	Complex and Concurrent Temporal Relations

	Background
	Approach
	Problem Formulation
	Soft Allen Relations
	Building a Temporal Task Model from Demonstrations
	Inferring Subtasks from the Temporal Task Model

	Experiments and Evaluation
	Synthetic Dataset
	KIT Bimanual Actions Dataset
	Robot Experiment

	Conclusion and Future Work
	References

