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Abstract— Learning task models of bimanual manipulation
from human demonstration and their execution on a robot should
take temporal constraints between actions into account. This
includes constraints on (i) the symbolic level such as precedence
relations or temporal overlap in the execution, and (ii) the
subsymbolic level such as the duration of different actions, or
their starting and end points in time. Such temporal constraints
are crucial for temporal planning, reasoning, and the exact
timing for the execution of bimanual actions on a bimanual
robot. In our previous work, we addressed the learning of
temporal task constraints on the symbolic level and demonstrated
how a robot can leverage this knowledge to respond to failures
during execution. In this work, we propose a novel model-driven
approach for the combined learning of symbolic and subsymbolic
temporal task constraints from multiple bimanual human
demonstrations. Our main contributions are a subsymbolic
foundation of a temporal task model that describes temporal
nexuses of actions in the task based on distributions of temporal
differences between semantic action keypoints, as well as a
method based on fuzzy logic to derive symbolic temporal task
constraints from this representation. This complements our
previous work on learning comprehensive temporal task models
by integrating symbolic and subsymbolic information based on
a subsymbolic foundation, while still maintaining the symbolic
expressiveness of our previous approach. We compare our
proposed approach with our previous pure-symbolic approach
and show that we can reproduce and even outperform it.
Additionally, we show how the subsymbolic temporal task
constraints can synchronize otherwise unimanual movement
primitives for bimanual behavior on a humanoid robot.

I. INTRODUCTION

Humans have the inherent ability to learn tasks by ob-
serving others. Especially assistive humanoid robots that are
developed to engage in interactions with humans should also
have this ability. This is not only due to the assumption that
users will not have the necessary programming skills but also
because teaching a task as humans teach each other is the most
intuitive interface for robot programming. Robot programming
by demonstration has been seen as a powerful mechanism for
reducing the complexity of the search space for learning. It
also provides an implicit means for teaching a robot new skills
so that explicit and tedious programming by a human can be
minimized or eliminated [1]. An essential aspect of this is
the question of extracting as much task-specific information
as possible from a few human demonstrations. Observed
temporal constraints between actions and temporal keypoints
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Figure 1. Basic idea of our approach. Upper: Two modes of task execution
where actions x and y either follow a before or meets pattern. Lower:
Instead of formulating temporal task constraints between two actions x
and y semantically using Allen relations (before or meets in this case), we
represent them as Gaussian mixture models of temporal differences between
action’s starts and ends observed in human demonstrations. This allows for
a combined subsymbolic and symbolic representation.

of actions in manipulation tasks are an important part of this
information. The temporal constraints can be symbolic (e. g.,
certain actions must occur before, after, during, etc. other
actions), and subsymbolic (e. g., the start of an action always
has a certain time delay to the end of another action). These
symbolic temporal task constraints (STTCs) are crucial for
action sequencing, temporal planning, or general temporal
reasoning. Subsymbolic temporal task constraints (SSTTCs)
play an important role in the coordination and synchronization
of actions or their underlying movement primitives (MPs),
how long the execution of an action usually takes, and how
much temporal flexibility is available during execution.

In our previous work [2], we presented an approach
to obtain STTCs. Observed symbolic temporal relations
between actions were collected in a graph while subsymbolic
information was discarded. In this work, we present an
approach based on temporal differences of semantic action
keypoints as a knowledge base instead of symbolic interval



relations to account for learning and representing both STTCs
and SSTTCs. We hypothesize that all desired temporal
constraints mentioned before can be inferred by analyzing
temporal differences between semantic action keypoints. The
proposed model can extract both (i) the temporal constraints
on the symbolic level as in our previous work [2] and (ii) the
subsymbolic information of such constraints. Our contribu-
tions are (i) a temporal-differences-driven formulation of
SSTTCs that models the temporal nexuses between semantic
action keypoints in manipulation tasks, (ii) a novel approach
to derive STTCs from such a model of temporal differences,
and (iii) an evaluation of the formulation of our temporal
task model on two publicly available datasets for learning
temporal constraints of complex bimanual manipulation tasks,
one manually labeled, and one synthetic, as well as a showcase
demonstrating the usefulness of SSTTCs.

II. RELATED WORK

From a methodological perspective, related works con-
cerned with modeling temporal constraints in general can
be classified into three branches: Two explicit ones based
on Allen’s Interval Algebra or Linear Temporal Logic, and
implicit temporal representations. Allen’s Interval Algebra
[3] is a well-established formalism with the core idea of
exhaustively defining all possible relations two intervals
can be in. The other well-established formalism is Linear
Temporal Logic (LTL) [4] which is very similar to first-
order logic and was originally proposed for formal system
verification. A discussion on the relationship between both
formalisms was carried out by Roşu and Bensalem [5]. The
last branch is implicit models, where temporal or spatio-
temporal features are autonomously inferred and learned via
a variety of machine learning models. That being said, we
discuss relevant works with a focus on the purpose rather than
on the methodology. First, we discuss other works concerned
with learning temporal constraints in Section II-A. Next, we
position our work in the domain of planning under temporal
constraints in Section II-B and conclude with other relevant
works beyond these research areas in Section II-C.

A. Learning Temporal Constraints

The earliest works concerned with learning temporal con-
straints from human demonstrations focused on precedence
relations or action sequences only. These can be seen as a
subset of Allen’s interval algebra where only before or meets
are considered [6], [7]. They often allow for modeling and
learning precedence task constraints in graphs or similar data
structures, sometimes referred to as task precedence graphs.
Nicolescu and Matarić [8] proposed a method to extract the
longest common action sequence from several demonstrations
of a task to identify unnecessary actions of a task. These
works are primarily based on a closed-world assumption
where observed action sequences have to be adhered to for the
robotic execution unless contradictions are observed. While
these approaches only account for precedences, Ye et al. [9]
proposed a very similar approach that allows for parallel
execution. This is achieved under the assumption that actions

in such a graph without any preceding action can be executed
in parallel. During task execution, a precedence graph is
continuously updated with the remaining actions. While this
assumption can be valid in certain contexts (i. e., scalable
production lines), we argue that this is too relaxed in general,
especially to model complex bimanual manipulation tasks.

Allen not only conceptualized temporal relations of two
intervals in their work as discussed earlier, but also proposed
algorithms to maintain temporal knowledge [3]. However,
both the works based on precedence graphs, and the one
from Allen depend on perfect data to function properly.
Thus, in our previous work, we built on these ideas to learn
STTCs represented by Allen relations from bimanual human
demonstrations [2]. Our approach can deal with imperfections
of several kinds, such as not perfectly synchronized actions or
errors in the demonstrations. In contrast to our previous work,
and the works discussed thus far, we want to additionally learn
SSTTCs from human demonstrations, while still preserving
the symbolic expressiveness of our previous work.

Cheng et al. [10] presented an algebraic foundation of
Allen’s interval algebra. They observed that Allen relations
are distinct (no given pair of intervals can be part of more
than one Allen relation), exhaustive (any pair of intervals
can be described by one Allen relation) and qualitative (no
subsymbolic or quantitative data of the intervals is preserved)
[10]. They proposed an algebraic system to extend Allen
relations with many operations and so-called null intervals to
allow for the quantitative and complex description of temporal
facts. Instead of focusing on intervals, we look into the starts
and ends (i. e., time points) of actions to model quantitative
constraints between them, while still allowing to reason on a
symbolic level using Allen’s well-established interval algebra.

Another theoretical extension to Allen’s interval algebra
was proposed by Schockaert et al. [11] with the attempt
to combine Allen’s interval algebra with fuzzy set theory.
Instead, we estimate the degree of membership of time point
differences to time point relations from observations and use
fuzzy logic to model to which degree Allen relations hold
given the observations.

Ramirez-Amaro et al. [12] implicitly learned spatio-
temporal features from video data to improve an action recog-
nition system. This was achieved by utilizing an unsupervised
neural network architecture based on Independent Subspace
Analysis. In contrast, we try to learn temporal constraints
between actions of a task to gather and maintain temporal
knowledge of a manipulation task.

B. Planning Under Temporal Constraints

Many works on temporal planning require detailed data
about mean action lengths and temporal variances, as well as
temporal differences between starts and ends of actions. Peller
et al. [13] proposed a planning system based on Temporal Fast
Downward that can apply temporal stress on certain actions
to meet task execution deadlines at the cost of higher task
failure risk. With the knowledge of which actions are safe to
stress (indicated by a high temporal variance across several
demonstrations), the risk of failure could be reduced if taken



into consideration. Fusaro et al. [14] addressed the problem
of planning and allocating tasks in the context of human-
robot-collaboration. They used Behavior Trees to model a task,
encoding temporal and logic constraints of it. This is achieved
through Behavior Tree nodes that model sequential or parallel
execution of actions. The work focused on planning and
allocating agents to tasks rather than learning these constraints.
Kantaros et al. [15] proposed a perception-based temporal
planning system in the context of multi-robot navigation on
semantic maps that used LTL for task specification. From
this user-defined specification, an optimal control problem
was formulated that allowed for online replanning while
accounting for different kinds of uncertainties.

C. Other Approaches

Puranic et al. [16] proposed a method based on Signal
Temporal Logic (STL) to assess the quality of demonstrations,
as well as to infer rewards for a Reinforcement Learning
problem in the context of Programming by Demonstration
and Inverse Reinforcement Learning. STL is an extension to
LTL that allows for continuous-time variables and real-valued
predicates (signals) instead of discrete time variables and
Boolean predicates as is the case in LTL. Their basic idea
is that demonstrations can be evaluated from user-defined
temporal constraints via an STL specification. Our work
exactly aims at learning such temporal constraints between
actions of a task from human demonstration. Diehl and
Ramirez-Amaro [17] proposed a method to learn a causal
Bayesian Network model from simulation to predict and
avoid failures in task executions. To obtain the causal model,
two causal structure learning methods were compared. They
reported that, depending on the model, 200 000 to 600 000
samples were required for the models to converge for a
stacking task with 3 cubes. Instead, we learn temporal
constraints that can be seen as a heuristic for causality when
not enough knowledge is available (yet) from the provided
demonstrations. Especially in the context of learning from
human demonstration, so many samples are not feasible.

III. FUNDAMENTALS

We provide definitions that are necessary to better under-
stand our approach. This covers the definition of time point
relations, time interval relations, and fuzzy logic.

A. Time Point Relations

A time point t∈R is measured in seconds and a temporal
difference or duration d is the difference between two time
points d= t1 − t2. We will use the notation R

•(t1, t2)⇔γ
to express that two time points t1, t2∈R are part of the time
point relation R

• iff the condition γ holds. Possible relations
are R

•
before, R•

equals, and R
•
after. The definitions and examples

for these relations can be seen in Table I.

B. Time Interval Relations

A time interval is a tuple i=[i−, i+] with i
− and i

+ being
time points and i

−
< i

+. Here, i− is the start of the interval i,
and i

+ is its end. In the following, we will use the notation

TABLE I
ALL 3 TIME POINT RELATIONS.

Time Point Relation Condition Example
Inverse Relation

R
•
before(x, y) ⇔ x < y

x
y

R
•
after(y, x)

R
•
equals(x, y) ⇔ x = y

x
y

R
•
equals(y, x)

R

I(i1, i2) ⇔ γ as a short-hand to express that two time
intervals i1, i2∈I , with I being the set of all time intervals,
are part of the time interval relation R

I

iff the condition
γ holds. All possible relations between two time intervals
have been described by Allen [3], also called Allen’s interval
algebra or simply Allen Relations. Their formal definition
with examples of these relations can be seen in Table II. Note
that we included additional conditions in gray that follow
from the definition of an interval and are thus redundant, but
will become important later. Additionally, note that we can
plug the definitions of temporal time point relations from
Table I into the conditions of the respective Allen relations.
E. g., we can express the time interval relation starts as such:
R

I
starts(x, y)⇔R

•
equals(x−

, y
−)∧R

•
before(x+

, y
+).

TABLE II
ALL 13 TIME INTERVAL RELATIONS AFTER ALLEN [3].

Allen Relation Condition Example
Inverse Relation

R

I

before(x, y) ⇔
x
−
< y

− ∧ x
−
< y

+
x

y
R

I

after(y,x) ∧ x
+
< y

− ∧ x
+
< y

+

R

I

meets(x, y) ⇔
x
−
< y

− ∧ x
−
< y

+
x

y
R

I

met by(y,x) ∧ x
+
= y

− ∧ x
+
< y

+

R

I

overlaps(x, y) ⇔
x
−
< y

− ∧ x
−
< y

+
x

y
R

I

overlapped by(y,x) ∧ x
+
> y

− ∧ x
+
< y

+

R

I

starts(x, y) ⇔
x
−
= y

− ∧ x
−
< y

+
x
y

R

I

started by(y,x) ∧ x
+
> y

− ∧ x
+
< y

+

R

I

during(x, y) ⇔
x
−
> y

− ∧ x
−
< y

+
x

y
R

I

contains(y,x) ∧ x
+
> y

− ∧ x
+
< y

+

R

I

finishes(x, y) ⇔
x
−
> y

− ∧ x
−
< y

+
x

y
R

I

finished by(y,x) ∧ x
+
> y

− ∧ x
+
= y

+

R

I

equals(x, y) ⇔
x
−
= y

− ∧ x
−
< y

+
x
y

R

I

equals(y,x) ∧ x
+
> y

− ∧ x
+
= y

+

C. Fuzzy Set Theory and Fuzzy Logic

Fuzzy set theory is an extension of traditional set theory
that relaxes the assumptions made on set membership func-
tions [18]. In traditional set theory, a membership function
χA(x) ∈ {false, true} is binary and describes whether the
element x is a member of the set A or not. Fuzzy set theory
relaxes this assumption to allow for real-valued membership
functions µÃ(x)∈ [0, 1]. Its value is referred to as degree
of membership of the element x to the fuzzy set Ã. As a
consequence, a fuzzy relation is a relation on fuzzy sets [18].
To better distinguish fuzzy sets and fuzzy relations from
traditional sets and relations, the terms crisp set or crisp
relation are often used for the latter. Similarly to set theory,



Boolean logic can also be extended to allow for real-valued,
or fuzzy, variables and logic operations on them [19], [20].

In this work, we build on these ideas to understand time
point and interval relations of actions in manipulation tasks
not as crisp relations as defined in Sections III-A and III-B,
but instead as fuzzy relations from observations made from
human demonstrations. These observations are inherently
uncertain and conflicting due to many sources of possible
errors, such as inaccuracies of the action segmentation or
even errors in the human demonstration.

IV. PROBLEM FORMULATION

To provide a formal description of the problem, we
start with important definitions of a task, an action, and
a demonstration (Section IV-A) as well as types of temporal
constraints considered in this work (Section IV-B). Finally,
we conclude with the problem statement in Section IV-C.

A. Definition of Task, Action, Demonstration

A task consists of a set of actions {α1, α2, . . .}, where an
action α is a tuple α = (v, o), with v being a verb, and o
an object. Let D be a set of demonstrations of a bimanual
manipulation task. A demonstration D ∈D is a tuple D =

(AL, AR) consisting of two action sequences AL for the
left hand, and AR for the right hand respectively. An action
sequence A is an ordered collection of action observations
A = (a1, a2, a3, . . .). An action observation a is a tuple
a=(α, i) with α being an action and i an interval i=[i−, i+]
with start time point i− and end time point i+. We use a

−
= i

−

and a
+
= i

+ to refer to the two semantic temporal keypoints
of the action observation a=(α, i), namely its corresponding
interval’s i start and end. Action observations a1, a2, a3, . . . in
an action sequence A=(a1, a2, a3, . . .) have a strict order and
cannot overlap, thus it follows that a−1 <a

+
1 ≤a

−
2 <a

+
2 ≤a

−
3 . . .

We assume that one hand can only execute one action at
a time, and one action can only be executed by one hand. A
bimanual symmetric action in a demonstration D=(AL, AR)
(e. g., lifting a bowl with both hands simultaneously, cf. [21]),
is represented by two actions observations aL=(α, iL)∈AL

and aR=(α, iR)∈AR with the same action α and iL≈ iR.

B. Types of Temporal Constraints

In this work, we differentiate between several types of
constraints to model conditions that need to be fulfilled on a
symbolic and subsymbolic level for successful task execution.

A symbolic temporal task constraint (STTC) c =R

I

is
modeled through a time interval relation R

I

between two
actions α1 and α2 of the task, i. e., one Allen relation. The
set of STTCs C={c1,c2,c3, . . .} of a task must be free of
contradictions for it to be useful. They form the symbolic
output of our approach and can be used for (re-)planning or
temporal reasoning as shown in our previous work [2].

A subsymbolic temporal task constraint (SSTTC) c ∼

N (µ, σ2) describes a temporal difference constraint between
two semantic action keypoints t1 and t2 as a random variable
of observed temporal differences from several demonstrations
following a Gaussian distribution N (µ, σ2), where µ is the

mean temporal difference and σ
2 the variance between t1 and

t2. The set of SSTTCs C is defined as C ={c1, c2, c3, . . .}.
They form the subsymbolic output of our approach and can be
used to synchronize two MPs to generate a bimanual action
execution from two unimanual actions.

For each STTC c =R

I

∈C, we expect to obtain up to
four SSTTCs c1∼N (µ, σ2), . . . , c4∈C that quantify how to
realize the symbolic constraint c. This is done by specifying,
which temporal differences between semantic keypoints of
two actions should be enforced, to which offset (via the
Gaussian distribution’s mean), and to which temporal stress
(via the Gaussian distribution’s variance).

C. Problem Statement

We address the problem of learning temporal task con-
straints from human demonstration. Specifically, given a set of
demonstrations D and observed temporal differences between
action keypoints and temporal relations between actions, the
task is to infer two types of temporal task constraint sets:
(i) a set of STTCs C as a means to e. g., replan in case of
unforeseen problems, and (ii) a set of SSTTCs C, as a means
to e. g., synchronize the execution of two MPs for bimanual
manipulation actions by a robot.

V. METHODS AND APPROACH

To tackle the problem formulated in Section IV, i. e., the
problem of inferring STTCs and SSTTCs from bimanual
human demonstrations, we start by describing, how data from
multiple demonstrations is aggregated to a model of temporal
differences between semantic action keypoints (Section V-A).
In Section V-B, we give a conceptual overview of the three
phases of inferring STTCs and SSTTCs, which are discussed
in detail thereafter.

A. Aggregating Demonstration Data

As described before, our work builds on the hypothesis that
important temporal constraints on symbolic and subsymbolic
levels can be inferred from temporal differences between
semantic action keypoints. Since we deal with multiple
demonstrations that may display several ways on how a task
can be executed (e. g., different orders of execution of certain
actions), our model needs to capture this. Thus, a single
Gaussian distribution is not sufficient. Instead, we model the
distribution of temporal differences between two semantic
action keypoints of a pair of actions in the task across several
demonstrations using a Gaussian mixture model (GMM) M .
We do this for each combination of semantic action keypoints
of an action pair, and for each pair of actions in a task:

Mα1
α2

= (Mα
−
1

α−
2
,M

α
−
1

α+
2
,M

α
+
1

α−
2
,M

α
+
1

α+
2
)

Here, Mα1
α2

is the Action Pair Keypoint Model (APKM), a
4-tuple of GMMs for all possible combinations of temporal
differences between semantic action keypoints (cf. Figure 1).
The first element, M

α
−
1

α−
2

is a GMM created from the set
of all observed temporal differences between the starts of
observations of action α1 and the starts of observations of



α2 referred to as T
α

−
1

α−
2

. Similarly, Mα
−
1

α+
2

is created from T
α

−
1

α+
2

,

M
α

+
1

α−
2

from T
α

+
1

α−
2

, and M
α

+
1

α+
2

from T
α

+
1

α+
2

, with

T
α

−
1

α−
2
= {i−j − i

−
k ∣ (ij , ik) ∈ Aα1

α2
},

T
α

−
1

α+
2
= {i−j − i

+
k ∣ (ij , ik) ∈ Aα1

α2
},

T
α

+
1

α−
2
= {i+j − i

−
k ∣ (ij , ik) ∈ Aα1

α2
},

T
α

+
1

α+
2
= {i+j − i

+
k ∣ (ij , ik) ∈ Aα1

α2
},

and Aα1
α2

= {(ij , ik) ∣∀D = (AL, AR) ∈ D,

∀(aj , ak) ∈ (AL ∪AR)2,
aj = (α1, ij), ak = (α2, ik)},

where a=(α, i) is an observation of action α, and X
2 is the

Cartesian product X×X of a sequence X .
To find the optimal number of components N for each

GMM, we employ an elbow-method-like approach. For each
N = 1, 2, ..., 10 we compute the GMM and calculate the
corresponding Bayesian Information Criterion (BIC) which
describes, how well the model explains the data. We chose
that GMM for which the BIC is minimized. Please note
that we allow for more than 3 components in the GMM in
this work. This allows for modeling cases where two actions
show one qualitative relation (e. g., before) but in two different
quantitative manifestations (e. g., once with 2 s and once with
4 s between the actions).

B. Inferring Temporal Task Constraints: Outline

Inferring temporal constraints from a set of APKM can be
divided into three steps.

1) Estimating Degrees of Memberships to Temporal Rela-
tions: As a first step, we are concerned with the question:
Given multiple demonstrations of a task, how likely are certain
temporal interval relations between each pair of actions? This
means that we are interested in the degree of membership of
each given pair of actions to all fuzzy time interval relations
as a result of this step by analyzing the corresponding APKM.
This research question is addressed in Section V-C.

2) Inferring Symbolic Temporal Task Constraints: In the
second step, we are concerned with the question: Given the
most likely temporal interval relations between each pair of
actions of the task at hand, what is the single most likely
temporal relation for each pair of actions in the task that is
consistent within the whole temporal task model? Answering
this question means assigning exactly zero or one temporal
relation to each pair of actions in the task that are most likely,
yet not in contradiction. It can be seen as a fuzzy assignment
problem. This research question is addressed in Section V-D.

3) Inferring Subsymbolic Temporal Task Constraints: In
the third step, and given the knowledge from the two previous
steps, this step addresses the question: How can we make
use of temporal task constraints to synchronize MPs of a
bimanual task execution precisely? Given a consistent set of
temporal task constraints, we can leverage this information to
discard components of the Gaussian mixture models of a pair

of actions. We assume that there is only one relevant mode in
each GMM for execution because otherwise, it would violate
the property of Allen relations being distinct. This research
question is addressed in Section V-E.

C. Estimating Degrees of Memberships to Temporal Relations

Given an APKM Mα1
α2

for each pair of actions (α1, α2)
in a task, we are interested in how distributions of temporal
keypoint differences can be used to infer fuzzy time interval
relations R̃

I

describing the degree the observations are part
of a given time interval relation R

I

.
Similarly to how crisp time interval relations can be

defined through time point relations as shown in Table II,
we define fuzzy time interval relations through fuzzy time
point relations R̃

•. With ∧Ł being the Łukasiewicz weak
conjunction operator x∧Ły=min(x, y) [22], we define the
degree of membership of the action pair (α1, α2) of a task to
a fuzzy time interval relation R̃

I

through the corresponding
APKM Mα1

α2
as follows:

R̃

I

before(Mα1
α2
) = R̃

•
before(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M

α
−
1

α+
2
)

∧ŁR̃
•
before(M

α
+
1

α−
2
) ∧Ł R̃

•
before(M

α
+
1

α+
2
)

R̃
I

meets(Mα1
α2
) = R̃

•
before(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M

α
−
1

α+
2
)

∧ŁR̃
•
equals(M

α
+
1

α−
2
) ∧Ł R̃

•
before(M

α
+
1

α+
2
)

R̃

I

overlaps(Mα1
α2
) = R̃

•
before(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M

α
−
1

α+
2
)

∧ŁR̃
•
after(M

α
+
1

α−
2
) ∧Ł R̃

•
before(M

α
+
1

α+
2
)

R̃

I

starts(Mα1
α2
) = R̃

•
equals(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M

α
−
1

α+
2
)

∧ŁR̃
•
after(M

α
+
1

α−
2
) ∧Ł R̃

•
before(M

α
+
1

α+
2
)

R̃

I

during(Mα1
α2
) = R̃

•
after(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M

α
−
1

α+
2
)

∧ŁR̃
•
after(M

α
+
1

α−
2
) ∧Ł R̃

•
before(M

α
+
1

α+
2
)

R̃

I

finishes(Mα1
α2
) = R̃

•
after(M

α
−
1

α−
2
) ∧Ł R̃

•
before(M
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In addition to the characteristic conditions from the crisp
time interval relations in Table II, we include all conditions
since they have an impact on the calculation when using
the Łukasiewicz weak conjunction instead of a Boolean
conjunction. Please note that the inverse Allen relations are
defined accordingly, but left out for brevity.

We define fuzzy time point relations R̃
• used in the

definition above as follows. Given one GMM M from
the APKM Mα1

α2
, let KM be the set of components of

M , κM,i ∈KM the mixtures i-th component with κM,i ∼

N (µi, σ
2
i ), and µi and σi the component’s mean and standard

deviation, respectively. Further, let ϵ be a small duration and
m

=
= [−ϵ, ϵ] an equality margin within which two time



points are considered to be simultaneous. We then identify
the components κM,i of the GMM M whose means µi are
outside the equality margin m

= such that µi<−ϵ or ϵ<µi.
Their set is denoted as K

≠

M ⊂KM , representing observations
when the two time points cannot be considered simultaneous.

Let fM be the mixture density function of the GMM M :

fM(x) = ∑
κM,i∈KM

wi ⋅ pi(x)

where κM,i is the i-th component of M , wi its weight, pi
it’s probability density function. We define f

≠

M as mixture
density function only considering components in K

≠

M :

f
≠

M(x) = ∑
κM,i∈K

≠

M

wi ⋅ pi(x)

Using f
≠

M , we define the degrees of membership of the ob-
served temporal differences between two semantic keypoints
t1 and t2 modeled as GMM M to a fuzzy point relation R̃

•:

R̃
•
before(M) = ∫

−ϵ

−∞
f
≠

M(x)dx (1)

R̃
•
after(M) = ∫

∞

ϵ
f
≠

M(x)dx (2)

R̃
•
equals(M) = 1 − R̃

•
before(M) − R̃

•
after(M) (3)

Here, equation (1) denotes the degree of membership to the
R̃

•
before relation. This can be seen in shaded red in Figure 2.

Similarly, the degree of membership to R̃
•
after defined in

equation (2) is shaded green, the degree of membership to
R̃

•
equals in equation (3) is shaded blue, and the black curve

shows the mixture density function fM .
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Figure 2. To which degree a semantic temporal action keypoint t1 is
before, after or equal to another keypoint t2 is decided by integrating the
mixture density function fM of the GMM M that models the distribution of
temporal differences between t1 and t2. Red area: Degree of membership of
(t1, t2) in R̃

•
before. Green area: Degree of membership of (t1, t2) in R̃

•
after .

Blue area: Degree of membership of (t1, t2) in R̃
•
equals.

D. Inferring Symbolic Temporal Task Constraints

In our previous work [2], we already presented an approach
using a graph-theoretical approach by leveraging certain
patterns occurring in bimanual manipulation tasks. It takes
a fully connected graph as input, where the nodes encode
the actions of a task, and edges encode time interval relation
probabilities that were directly assessed during observation.

In this work, we no longer assess the time interval
relations during observation, but instead estimate the degree
of membership of action observations to fuzzy time interval

relations as shown in Section V-C. However, we can still
employ the same approach for inference, since the modalities
have not changed. Instead of encoding time interval relation
probabilities, we now encode the degrees of membership to
time interval relations. The result is a set of STTCs C that
are free of contradictions.

E. Inferring Subsymbolic Temporal Task Constraints

Given four GMMs of a pair of actions and the identified
STTC for that pair of actions, we now need to identify
components of the GMM that are relevant for the task
execution. From the previous step (Section V-D) we obtained
a contradiction-free assignment of STTCs C. They define
qualitatively, how a subset of action pairs of the task are
constrained through time interval relations R

I

. In this step,
we are concerned with the question of how to quantitatively
arrange the keypoints for execution to not only fulfill the
relation qualitatively, but as closely to the demonstrations as
possible. For the scope of this work, the selection was done
naively by choosing the largest suitable component of relevant
GMMs from the APKM. The relevant GMMs of an APKM
are those that correspond to the necessary conditions of STTC
(cf. conditions not grayed out in Table II). Components are
only suitable if their means have the expected sign given the
necessary conditions. For example to quantitatively arrange
the keypoints of two actions with an STTC of during, only
two temporal differences are necessary, namely those between
both action’s starts and both action’s ends. Thus, in the case
of during, only the largest components with a negative mean
of the first GMM and the largest component with a positive
mean of the fourth GMM from the APKM are relevant.

VI. EXPERIMENTS AND EVALUATION

In our previous work [2], we introduced two new bench-
marks for learning STTCs1. Hence, we compare how our pro-
posed method performs in these benchmarks in Sections VI-A
and VI-B. Additionally, we showcase the use of extracted
SSTTCs in a qualitative evaluation in Section VI-C.

A. Quantitative Evaluation of Inferred STTCs

Experimental Setup: For this evaluation, the synthetic
dataset proposed in our previous work is used [2], which
generated viable demonstrations using an exhaustive temporal
planner given a user-defined set of actions and temporal
constraints between them. It consists of 216 demonstrations of
a disassembly scenario of an electric motor, with two different
ways of accomplishing the task. As in our previous work, we
define a learning scenario as a simulated learning process
of a temporal task model. Each learning scenario creates its
own temporal task model. 100 demonstrations out of 216 are
randomly assigned to each learning scenario. Demonstrations
are added one by one, and the identified STTCs are evaluated
after each addition. This approach results in unique learning
processes, with 100 learning scenarios evaluated in total.
Comparing the ground truth STTCs to those inferred by

1
bimanual-actions.humanoids.kit.edu/temporal task models

https://bimanual-actions.humanoids.kit.edu/temporal_task_models


the temporal task models can yield 4 different outcomes,
as already described in [2]: (i) True positive: A temporal
constraint is identified, which is in the ground truth data.
(ii) False positive: A temporal constraint is hypothesized to
be there, but it is not in the ground truth. (iii) False negative:
A temporal constraint is in the ground truth, but it was not
identified. (iv) True negative: No temporal constraints were
identified between two actions, and there is no corresponding
constraint in the ground truth. We report on the precision and
recall scores and repeat the evaluation process for both the
proposed approach, as well as the one in our previous work
[2]. We favor false positives over false negatives. Especially
at the beginning, we expect the temporal task models to
overestimate STTCs because with few demonstrations, not
many conclusions can be made. But with more demonstrations,
the temporal task model should be able to relax certain
constraints as they can turn out to be coincidences. E. g., if a
robot always observes that the relation α1 before α2 holds,
the robot should assume that this constraint must be adhered
to. If the robot later observes contradictory demonstrations
(i. e., α2 before α1), it may relax this constraint. In any
case, however, false negatives should be avoided, since these
essentially mean that necessary constraints used for generating
the dataset were ignored.
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Figure 3. Mean precision and recall with standard deviation of our new
approach compared to our old approach [2] over 100 simulated learning
scenarios. Each learning scenario is an independent instantiation of a temporal
task model that receives 100 demonstrations of the synthetic dataset one by
one in a unique order. The temporal task model of each learning scenario is
evaluated after adding a new demonstration.

Results: Figure 3 shows the mean precision and recall, as well
as the standard deviation across all 100 learning scenarios
for both the proposed approach and our previous work [2].
As can be seen, our new approach slightly outperforms
the old approach. Additionally, the variance of the new
approach improves with more demonstrations, while the
old approach shows a large variance regardless of the
number of demonstrations. This can be attributed to the
more fine-granular method of obtaining STTCs from temporal
differences between semantic action keypoints instead of
committing to STTCs directly from the demonstration as in
our old approach. Both approaches maintain a recall of 1
regardless of the number of demonstrations, supporting the
design goal of not being too relaxed.

B. Qualitative Evaluation of Inferred STTCs

Experimental Setup: In this experiment, we use the re-
labeled dataset of the KIT Bimanual Actions (Bimacs)
Dataset [23] from our previous work [2] that contains 60
demonstrations of 6 subjects preparing a muesli in total.
The subjects were asked to prepare muesli given a banana
(unpeeled, must be cut), a pack of cereals, a bottle of milk,
and a bowl. In total, 4 subtasks could be observed, namely
cut banana, etc., pour banana, etc., pour cereals, etc., and
pour milk, etc. Within these 60 demonstrations, 8 unique and
unequally distributed variations of subtask sequences were
observed (cf. [2], Table III). As discussed in our previous
work, ground truth data for this dataset is not available, thus
this evaluation is performed qualitatively by testing, whether
the model can identify, that the task consists of 4 subtasks
and that only cut banana etc. before pour banana etc. holds.
For comparison, this evaluation is performed for the synthetic
dataset as well, expecting 5 or 6 subtasks in this case.
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Figure 4. Correct learning scenarios across 60 demonstrations, comparing
the new approach with that of our previous work [2] for both the synthetic
dataset (Synthetic), as well as the KIT Bimanual Actions Dataset (Bimacs).

Results: In Figure 4, the number of correct learning scenarios
depending on the number of demonstrations they received can
be seen for the new approach compared to the old one for both
datasets. As can be seen, the new approach is generally able
to perform better compared to our old approach. The model
performs better on the synthetic dataset because this dataset
only consists of 2 equally distributed modes of possible task
executions compared to 8 heavily unequally distributed modes
in the Bimacs dataset.

C. Showcase on Synchronizing Movement Primitives

In this qualitative evaluation we showcase how the syn-
chronization of MPs of two predefined actions of a pouring
task from the KIT Bimanual Manipulation Dataset [24] may
take place using SSTTCs inferred using our approach. This
task involves two key actions executed bimanually, namely
holding the cup while pouring the milk. Prerequisites are
an existing temporal task model learned from 20 random
demonstrations of the pouring task, as well as existing MPs
for these actions that were learned unimanually. The MPs



associated with the actions could come from an MP library,
such as in our work [25]. We are interested in synchronizing
said two key actions. Our approach first identifies an STTC
of during between the two key actions. From this, the largest
suitable component for each of the two relevant GMMs is
selected. These form two identified SSTTCs, namely that pour
milk must start 0.5 s before hold cup starts, and that pour milk
must end 0.5 s after hold cup ends. The concrete temporal
arrangement is done by choosing durations of the two key
actions so that the two identified SSTTCs are satisfied. To
this end, we formulate an optimization problem

mintm,tc(∣tm−tc∣−(∆−
+∆

+))+(tm−tM)+(tc−tC),
where tm and tc are the duration of the pour milk and hold cup
MPs, respectively, and tM and tC the mean observed action
duration of pour milk and hold cup. Additionally, ∆− is the
temporal difference between the two key action’s starts and
∆

+ the temporal difference between the key action’s ends (i. e.,
the identified SSTTCs of 0.5 s each). The video attachment
shows how pre-trained unimanual MPs were synchronized
as described to realize a bimanual pouring action using the
SSTTCs inferred using our approach.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented an approach to learning symbolic
and subsymbolic temporal task constraints between actions of
a task from bimanual human demonstrations. The foundation
of such a temporal task model is a set of distributions
of temporal differences between semantic action keypoints.
Specifically, we propose to employ Gaussian mixture models
of temporal differences between action’s starts and ends to
capture the complex temporal nexuses of actions in bimanual
human manipulation tasks. A novel approach based on fuzzy
logic was presented to define fuzzy Allen relations from fuzzy
time point relations.

In future works, we want to extensively evaluate and
validate our proposed approach in real robot experiments
and study, how the now available SSTTCs can be utilized
to their full potential to synchronize Via-point Movement
Primitives [26] or facilitate their sequencing and blending [27].
Eventually, we envision holistic spatio-temporal task models
that also capture spatial constraints both on a symbolic and
subsymbolic level very similar to the temporal constraints in
this work.
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