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Abstract—We propose the use of a human-inspired ex-
ploratory motion in which a robot gripper’s fingertips are
rubbed together, to obtain tactile information about and recognize
a grasped textile. Our method not only recognizes different
materials, but also distinguishes between one and multiple layers
of the same material. The motion can be performed using an
open-source, 3D printable gripper, without needing to move either
the robot or the object. We also propose a set of features to
extract from the proposed exploratory back-and-forth motion,
which performs at over 94 % recognition rate when distinguishing
18 different materials with an easily-trained SVM. We compare
the performance with frequency-based features as well as a deep-
learning-based classifier.

Keywords—Grasping and Manipulation, Sensing, Biomimicking
Robots/Systems

I. INTRODUCTION

The robotic manipulation of thin deformable objects and
textiles1 is a challenging issue at the base of both numerous
household tasks, such as laundry, wrapping, and covering, as
well as industrial assembly and manufacturing applications.
When manipulating a textile object, it would be desirable to
know if a robot has successfully grasped it as well as its
identity. Tactile sensing is a promising avenue to obtain reliable
information independent of illumination and configuration of
the textile. Furthermore, it can be used for objects that are
inside containers or otherwise inaccessible to computer vision
approaches.

Lederman and Klatzky [1] observed that humans evaluate
an object’s roughness by dragging their fingertips over its
surface. We emulate this strategy with a back-and-forth finger
motion that rubs the gripper’s fingertips together to extract
tactile signals from the textile it has grasped. The motion is
implemented on the NAIST OpenHand M2S2, a gripper for
textile manipulation we have introduced in previous work [2].

1We use the term ”textile” to include all thin, highly deformable objects
with generally reversible deformation, such as plastic and aluminium foils.

2https://github.com/naist-robotics/naist-openhand-m2s

Fig. 1. The finger in the two extremal positions of the back-and-forth rubbing
motion and the contact points between the sensors p1 and p2, indicated in
red.

Fig. 2. The experiment setup, with a NAIST OpenHand M2S rubbing its
index finger on a piece of textile to obtain tactile information. The white guard
supports the textile so it does not slip away while the fingers are opened.

Human fingertips are highly complex and contain special-
ized cells to sense both low- and high-frequency vibrations,
stress and temperature flow. Furthermore, the fingertip’s struc-
tured surface is involved in creating the vibrations sensed by



these cells. Under the assumption that all of these characteris-
tics play a role in tactile sensing, complex biomimetic sensors
such as the BioTac3 have been developed. However, dealing
with the high-dimensional data delivered by these sensors can
be challenging, and it is unclear if all of the sensor modalities
are useful for a specific task.

We use a hemispherical 3D force sensor that extracts a 3-
dimensional signal from the forces acting on its rubber surface,
operating under the assumption that this signal is sufficient for
the material recognition task at hand.

II. RELATED WORK

The number of tactile sensors that have been developed
to measure textures is too large to cite in detail. We limit
this overview to works using deformable tactile sensors that
include friction in their tactile sensing approach, although
we note that a significant body of work also exists on the
measurement of surface acceleration data from textures, which
is often performed using a material fixed to a flat surface and
a hard sensor tip (such as a steel ball or artificial finger nail)
with an accelerometer [3], [4].

The work of Fishel et al. [5] is notable for the large
amount of textures measured (117 materials) under highly
controlled conditions using a BioTac sensor. They propose
the use of Bayesian exploration when classifying textures to
minimize uncertainty and limit the number of exploratory
motions required, and report an overall recognition rate of
95.6 %.

Kaboli et al. [6] use the same model of sensors as in this
work, mounted on a Robotiq 3-finger gripper to detect slip
and control the grasp when manipulating deformable objects
with a varying center of mass. After lifting an object, they
estimate the friction coefficient by slowly opening the gripper
until the object starts to slip, which is detected by a sudden
change in the tangential force. The friction coefficient is then
used to regulate the grasping force on each of the three
fingers. Their results support our assumption that this type
of sensor yields sufficient information for slip detection and
textile manipulation.

Another gripper for textile manipulation and recognition
which contains a tactile sensor and can perform a rubbing
motion has been developed in the CloPeMa project4. Le et
al. [7] use its tangential force measurement to estimate an
appropriate grasping force on their items of clothing. While
Le et al. mention that this rubbing motion was intended for
supporting the system’s textile recognition, the authors were
not able to locate a publication describing a method, the tactile
signals, or textile features and parameters revealed by the
gripper.

Ward-Cherrier et al. have developed an optical tactile
sensor that can be mounted to the M2 gripper [8] and which
measures the deformation of markers underneath the sensing
surface using a camera. Their sensor extracts a 2D pressure
profile, with the maximum signal frequency being the frame
rate of the camera capturing the markers. They do not specify
texture recognition as a goal.

3SynTouch LLC
4Clothes Perception and Manipulation. http://www.clopema.eu/

Fig. 3. The gripper mounted on a robot arm. The thumb is at the bottom.

Ho et al. [9] proposed a fabric sensor for identifying texture
via a sliding motion. They test it on three fabrics using different
signal processing approaches, reporting success rates of up to
90 % on the three materials. They report the highest success
rates on Discrete Wavelet Transforms of their signal.

Jamali et al. [10] dispersed strain gauges and piezoelectric
vibration sensors in an artificial finger, mimicking the human
fingertip’s slow- and fast-acting nerve cells, and moved it
over different materials. They extracted local maxima of the
recorded frequency spectrum as features, and report success
rates of 80 % using one sample, and 95 % using several
samples.

As of yet, no agreed-upon set of benchmark textures exists,
which makes the comparison between different works difficult.

III. HARDWARE

We use a NAIST OpenHand M2S, a wire-actuated open
source gripper with two degrees of freedom based on the Yale
OpenHand M2 [11].

The agonist motor closes the second finger joint and results
in an underactuated grasp, while the antagonist motor results
in a fully actuated grasp where the second finger joint does
not close. With this setup a tangential force can be applied
to an object while it is held in a precision grasp, simply by
actuating one of the motors and releasing tension on the other.

Two hemispherical Optoforce 3D force sensors (OMD-20-
SE-40N) are mounted to the fingertips, and additional bearings
are used in the finger’s joints to reduce hysteresis and friction,
and to increase position repeatability. Fig. 3 shows the hand
mounted on a robot arm.

While each sensor reports three scalar force values, the
whole surface of the sensors is sensitive and contributes to the
force reading. As the movement of the finger is planar, only
two of the three force values are used in our approach.

IV. RECOGNITION

An ideal exploratory motion reveals a maximum of char-
acteristic information while being repeatable and quick to
perform. The features we extract from the raw signals should
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Fig. 4. The horizontal force signal of one of the sensors during a rubbing
motion. The movement phases take place inside the red dotted lines. While a
single layer of PE causes the highest force, multiple layers slide off on one
another with the least effort.

reduce the amount of data, contain the characteristic informa-
tion, and be robust to noise and small changes in the way the
data is collected. Robustness to noise is especially important
when using the 3D-printed and wire-actuated gripper we use,
where mechanical tolerances are high, and friction phenomena
between all parts of the system can affect the positions of and
forces acting on the sensors.

Fig. 1 shows the back-and-forth rubbing motion between
the fingertips. The movement is defined as follows: First, the
finger is closed slowly so that the two sensors touch lightly.
The index finger is extended further at p1 than at the second
point p2, so the point of contact on the thumb’s sensor is
farther away from the robot. The position values of the two
motors are recorded at this point. Next, the finger’s sensor is
positioned so that the point of contact lies closer to the base.
The motors’ position values are recorded for this point p2 as
well.

To execute one rubbing motion, the finger is moved be-
tween the two defined points by setting the motor positions to
p1, p2 and p1 again. After each target setting of the motors,
we wait for a short time td. Each rubbing motion starts and
ends at the same point p1, and thus consists of two movement
phases and two relaxation phases. Fig. 4 shows the different
phases during one motion.

During each relaxation phase, some of the stored mechan-
ical energy in the sensors, materials and grippers is released.
This can be seen in the decreasing force signal after the motors
arrive at their destination (after about 100-150 ms). As the
eventual force value as well as the behavior during this phase
can differ between materials, we wait for td = 1s before
sending the next motor instruction.

When measuring, multiple rubbing motions are executed
sequentially. During preliminary experiments, we observed that
the first motion after closing the fingers yields less reliable
values than the later movements, as shown in Fig. 5. This may
be due to factors such as the initial configuration of the textile
and the undefined state of internal forces in the sensors at the
start. As these are hard to predict, we consider the first motion
to be preparation, and only include the later motions as data
for the recognition.

The proposed back-and-forth motion is only one specific
exploratory motion, but it has several advantages:
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Fig. 5. The mean and standard deviation of a feature over the course of
successive rubbing motions. The noise in the first motion after closing the
hand can be very high.

• It can be executed while the hand is stationary, and
requires no robot arm movement.

• It is simple to define.

• It is fast, requiring only a few seconds.

Furthermore, the sensors rotate relatively to one another,
which increases the relative motion inside the contact interface.
We surmise that this increases the amount of data issued by
friction phenomena, allowing for easier detection.

A. Feature extraction

We propose a set of manually defined features that can
be extracted from the force values recorded during a rubbing
motion.

Four force signals are recorded during one back and forth
motion. From each, we propose to use the following values as
features:

• The peak value during or just after the movement
phase

• The amount of time between start of the movement
phase and the occurrence of the peak value

• The absolute maximum value of the gradient in the
relaxation phase after the peak value

• The static values at the end of the relaxation phases

• The values at the start and end of the motion

The bulk of the features, such as the peaks and the
stationary force levels, are related directly to the friction
coefficients. When a single layer of material is being measured,
the friction coefficients are those of the interface between the
sensor and the material. When multiple layers are present, it
is predominantly the friction coefficient between the material
itself that is being sensed, as the sensors’ high-friction rubber
surface experiences little slippage.

B. Classification

Based on the extracted features, a classifier can be trained
to recognize the material held in the gripper. We propose the
use of a one-vs-one multiclass SVM [12] (OVO-MSVM) with
automatic kernel scaling, which yielded correct classification
results in over 94% of cases in our experiments.



TABLE I. LIST OF MATERIALS. ORDERED AS IN FIG. 6
LEFT-TO-RIGHT, TOP-TO-BOTTOM.

ARTICLE MATERIAL
Place mat 60% Cotton, 40% Polyester
Bath mat 90% Polyester, 10% Nylon
Cushion Polyester, Polyurethane

Floor mat Polyester, Latex
Carpet Bitumen, Polyamide
Scarf Polyester
Fabric Cotton
Basket Polyester

PE trash bag Polyethylene
Pencil case Polyester

Paper Paper
Belt Polyester

Saran wrap Polyvinylidene chloride
Laundry net Polyester

Curtain - rose Nylon
Curtain - white Polyester

Banknote Paper, treated
Aluminium foil Aluminium

Fig. 6. Single and multiple layers of the 18 materials were differentiated
during the recognition for a total of 36 cases. The two layers of cushion (top
row, 3rd from the left) are excluded.

While our method requires training and data collection, this
could be performed in an automated manner if the robot is able
to pick up and select materials by itself.

V. EXPERIMENTS

We evaluated our method by testing it on a representative
set of 18 materials that are taken from different household
objects, such as aluminium foil, saran wrap, cotton or carpet.
Fig. 6 shows the full set listed in Table I. As shown in Fig. 8,
some of the materials had a structured surface that changes
according to the orientation. To avoid adding complexity to
these cases, all materials were arranged in the same direction
during all measurements.

A. Classification

We train different SVMs on the obtained features, and
compare the effect of using different kernels as well as PCA
compression. Specifically, we evaluate one-vs-all and one-vs-
one SVMs using polynomial and radial basis function kernels.
We also evaluate the inclusion of the time value of each feature.

In order to compare the SVMs’ performance, we evaluate
an alternative frequency-based set of features as well as a
neural network. To extract the frequency-based features, we
define two windows of 150 ms length that begin when the
motion command is sent to the motors, as most frequency

Fig. 7. Structure of the neural network classifier used to compare our method.
All layers are fully connected.

variation will occur during and shortly after the movement
phases. We extract the frequencies present in each of these
windows via fast Fourier transform from the raw sensor data.

After extracting the single-sided amplitude spectrum, the
values are split into 10 bins and averaged. This results in a total
of 80 features extracted per rubbing motion. The classification
results based on these features are compared to the manual
features on a reference SVM method.

Finally, we compare the classification performance of the
neural network classifier shown in Fig. 7. As each motion of 2
seconds was repeated 5 times in a row, small latencies caused
the number of recorded samples in each motion to be slightly
higher or lower than exactly 2000 samples. To deal with this,
the length of was reduced to 1900 recorded samples for each
of the 4 force signals, so that the input of the classifier is a
vector of 7600 force values. The data was normalized before
training.

B. Procedure

As shown in Fig. 2, the gripper is mounted horizontally
with the rigid finger’s sensor pointing upwards, with a small
guard around the thumb so that the material would not fall off.
For each measurement, after the material is placed on the rigid
finger’s sensor, the index finger is closed to position p1, five
rubbing motions are executed, and the finger is opened again.

As explained in Section ??, each rubbing motion consists
of moving to p2, then p1, with a wait time td = 1 s after
each movement command is sent. Thus, each rubbing motion
consists of 2 seconds of data from 4 force signals.

We limited the number of successive rubbing motions
to avoid damaging the material. The order of materials was
randomized so that neither deterioration of the sensor nor
possible debris from a fabric or other factors such as softeners
would contaminate the measurements.

The sensors recorded at 1000 Hz. For the manual feature
extraction and the neural network training, we filtered the
signal using a moving average filter with n = 9. The 2-
layer case of the cushion was omitted, as the thickness of the
material was too high for the gripper.

VI. RESULTS

In total, 9000 motions over 5 sessions on different days
were recorded. Of these, 1800 motions were preparatory as
described in Section IV, and another randomly distributed 1200
contained data affected by transmission issues, resulting over



Fig. 8. Close-up of some structured surfaces in the material set. The texture in a linear section would depend on the orientation of the material, so it is kept
constant throughout the experiments.
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Fig. 10. Recognition rates of different SVM kernels and types when using
manually defined features.

6000 usable samples. The data acquisition required about 15
hours in total.

Fig. 9 shows that the results are clustered differently on
different days, indicating that sensor, motor, and/or material
parameters drift in between measurement sessions. While this
implies that a general issue concerning repeatability exists in
the setup, it does not invalidate the results.

A. Manually defined features

Fig. 10 shows the performance of different SVM kernels
and types using the manually defined features. The highest
recognition rate obtained on the global data set was 94 %
for all materials, and 97.5 % for the 2-layer cases. Including
each feature’s time value in the feature vector generally caused
performance to decrease by 0 to 3 %.

The principal component analysis showed that the features
causing the most variance were those describing the peak force
levels. However, the performance of the PCA-compressed
and dimensionality-reduced features did not exceed 85 %
recognition rate in any SVM, and training on the raw data
yielded better results.

B. Frequency-based features and deep learning

Training the OVO-MSVM with the frequency-based fea-
tures, we obtained a recognition rate of about 81 %. To train
the neural network, we used 80 % of the data and tested on the
remaining 20 %. The model recognized 98 % of the training
batch and 96 % of the test batch.

VII. DISCUSSION

Even though our sensory intuition would lead us to expect
that vibrations due to roughness and surface structure may
play a larger role in the recognition, the higher performance of
the manually extracted features compared to the feature-based
ones indicates that a significant part of the information in our
signal is contained in the friction coefficients. At the same
time, it is possible that our data contains fewer vibrations, as
our gripper’s finger moves over the textile relatively quickly.
Both Jamali et al. [10] and Fishel et al. [5] have used slower
and longer movements under 5 cm/s, which would yield more
vibrations.

The recognition rate is remarkably high, despite the lack of
strong vibration information and despite the use of a 3D printed
gripper with high manufacturing tolerances. This implies that
features based on friction measurements are a good basis for
robust and reliable perception of textiles.



The high friction coefficient of the sensor surface is
fundamentally responsible for the range of measurement in
this application. In our setup, the maximum tangential force
values are measured when no material is grasped and the
rubber surfaces of the sensor rub on one another. Effectively,
this maximum value marks the top end of the measurement
range, with all the other materials’ friction coefficients ranging
between it and a low minimum (in our case, two layers
of polyethylene). Further, when two layers are between the
fingers, with the high friction coefficient of the sensors the
rubbing motion generally causes the two materials to move
relative to each other, as the friction coefficient between layers
of the same material is usually lower. A sensor with very low
friction would simply glide over the materials, and while it
would be able to perceive a surface profile using vibrations,
it would hardly be able to recover differences in friction
coefficients.

It is also noteworthy that the recognition rate was higher
for multiple layers than for single layers. Part of this may be
due to a few materials having differently structured sides (e.g.
PE-coated cotton, carpet), but we consider it more likely that
richer tribological interactions exist between the materials than
between the textiles and the sensors.

We note that the neural network performs slightly better
than the SVM trained on manually extracted features, but that
it required more manual tuning to achieve this result. The
optimal model of the network was determined heuristically:
inserting an additional layer of 1900 neurons in the front of
the network, or removing the layer of 500 neurons, caused
the recognition rate to decrease by over 15 %. More data
may require a different model, and require additional setup
to achieve comparable performance. By contrast, the OVO-
MSVM trained on the manually extracted features is compu-
tationally lighter and requires less manual interaction with the
training parameters.

The underactuated gripper we use has both advantages and
limitations. A limitation is that the wire-actuation and lack of
angular encoders means that the position of the tactile sensors
is not precisely known, although it would be of interest to use
their position to separate the tangential from the normal force,
as cleaner data may be extracted this way. An advantage is
that the compliance of the finger and the actuating wire likely
compensate, to some degree, for the position accuracy of the
motors.

The proposed method requires that the sensors be trained
with the different materials in advance. This could be avoided
if the sensor values could be connected to physical parameters,
such as roughness, surface structure, stiffness and the like.
Evaluating this possibility will be part of future work.

Another avenue to be investigated is the speed of and nor-
mal force applied during the rubbing motion. Slow movements
with light pressure should yield different tactile information
than fast ones with a lot of applied force. Future work includes
finding an appropriate handling range for textile recognition.

VIII. CONCLUSION

We have shown that a considerable number of textiles
can be identified reliably based on their friction parameters

obtained through a human-inspired finger motion. We also
presented an inexpensive solution to recognize textiles, to
confirm their successful grasp, and to detect if single or
multiple layers have been grasped. Our results indicate that
low-dimensional force data generated by a rubbing motion
is sufficient to recognize a variety of common textiles if
the friction parameters. Future work includes relaying the
measured data to textile parameters and descriptions (e. g.
roughness, stiffness) and investigating the effect of different
speeds and contact forces on the measured signal.
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