
Binary-LoRAX: Low-Latency Runtime Adaptable XNOR Classifier for
Semi-Autonomous Grasping with Prosthetic Hands

Nael Fasfous1, Manoj-Rohit Vemparala2, Alexander Frickenstein2, Mohamed Badawy1,
Felix Hundhausen3, Julian Höfer3, Naveen-Shankar Nagaraja2, Christian Unger2, Hans-Jörg Vögel2,

Jürgen Becker3, Tamim Asfour3, Walter Stechele1

1 Technical University of Munich 2 BMW Group 3 Karlsruhe Institute of Technology

Abstract— Intelligent, semi-autonomous prostheses take ad-
vantage of combining autonomous functions and traditional
myoelectric control. With the help of visual and environment
sensors, intelligent prostheses achieve a level of autonomy which
relieves the user from generating elaborate electromyographic
(EMG) signals for grasp type and trajectory. To achieve the
desired functionality, the semi-autonomous prosthesis must ef-
ficiently process the incoming environmental data at a high rate,
with low power and high accuracy. In this paper, we propose
Binary-LoRAX, a low-latency runtime adaptable classifier for
the semi-autonomous grasping task of prosthetic hands. We
offload the classification task to an efficient binary neural
network accelerator which performs high-throughput XNOR
operations on digital signal processing (DSP) blocks. To tailor
the classifier’s performance to the current application scenario,
we propose a frequency scaling approach which dynamically
switches between two modes of operation, high-performance
and power-saving. At high-performance, classifications are
performed with a low latency of 0.45ms, high-throughput of
4999 FPS and power consumption of ∼2.15 W. This enables
functions such as object localization and batch classification.
Switching to power-saving mode, a latency of 80 ms is main-
tained, with up to 19% improved classifier battery-life. Our
prototypes achieve a high accuracy of up to 99.82% on a 25
class problem from the YCB graspable object dataset.

I. INTRODUCTION

Computer vision tasks such as image classification [1],
object localization [2] and semantic segmentation [3] are
fundamental to many applications such as autonomous driv-
ing, human-robotic interaction and smart factories. With the
abundance of training data and compute resources, deep
learning algorithms, such as convolutional neural networks
(CNNs), have dominated most computer vision tasks, albeit
at the cost of increased memory requirements and compute
complexity [4], [5], [6].

The design of low-power, performant intelligent systems
emphasizes the importance of an efficient deployment of
deep learning algorithms on embedded hardware. Specif-
ically for autonomous applications, including robotic or
prosthetic devices, real-time interpretation of sensor data
is essential for responsiveness. When visual sensors such
as cameras are used, the processing of the high-bandwidth
input data is challenging, especially for battery-powered

This work was partly funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Project Number 146371743 - TRR
89: Invasive Computing.

systems. In prosthetic hands, the implementation of semi-
autonomous functions is enabled through in-hand visual
perception, which requires efficient embedded processing to
avoid insecure, high-latency external compute services. The
complete control algorithms, including image recognition,
must be executed on in-hand embedded processing hardware.

Such contradictory objectives of maximizing performance
while minimizing power and resource utilization, assign a
decisive role to optimization of deep learning algorithms.
One option is to exploit the representational redundancy of
neural networks through quantization and binarization [7],
[8], [9]. In this work, we propose Binary-LoRAX, an efficient
runtime adaptable binary neural network (BNN) classifier
for the semi-autonomous grasping task of prosthetic hands.
We tackle the challenges arising from the prosthetic hand’s
application constraints through the following contributions:

• Applying BNNs to the graspable object classification
task, enabling the efficient deployment of neural net-
works on intelligent prostheses with a task-related ac-
curacy of 99.82% on a 25 class problem from the
YCB object dataset [10], adding 12 classes compared
to existing work [11].

• Achieving low-latency classifications of 0.45 ms, con-
suming <1% of the optimal controller delay [12] and
achieving a 99.7% reduction in latency compared to
existing work [11].

• Efficiently executing XNOR operations on an FPGA’s
digital signal processing (DSP) blocks in a vectorized
manner, freeing more look-up table (LUT) resources
and allowing larger BNNs to fit onto embedded FPGAs.

• Dynamically adapting the frequency of the accelerator,
offering high-performance and low-power modes to
target different application scenarios (dangerous/deli-
cate objects, batch processing, object localization, low
battery, prosthetic movement), improving the classifier’s
battery-life by up to 19% compared to [13].

II. RELATED WORK

A. Efficient Intelligent Prosthetics

For semi-autonomous control of a prosthetic hand, vision-
based perception is an important component which has
gained a lot of attention in research lately [14], [15],
[16], [17], [18], [19], [20], [21]. The implementation of

semi-autonomous hand functions reduces the complexity
of required user-control commands typically generated by
electromyographic (EMG) signals. Compared to completely
manual hand control, the set of required commands can be
smaller and invoked with lower cognitive effort and thus
lowers the cognitive burden on the user [17], [22]. Moreover,
the reduced complexity of commands requires less complex
electrode setups that are needed for higher accuracy and more
long-term stable EMG-pattern recognition.

The semi-autonomous KIT Prosthetic Hand proposed
in [18], employs an in-hand camera to decrease the cognitive
burden on the user by automating parts of the grasping
process with the help of visual environmental information.
For grasping an object with the support of semi-autonomous
functions, the first step is to obtain visual object information,
such as object class or object dimensions, e.g. width or
height. This information is then used to select a suitable
grasp from a database, where parameters can include finger
trajectories or forces. In [11] a two-step classification system
for the KIT Prosthetic Hand is proposed, where an object
classification algorithm and an acknowledgment from the
user triggers a second segmentation network.

In the first version of the KIT Prosthetic Hand, an ARM
Cortex M7-based microprocessor was used. The currently
developed design includes a Zynq Z7010-based processing
hardware. A photo of the hardware is shown in Fig. 1.

Fig. 1: KIT Prosthetic Hand (50th percentile female) with
Zynq Z7010-based processing system

B. Binary Neural Networks

Parameter quantization has a direct impact on a neu-
ral network’s memory footprint and the complexity of its
arithmetic operations on hardware. Binarization is the most
aggressive form of quantization, where network weights and
activations are constrained to {−1, 1} [9]. Theoretically, this
leads to a parameter compression of ×32 compared to a
float-32 CNN, and allows for an implementation of multiply-
accumulate (MAC) operations as simple XNOR and popcount

on inference hardware [23]. As a trade-off, low bitwidth
representations have a lower information capacity, losing
the precision of the finely adjusted weights achieved by
the gradient propagation during training. To address these
challenges, specialized training schemes are applied (normal-
ization, straight-through-estimators (STEs), scaling/shifting
factors) [24], [25], [23]. Different schemes for binarization
have been proposed [9], [26], [27], [28], [23]. Courbariaux et

al. [26] introduced the concept of training neural networks
with binary weights during the forward pass and maintain-
ing latent full-precision values during back-propagation to
allow fine adjustments through the gradients. The authors
later augmented this approach with binarized activations [9].
Rastegari et al. [23] introduced XNOR-Net, where the con-
volutions were approximated by a combination of XNOR

operations and popcounts, followed by a multiplication with
scaling factors. The introduction of scaling factors not only
increases the number of trainable parameters for each layer,
but also adds to the computational complexity of XNOR-
Net at deployment time. Although [23], [28], [29] and [30]
have focused on adding algorithmic or structural complexity
to BNNs to achieve classification performance close to full-
precision CNNs on complex tasks, simpler tasks with lower
scene complexity can be handled with more efficient forms
of BNNs [9], [31].

In the context of semi-autonomous prosthetic hands, the
camera input at the instance before the grasp operation
takes place is expected to have one central object in the
field-of-view. In that regard, the task’s complexity resembles
that of popular datasets, such as the German Traffic Sign
Recognition Benchmark (GTSRB) [32], Street View House
Numbers (SVHN) [33] or CIFAR-10 [34], all of which have
the object of interest in the forefront of the scene, with
minimal, random background complexity when compared
to autonomous driving scenes such as Cityscapes [35]. It
is important to note that BNNs have shown high accuracy
and good generalization on the mentioned datasets [9], [13],
making them a worthy candidate for the graspable object
classification problem.

C. BNN Hardware Accelerators

Several accelerators have been designed to exploit the
benefits of BNNs [36], [37], [13], [38], [39]. FINN [13]
is a popular framework for accelerating BNNs on FPGAs.
Although the framework is designed for BNNs presented
in [9], it also supports 2-bit weights and/or activations.
FINN compiles HLS code from a BNN description to
create a hardware design for the network. The generated
streaming architecture consists of a pipeline of individual
hardware components instantiated for each layer of the BNN.
OrthrusPE [40] investigates the effectiveness of deploying
binary operations onto DSPs as SIMD binary Hadamard
product processing units. The authors reconfigure the DSP at
runtime to perform either fixed-precision operations or SIMD
binary operations, enabling BNNs with scaling factors and
multiple bases [28], [23]. In this work, we infuse the FINN
architecture with DSPs, by switching them statically to a
binary operation mode. For LUT constrained devices such
as the Z7010, this allows larger and/or faster accelerator
designs, by spreading out computations to DSPs. We further
enable runtime frequency scaling to achieve different modes
of operation, at different latency requirements and power
consumption rates, based on the current application scenario.

Hl-1:

Bl:

ci

k
k

Al: co
xo

yo

co
Wl:

sign

Co
nv

 →
 B

in
ar

y
Co

nv
:

Binary Neural Network
Al-1: ci

xi

Prediction

Kernel:
DSP

Signal A (30-bit)
Signal B (18-bit)

Signal C (48-bit)

Sig P PE

Sig P PE
DSP

e.g. SIMD=32-bit

Batch Classification
(Accuracy)

Object
Localization

No Movement (Idle), Low Battery

Dangerous Obj., Hand Movement
Latency Bounded (<100ms),

Low-Power
Classification

OPMODE
ALUMODE

1
1
1

0
0
0

1
0
1

1
0
1

1
0
1

1
1
1

0
0
0

1
1
1

1
0
1

1
0
1

1
0
1

0
0
0

1
1
1

0
0
0

1
0
1

SIMD Lanes

BinConv sign

Tensor slice:

XNOR

PopCnt

Weight
Memory

Accum
ulator

Threshold
M

em
ory

+ >>

Processing Element (PE)

W
rit

e t
o

PE
s

...

High-PerformancePower-Saving

Run-time Frequency Scaling

1 1 1 1

1 1
0 0 0

0
0
0

1 10 0

1 1 1 1

1 1
0 0 0

0
0
0

1 10 0

1
0
1

1
0
1

1
0
1

1
1
1

1
1
1

0
0
0

BatchNorm

1
0
1

1
1
1

0
0
0

1
0
1

1
0
1

1
0
1

1
1
1

0
0
0

1
1
1

1
0
1

1
0
1

1
0
1

0
0
0

1
1
1

0
0
0

1
0
1

1
0
1

1 1
0 0 0

0
1 10

Binary FPGA-based Accelerator MVTU:
 • PEs
 • SIMD
 • Hl-1, Bl

• Pipeline
 Buffers
• SWU

• Pipeline
 Buffers
• Sliding Window
 Unit (SWU)

yi

Fig. 2: Overview of Binary-LoRAX: BNN tensor slices are fed into DSPs which perform high-throughput XNOR operations.
DSP results are forwarded to the PEs of an MVTU. A single MVTU of the pipeline is shown for compactness. Runtime
frequency scaling allows high-performance functions, or power-saving mode.

III. METHOD

A. Training and Inference of BNNs

For efficient approximation of weights and activations to
single-bit precision, the BNN method by Courbariaux et
al. [9] is used. At training time, the network parameters are
represented by full-precision latent weights W allowing for
a smoother convergence of the model [24]. It is important to
note that the input and output layers in this implementation
are not binarized, to avoid a drop in classification accuracy.

Without loss of generality, the activation feature map
Al−1 ∈ RXi×Yi×Ci is considered as the input to a con-
volutional layer l ∈ [1, ..., L], where Xi, Yi and Ci describe
the dimensions of width, height and input channels. A0 and
AL are the input image and the prediction of the BNN,
respectively. The latent weight matrix W ∈ RK×K×Ci×Co

is composed of the trainable parameters of the individual
2D-convolutional layers, where K and Co are the kernel
dimensions and the number of output channels. During
the forward-pass for loss calculation or deployment, the
weights w ∈ W are transformed into the binary domain
b ⊂ B ∈ BK×K×Ci×Co , where B = {−1, 1}. In the
hardware implementation, the −1 is represented as 0 to
perform multiplications as XNOR logic operations. The weight
and input feature maps are binarized by the sign() function

b = sign(w) =

{
1 if w ≥ 0,
−1 otherwise . (1)

The sign() function blocks the flow of gradients during
training due to its derivative, which is zero almost every-
where. To overcome the gradient flow problem, the sign()
function is approximated during back-propagation by the
straight-through estimator (STE) [24]. In the simplest case,
the estimated gradient gb could be obtained by replacing the
derivative of sign() with the hard tanh, which is equivalent
to the condition gw = gb when |w| ≤ 1 [9].

Particularly for BNNs, it is of crucial importance to adjust
the input elements al−1 ⊂ Al−1, before the approximation
into the binary representation hl−1 ⊂ H l−1 ∈ BXi×Yi×Ci

by means of batch normalization. An advantage of BNNs is
that the result of the batch-norm operation will be followed
by sign() (see Fig. 2). Since the result after applying
both functions is simply {−1, 1}, the precise calculation of
the batch-norm is wasteful on embedded hardware. Based
on the batch-norm statistics collected at training time, a
threshold point τ is defined, wherein an activation value
al−1 ≥ τ results in 1, otherwise -1 [13]. This allows the
implementation of the typically costly batch-norm operation
as a simple magnitude comparison operation on hardware.
Next, the binary convolution follows as

Al = BinConv(H l−1, Bl) = PopCnt(XNOR(H l−1, Bl)),
(2)

which results in the output feature map Al ∈ RXo×Yo×Co .

B. Hardware Architecture

The baseline hardware architecture is provided by the
Xilinx FINN framework [13]. The hardware design space
has many degrees of freedom for compute resources, pipeline
structure, number of processing elements (PEs) and single-
instruction-multiple-data (SIMD)-lanes, among other param-
eters. The streaming architecture is composed of a series of
matrix-vector-threshold units (MVTUs) to perform the XNOR,
popcount and threshold operations mentioned in Sec. III-A.
In Fig. 2, a single MVTU is shown in detail, containing
two PEs with 32 SIMD-lanes each. A detailed view of a
single PE is also provided (bottom-right). For convolutional
layers, a sliding-window unit (SWU) reshapes the binarized
activation maps H l−1 ∈ BXi,Yi,Ci into interleaved channels
of hl−1 ⊂ H l−1, to create a single wide input feature map
memory, that can efficiently be accessed by the subsequent
MVTU and operated upon in a parallel manner. Max-pool
layers are implemented as Boolean OR operations, since a

single binary “1” value suffices to make the entire pool
window output equal to 1.

A single MVTU is solely responsible for a single layer in
the BNN, and is composed of single or multiple PEs, each
having their own SIMD lanes. The SIMD lanes determine
the throughput of each PE for the XNOR operation. The
choice of PEs and SIMD lanes determines the latency and
hardware resource utilization of each layer (i.e. MVTU)
on the hardware architecture. A layer’s poorly dimensioned
MVTU can result in an inefficient pipeline, leading to poor
overall throughput. Throughput in a streaming architecture is
heavily influenced by the slowest MVTU of the accelerator,
as it throttles the rate at which results are produced when the
pipeline is full. On the other hand, latency is dependent on
the time taken by all the MVTUs of the architecture as well
as the intermediate components between them (e.g. SWU,
pooling unit, etc.).

Choosing the correct number of PEs and SIMD lanes
for each layer becomes a design problem of balancing the
FPGA’s resources, the pipeline’s efficiency (throughput and
latency), and potentially the choice of layers in the BNN
(i.e. task-related accuracy). The number of resources on the
FPGA is limited, especially in the context of low-power
prosthetics, making these aspects important in planning the
deployment with a HW-BNN codesign approach.

C. Runtime Dynamic Frequency Scaling

In the previous section, the importance of defining the
number of layers (BNN design) and PE/SIMD lanes per
MVTU (HW design) was outlined. To enable efficient
performance of the semi-autonomous prosthesis, a further
aspect must be considered next to resource utilization and
latency, namely the power consumption of the classifier.
Prosthetic devices are meant to be used on a day-to-day basis,
making high power consumption a prohibitive aspect to their
practicality. Here, we further append the classifier with the
ability to change its operating frequency dynamically at
runtime. The purpose in this case, is not having the classifier
continually run at its full capacity, but rather scale down its
performance (in terms of latency) for more efficient use of
the available energy supply. Dynamic power in CMOS scales
roughly with frequency following Pdyn ≈ αf ·CV 2

dd, where
α is the switching activity, f is the frequency, C the effective
capacitance and Vdd the supply voltage.

In case of our target Xilinx Zynq System-on-Chip boards,
the programmable logic (PL) on which the hardware accel-
eration is implemented, is clocked through phased-locked-
loops (PLLs) controlled by a CPU-based processing system
(PS). The PS can manipulate the PL’s clock by writing into
special registers, whose values act as frequency dividers to
the PLLs. As an example, the motion of the prosthetic hand
can be captured through simple sensors which are monitored
by the PS. Based on this motion, the PS can drive up the
frequency of the classifier and prepare for a low-latency,
high accuracy classification (based on a mean classification
of a batch of frames). In case of a fragile or perilous
object, the lower risk of a false classification can reduce the

chances of an improper grasp. The PS can also trigger the
object localization task by splitting the view into multiple
small images and classifying them with high throughput.
This is elaborated in Sec. IV-C. These high-performance
features may extend the use of Binary-LoRAX to other semi-
autonomous prostheses and/or applications. Conversely, the
PS may monitor the remaining battery power or system
temperature and switch the classifier to low-power mode.

D. SIMD Binary Products on DSP-blocks

In resource constrained platforms, the available hardware
must be used effectively. Smaller FPGAs that have a few
thousands of look-up-tables (LUTs) can easily run into
synthesis issues, even with small network architectures.
Since digital signal processing (DSP) blocks are not heavily
utilized when synthesizing our BNN accelerator designs, they
presented a good alternative to LUT resources for executing
the parallel XNOR operations of the accelerator.

The DSP48E11 slice is presented in Fig. 3. We exploit
the internal concatenation of signals A and B to fit part of
the tensor slice hl−1 and select it through the X multiplexer,
forming a 48-bit wide signal. Signals A and B are asymmetric,
having 30 bits and 18 bits respectively. These signals are
aligned before entering the DSP, such that their concatenated
value A : B (top blue line in Fig. 3) represents the input to one
(or multiple) of the MVTU’s PEs and the respective SIMD
lanes (Fig. 2). Note that the top blue path in Fig. 3 skips
over the “MULT” inside the DSP, allowing us to clock-gate
the multiplier for further power savings. The tensor slice bl

of binarized weights is wired to input C of the DSP, and
made internally accessible at multiplexers Y and Z (as well
as W on DSP48E2). The order in which hl−1 is aligned in
signals A : B must match their element-wise multiplicand in
bl in signal C to get the correct 48-bit wide output as signal
P. By setting the ALUMODE signal and activating the correct
multiplexers through the OPMODE signal (marked red in
Fig. 3), the DSP is transformed into a SIMD binary product
module. This low-level FPGA primitive reprogramming is
not possible through High Level Synthesis (HLS), which
is used to describe the overall accelerator. A script was
developed to parse through the Hardware Description Lan-
guage (HDL) files generated by HLS, to find all the signals
corresponding to XNORs in the accelerator. The connections
between the operand signals and the output registers are
removed, then primitive DSP modules are instantiated with
the correct wiring to operate in the binary mode described
earlier. The operand signals of hl−1 and bl are arranged into
the aforementioned A : B and C signals and connected into
the DSP(s). The wide output P signal is then split and passed
back into the next stages of the PE.

IV. RESULTS AND DESIGN SPACE EXPLORATION

A. Experimental Setup

We evaluate Binary-LoRAX on 25 objects from the YCB
dataset [10], improving upon previous work by 12 ob-

1Can also be applied to all 7-series, Ultrascale and Ultrascale+ FPGAs
(DSP48E1 and DSP48E2), as well as the Versal DSP58.

Fig. 3: The DSP48E1 Slice [41]. Appended blue path indi-
cates the operands inside the DSP, red path indicates signals
that are needed to achieve the desired binary mode.

jects [11]. The dataset is augmented through scale, crop,
flip, rotate and contrast operations. The masks provided
with the dataset are used to augment the background with
random Gaussian noise. The dataset is expanded to 105K
images for the 25 classes. The images are resized to 32×32
pixels similar to the CIFAR-10 [34] dataset. The BNNs are
trained up to 300 epochs, unless learning saturates earlier.
Evaluation is performed on a 17.5K test set. We trained
the BNN architectures shown in Tab. I according to the
method described in Sec.III-A. Each convolutional (Conv)
and fully-connected (FC) layer is followed by batch-norm
and activation layers except for the final layer. Conv groups
1 and 2 are followed by a max-pool layer. The target
System-on-Chip (SoC) platforms for the experiments are the
XC7Z020 (Z7020) for v-CNV and m-CNV prototypes, and
XC7Z010 (Z7010) for µ-CNV. All prototypes are finally
deployed on the Z7020 SoC. Power, latency and throughput
measurements are taken directly on a running system. The
power is measured at the power supply of the board (includes
both PS and PL). Latency measurements are performed end-
to-end on the accelerator covering the classifier’s total time
for an inference, while throughput is the classification rate
when the accelerator’s pipeline is full. Note that throughput is
higher than the latency rate due to the streaming architecture
working on multiple images concurrently in different parts
of its pipeline when it is full.

TABLE I: Network architectures and hardware dimensioning.

Network (v)-CNV m-CNV µ-CNV

Arch.
L | [Ci, Co]
K = 3 ∀ Conv

Conv 1 1 | [3, 64]
Conv 1 2 | [64, 64]
Conv 2 1 | [64, 128]
Conv 2 2 | [128, 128]
Conv 3 1 | [128, 256]
Conv 3 2 | [256, 256]
FC 1 | [512]
FC 2 | [512]
FC 3 | [25]

Conv 1 1 | [3, 32]
Conv 1 2 | [32, 32]
Conv 2 1 | [32, 64]
Conv 2 2 | [64, 64]
Conv 3 1 | [64, 128]
Conv 3 2 | [128, 128]
FC 1 | [256]
FC 2 | [256]
FC 3 | [25]

Conv 1 1 | [3,16]
Conv 1 2 | [16, 16]
Conv 2 1 | [16, 32]
Conv 2 2 | [32, 32]
Conv 3 1 | [32, 64]
FC 1 | [128]
FC 2 | [25]

PE Count 16, 32, 16, 16, 4, 1, 1, 1, 4 4, 4, 4, 4, 1, 1, 1
SIMD lanes 3, 32, 32, 32, 32, 32, 4, 8, 1 3, 16, 16, 32, 32, 16, 1

YCB-Objects

mug, banana, toy airplane, chips can,
tomato soup can, windex bottle, apple, scissors,

sugar box, master chef can, mustard bottle, orange,
pudding box, lemon, plate, pitcher base, potted meat can,
mini soccer ball, gelatin box, large clamp, power drill,

tennis ball, cracker box, adjustable wrench, knife

TABLE II: Hardware results of design space exploration.
Power is averaged over a period of 100 seconds of operation.

Configuration Freq. LUT BRAM DSP Power Latency Throughput Acc.
(W,A)-bits|BNN MHz [W] [ms] [FPS] [%]

(8,8) - [11]* 400 - - - 0.446 115 9 96.51*

(2,2) - CNV** 100 35718 140 32 2.217 4.87 860 99.91
(1,2) - CNV 100 40328 131.5 26 2.241 1.63 3049 99.89
(1,1) - CNV [13] 100 26060 124 24 2.212 1.58 3049 99.82

Binary-LoRAX: DSP XNOR + Frequency Scaling:

(1,1) - v-CNV l 2
111

23675 124 72 l 1.857
2.172

78.93 61 99.821.42 3388

(1,1) - m-CNV l 0.7
125

21972 44.5 66 l 1.879
2.157

80.22 28 98.990.45 4999

(1,1) - µ-CNV l 1
100

11738 14 27 l 1.824
2.028

80.64 16 90.580.81 1646
*: Running on ARM Cortex M7 (CPU frequency reported), accuracy for 13 classes, 72×72 input

**: Less PEs and SIMD lanes to fit the SoC

B. Design Space Exploration

Considering two embedded SoC platforms, the Z7020 and
the more constrained Z7010, three Binary-LoRAX proto-
types were investigated: v-CNV, m-CNV and µ-CNV. The
CNV network is based on the architecture in [13] inspired
by VGG-16 [42] and BinaryNet [9]. m-CNV and µ-CNV
have a similar architecture, with fewer channels, for faster
inference and to fit the Z7010 respectively. For the prosthetic
hand, latency is more critical than throughput. On the Z7010,
the number of PEs and SIMD lanes were chosen to minimize
end-to-end latency accordingly.

In Tab. II, we report the details of the CNV network with
(1,2) and (2,2) bits for weights and activations respectively.
The fully binarized CNV (1,1) network achieved a compara-
ble accuracy of 99.82% on the YCB graspable object dataset,
showing the effectiveness of BNNs for this task, and the
potential to add more classes in future work.

In the bottom half of Tab. II, the hardware utilization for
the Binary-LoRAX prototypes is provided. For the v-CNV
network, a reduction of 2386 (9%) LUTs can be observed
from the regular CNV [13]. For the constrained Z7010,
such reductions can make a previously non-synthesizable
design realizable after moving XNOR operations to DSPs.
The increase in DSP usage can be justified as they are
not the bottleneck for synthesizable designs in our case. It
is important to note that µ-CNV was synthesizable on the
Z7010 only after moving the XNOR operations to the DSPs,
as proposed in Sec. III-D.

C. Runtime Dynamic Frequency Scaling

Prosthetic devices used on a daily basis must offer high
performance for safe and convenient use, while minimizing
power dissipation to increase the continuous usage time
before charging. Referring back to Tab. II, we report two
values (l) for power, latency and throughput per Binary-
LoRAX prototype, for high-performance and power-saving
modes. At 2 MHz, Binary-LoRAX’s v-CNV achieves a
reduction of up to 16% in power consumption with run-
time frequency scaling compared to standard CNV [13].
This translates to an improvement in battery-life of up to
19%. In high-performance mode, a latency of only 0.45 ms
is consumed by the m-CNV network at 125 MHz. This
reduces latency by 99.7% compared to the work in [11].

Fig. 4: The large input image is sliced into smaller images
and reclassified. High confidence classifications are bounded.

Considering the performance/Watt efficiency metric, Binary-
LoRAX’s m-CNV achieves 2318 frames/Watt compared to
20 frames/Watt in [11]. With an optimal controller delay for
myoelectric prostheses of 125 ms [12], all our classifiers
consume <1% of the total time, leaving more slack for post-
processing, actuators and other parts of the system. In power-
saving mode, the Binary-LoRAX prototypes run at 0.7-2
MHz and achieve an ∼80 ms latency, still leaving more than
36% of the allocated delay for the controller. It is important
to note that in all the reported power measurements, roughly
1.65W of power is consumed by the Z7020’s ARM-Cortex
A9 processor (PS) and the board. This leaves the isolated
accelerator’s power at roughly 0.2W in power-saving mode
for all configurations, making it very energy efficient. How-
ever, we report the overall power since the accelerator is still
dependent on processor calls and preprocessing. In future
work, the PS power consumption can also be optimized to
further reduce the classifier’s overall power requirement.

In addition to the low latency of the high-performance
mode, the high throughput of up to 4999 FPS can be used to
improve the quality of the application. Instead of providing
a single classification, the accelerator can pipeline the infer-
ence of many images (potentially from different sensors) and
perform batch-classification. The batch classification result
will represent the highest class over all classifications, which
in practice compose of slightly different angles, lighting and
distance to the object, improving the chances of a correct
classification. Multi-camera prosthetics proposed in [43] can
benefit from the high throughput, as more data is gathered
through the multiple camera setup.

Another use of the high-performance mode is object lo-
calization in multi-object scenes. A large input image can be
sliced into several smaller images and reclassified [13]. The
image can be reconstructed with bounded high confidence
classifications. Fig. 4 demonstrates the described function
on Binary-LoRAX. This can help the prosthesis predetermine
the location of different objects in a far scene, when the hand
is not yet close to the graspable object. The approach also
fits our training scheme, as the BNNs are trained on up-
close images of the object (soon before the grasp), while far
scenes with no central object would be unrecognizable to the
BNN. The individual slices of a far scene are similar to the
up-close train images.

In Fig. 5, we perform a frequency sweep on the v-CNV
prototype, identifying different points of operation for dif-

1
.7
5

1
.8
5

1
.9
5

2
.0
5

2
.1
5

2
.2
5

Po
w

er
(W

)

Power
Latency

FPS

0 20 40 60 80 100 120

0
2
0

3
5

5
0

6
5

8
0

Low Power Batch Classification Localization

Frequency (MHz)

L
at

en
cy

(m
s)

0

1

2

3

T
hr

ou
gh

pu
t

(1
00

0
FP

S)

Fig. 5: Runtime frequency scaling ranging from 2MHz to
111MHz for the v-CNV prototype

0 20 40 60 80 100

1
.8

2
2
.2

2
.4 Prosthetic Movement

Prosthetic Idle
/ Low Battery3388FPS

1.42ms

61FPS
78.93ms

Time (s)
Po

w
er

(W
)

Fig. 6: Run-time change in operation mode based on appli-
cation scenario, e.g. motion, delicate object or low battery

ferent application requirements. The low-power region is
considered to be below 1.90 W, while localization would
require classification rates of above 2250 FPS for an input
resolution of 320×240. Batch classification can be triggered
in critical scenarios where a latency of <10 ms is needed.

We demonstrate the application of runtime frequency
scaling in Fig. 6. The total power of the chip is measured
for a duration of 80 seconds. At time t=15, we introduce
a stimulus representing a dangerous object or similarly a
signal from a motion sensor on the hand. The event triggers
the classifier to high-performance mode for an observation
period of 35 seconds. If no further event occurs, the classifier
winds down to low-power mode at t=50. Naturally, the
intermediate frequencies shown in Fig. 5 can all be triggered
for other scenarios or operating modes.

V. CONCLUSION

A daily-used device, such as a prosthetic hand, must
operate in different modes to suit daily application scenarios.
In this paper, we present a low-latency runtime adaptable
XNOR classifier for semi-autonomous prosthetic hands. We
enable high-performance features and power-saving modes
through runtime adaptable frequency scaling. Our Binary-
LoRAX prototypes achieved over ∼99% accuracy on a 25
class problem from the YCB dataset, and a maximum of
4999 FPS and latency of 0.45 ms. The low-power mode can
potentially improve the battery-life of the classifier by 19%
compared to an equivalent accelerator running continuously
at full-power. This work demonstrates that BNNs have the
potential to bring cutting-edge classification performance to
the field of semi-autonomous prosthetics.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 770–778.

[2] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, pp. 6517–6525.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015, pp. 3431–3440.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
vol. 115, no. 3, 2015, pp. 211–252.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Computer Vision – ECCV 2016, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International
Publishing, 2016, pp. 630–645.

[6] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” Journal of Machine Learning Research,
vol. 18, pp. 187:1–187:30, 2017.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information
Processing Systems 29. Curran Associates, Inc., 2016, pp. 4107–4115.
[Online]. Available: http://papers.nips.cc/paper/6573-binarized-neural-
networks.pdf

[10] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 International Conference on
Advanced Robotics (ICAR), 2015, pp. 510–517.

[11] F. Hundhausen, D. Megerle, and T. Asfour, “Resource-aware object
classification and segmentation for semi-autonomous grasping with
prosthetic hands,” in 2019 IEEE-RAS 19th International Conference
on Humanoid Robots (Humanoids), 2019, pp. 215–221.

[12] T. R. Farrell and R. F. Weir, “The optimal controller delay for
myoelectric prostheses,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 15, no. 1, pp. 111–118, 2007.

[13] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 65–74.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021744

[14] S. Došen, C. Cipriani, M. Kostić, M. Controzzi, M. C. Carrozza, and
D. B. Popović, “Cognitive vision system for control of dexterous pros-
thetic hands: experimental evaluation,” Journal of neuroengineering
and rehabilitation, vol. 7, no. 1, p. 42, 2010.

[15] M. Markovic, S. Dosen, C. Cipriani, D. Popovic, and D. Farina, “Stere-
ovision and augmented reality for closed-loop control of grasping in
hand prostheses,” Journal of neural engineering, vol. 11, no. 4, p.
046001, 2014.

[16] G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour,
“An exploratory study on the use of convolutional neural networks for
object grasp classification,” 2015.

[17] J. DeGol, A. Akhtar, B. Manja, and T. Bretl, “Automatic grasp
selection using a camera in a hand prosthesis,” in 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE, 2016, pp. 431–434.

[18] P. Weiner, J. Starke, F. Hundhausen, J. Beil, and T. Asfour, “The kit
prosthetic hand: design and control,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3328–3334.

[19] M. Esponda and T. M. Howard, “Adaptive grasp control through multi-
modal interactions for assistive prosthetic devices,” arXiv preprint
arXiv:1810.07899, 2018.

[20] Y. He, R. Shima, O. Fukuda, N. Bu, N. Yamaguchi, and H. Okumura,
“Development of distributed control system for vision-based myoelec-
tric prosthetic hand,” IEEE Access, vol. 7, pp. 54 542–54 549, 2019.

[21] C. Shi, D. Yang, J. Zhao, and H. Liu, “Computer vision-based
grasp pattern recognition with application to myoelectric control of
dexterous hand prosthesis,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 28, no. 9, pp. 2090–2099, 2020.

[22] N. Bu, Y. Bandou, O. Fukuda, H. Okumura, and K. Arai, “A semi-
automatic control method for myoelectric prosthetic hand based on
image information of objects,” in 2017 International Conference on
Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE,
2017, pp. 23–28.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” in The European Conference on Computer Vision (ECCV).
Cham: Springer International Publishing, 2016, pp. 525–542.

[24] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or
propagating gradients through stochastic neurons for conditional
computation,” CoRR, vol. abs/1308.3432, 2013. [Online]. Available:
http://arxiv.org/abs/1308.3432

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ACM Interna-
tional Conference on International Conference on Machine Learning
(ICML), ser. ICML15. JMLR.org, 2015, p. 448456.

[26] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propagations,”
in Advances in Neural Information Processing Systems (NeurIPS),
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 3123–3131.

[27] S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia, “BNN+:
improved binary network training,” CoRR, vol. abs/1812.11800, 2018.
[Online]. Available: http://arxiv.org/abs/1812.11800

[28] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary
convolutional neural network,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 345–353. [Online].
Available: http://papers.nips.cc/paper/6638-towards-accurate-binary-
convolutional-neural-network.pdf

[29] A. Frickenstein, M.-R. Vemparala, J. Mayr, N.-S. Nagaraja, C. Unger,
F. Tombari, and W. Stechele, “Binary DAD-Net: Binarized Drivable
Area Detection Network for Autonomous Driving,” in International
Conference on Robotics and Automation (ICRA), Paris, France, 2020.

[30] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Structured
binary neural networks for accurate image classification and semantic
segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 413–422.

[31] N. Fasfous, M. R. Vemparala, A. Frickenstein, L. Frickenstein,
M. Badawy, and W. Stechele, “Binarycop: Binary neural network-
based covid-19 face-mask wear and positioning predictor on edge de-
vices,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2021.

[32] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german
traffic sign recognition benchmark: A multi-class classification com-
petition,” in The 2011 International Joint Conference on Neural
Networks, 2011, pp. 1453–1460.

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011, 2011.

[34] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” 2009.

[35] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[36] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ar-
chitecture for ultralow power binary-weight cnn acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 1, pp. 48–60, Jan 2018.

[37] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Mo-
tomura, “Brein memory: A single-chip binary/ternary reconfigurable
in-memory deep neural network accelerator achieving 1.4 tops at 0.6

w,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 983–994,
April 2018.

[38] P. Guo, H. Ma, R. Chen, P. Li, S. Xie, and D. Wang, “Fbna: A
fully binarized neural network accelerator,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL),
2018, pp. 51–513.

[39] M. R. Vemparala, A. Frickenstein, and W. Stechele, “An efficient fpga
accelerator design for optimized cnns using opencl,” in Architecture
for Computing Systems (ARCS), 2019, pp. 236–249.

[40] N. Fasfous, M. R. Vemparala, A. Frickenstein, and W. Stechele, “Or-
thruspe: Runtime reconfigurable processing elements for binary neural
networks,” in 2020 Design, Automation Test in Europe Conference
Exhibition (DATE), 2020, pp. 1662–1667.

[41] “XILINX 7 series dsp48e1 slice,” no. UG479. Xilinx, Inc, 3 2018,
v1.10.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations, 2015.

[43] F. Hundhausen, J. Starke, and T. Asfour, “A soft humanoid hand with
in-finger visual perception,” 2020.

