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Abstract— Robot perception of physical interaction with the
world can be achieved based on different sensory modalities:
tactile, force-torque, vision, laser, sonar, proprioception, ac-
celerometers, etc. An important problem and research topic
in robotics is the question of how to fuse multiple sensory
modalities to provide the robot with advanced perception
capabilities. However, in the context of contact localization
in grasping and manipulation tasks, the fusion of multiple
sensory information has not been addressed so far . We propose
a sensory information fusion approach for contact detection
and localization. The approach relies on the generation of
contact hypotheses and the fusion of these hypotheses to
determine the likelihood of a contact at a certain location
leading to an improved robustness and precision of contact
detection. In addition, the approach allows the integration of
multiple sensors, environment, context and predictions. We have
implemented the proposed approach on two dual-arm robots
and validated it through several experiments.

I. INTRODUCTION

Neuroscience studies carried out by Johansson et al., [1]
pointed out that human grasping is driven by the creation and
breaking of contacts with the environment. The prediction
of these contact events is also important in the sensorimotor
control of manipulation [2].

In the last decade, contact sensing has become a key
element on all the robots with manipulation capabilities.
Besides tactile sensors, there are other devices that can
measure physical interaction, such as force-torque sensors
or joint-torque sensors. Moreover there are other sensor
modalities that can be used like vision or audio [3]. Unfor-
tunately each data source has its own representation and the
information from different sensors cannot be easily compared
with that from other sources. In addition information about
the environment can also be very useful to constrain where
physical interaction can occur.

This paper proposes a robust, scalable and hardware
independent framework for sensor fusion focused on contact
detection and localization. Firstly, a common representation
for all the cues and a method to fuse them is presented.
Secondly the details about the required processing of dif-
ferent sensor inputs is demonstrated. Finally the approach
is validated through several experiments on Tombatossals
(see Fig. 1, right) and a simple use case of a contact driven
controller on ARMAR-IIIb (see Fig.1, left) is implemented.

Using a common representation for all the sensory in-
puts enables contact based controllers to be more hardware
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Fig. 1. Left: ARMAR-IIIb Humanoid robot. Right: Tombatossals

independent. This makes systems more portable (same in-
puts), scalable (easy to add new sensors) and robust (failure
tolerant). Moreover, as we show in this work, this level
of abstraction enables the addition of non sensor data like
context, control or predictions.

II. RELATED WORK

Data fusion from different sources has been a largely
studied problem in robotics. In the early 90’s the theoretical
basis of the current techniques were already settled [4].
More recently the evolution of parallel computation enabled
the use of high computational cost probabilistic approaches
(e.g. particle filters) [5]. On real scenarios fusion is often
performed with a defined goal: fusion of audio and visual
input to track a talking person [6], to track an object [7] or
to recognize it [3]. Prats et. al. developed a framework that
presents sensor fusion for robotic manipulation, where each
sensor handles a controller that contributes to the resultant
control applied to the robot [8]. In this paper, instead of
focusing on control, we provide a common representation
for contact detection and localization.

Using vision and force, Ishikawa et al. [9] proposed a
method to detect contacts between a known grasped object
and the environment. In that work the fusion method is task
specific and the contact detection method is embodiment
specific. Other works that perform contact localization, either
use only one sensor modality [10] or process and fuse the
data with an ad-hoc non scalable method. Hebert et al. [11]
presented a probabilistic sensor fusion method to estimate
the pose of a grasped object, although they obtained a very
good precision (5mm) contacts were considered only on the
fingertips.
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Fig. 2. System overview.

III. SYSTEM DESCRIPTION

The sensor fusion framework is composed of two inde-
pendent parts; the contact hypotheses generators and the
integrator (Fig. 2). Each generator creates contact hypotheses
based on a defined criteria (e.g. force sensor, simulator) and
sends them to the integrator. The integrator receives those
hypotheses, combines them and uses the result to determine
the likelihood of a contact at a location.

A. Contact hypothesis and hypothesis space

A contact hypothesis represents the likelihood that a
contact happened at a specified location. The hypothesis
space HS is a 3D Cartesian space discretized in voxels of a
fixed size. The state of the HS is determined by the occupied
voxels and the likelihood of each one. The state of the HS
is updated by the integrator.

The integrator receives sets of contact hypotheses hn from
the generators (g1, ...,gn) that represent the probability p that
a contact c happened at a specified voxel x ∈ R3. Thus, the
set of hypotheses generated by gn is hn(x) = p(c|x,gn) (see
Fig. 2).

After performing the hypotheses fusion, the output of
the integrator is a set of contact hypotheses H representing
the probability that a contact happened at a specified voxel
combining all the received inputs H(x) = p(c|x,g1, ...,gn).

A contact hypothesis must have information about its
location and likelihood. Beyond the required information, in
the proposed framework, a contact hypothesis is composed
by the following elements (required fields are bold):

• Location: Specifies the 3D position of the hypothesis.
• Likelihood: List of likelihoods of each source that

contributed to this hypothesis.
• Timestamp: Time when was it generated.
• Force magnitude.
• Force direction.
• Type: Regular, Support or Null.
• Source id: List of sources that generated this hypothe-

sis.

It is possible to have generators that create hypotheses
without real evidence of physical contact (e.g. predictions),
in order to separate those hypotheses the field ”type” is used.

Support hypotheses are used to add contextual data or
predictions to the estimation of the contact locations. There-
fore if the sensors detect a real contact and generate hy-
potheses, those hypotheses that fuse with support hypotheses
will increase their likelihood. On the other hand, Support
hypotheses that are not fused with any other hypothesis from
perceptual evidence will be discarded. Null hypotheses are
used to draw a null space for the contact detection. Any
hypothesis that fuses with a null hypothesis will be discarded.
Regular hypotheses are those produced by real sensors from
perceptual evidence.

B. Hypotheses fusion

The hypotheses fusion is performed by the integrator.
The integrator receives contact hypotheses from multiple
generators, then fuses the incoming hypotheses and produces
estimations of contact locations (Fig. 3).

At the beginning, the hypothesis space is empty. When
a cloud of contact hypotheses is received by the integrator,
the hypotheses are processed one by one and added to the
hypothesis space.

When adding a new hypothesis, the integrator uses its
location to check whether that voxel is already occupied by
a hypothesis. If so, both hypotheses are fused, otherwise the
hypothesis is inserted into the voxel. When two hypotheses
are fused, the resulting hypothesis keeps the location of the
voxel, the time-stamp is updated (to the current time), and
the force and direction are averaged using both hypotheses
values weighted by their likelihood. The lists of likelihoods
are combined keeping the newest value if a source is in both
lists.

After receiving and combining the contact hypotheses
from all the active sources, the fused likelihood of each
occupied voxel is computed using the DeMorgan’s law, see
Eq.(1). We assume that the measurements of the sensors are
independent of each other.

By combining the likelihoods using Eq.(1) we expose the
integrator to be saturated by inputs like p(c|x,gn) = 1. On
the other hand, the saturation will occur only on determined
voxels and will not affect the entire HS. Moreover the design
of contact hypothesis generators should take into account
that issue, and produce very high likelihoods only when
necessary.

p(c|x,g1, ...,gn) = 1−
n

∏
i=1

(1− p(c|gi)) (1)

A hypothesis is discarded when its time-stamp is older
than a configurable timeout parameter. This parameter should
be adjusted depending on the update rate of the hypotheses.
The fusion process is detailed in Algorithm 1.

It is possible that the incoming hypotheses are generated
from different sources at different rate, to perform the
hypothesis fusion, the integrator waits until the hypotheses
of all the active sources are received. From faster sources the
newest readings are used. The sources can be plugged and
unplugged to the integrator dynamically.



Algorithm 1 Contact hypotheses fusion algorithm
function PROCESSINCOMINGHYPOTHESES(hypotheses)

for all h in hypotheses do
if IsVoxelOccuppied(h.location) then

FuseHypotheses(h, GetVoxel(h.location))
else

SetVoxel(h)
end if

end for
end function
function FUSEHYPOTHESES(h1, h2)

h3.location := h1.location
h3.likelihood := h1.likelihood ∪ h2.likelihood
h3.sources := h1.sources ∪ h2.sources
h3.fMagnitude := weightedMean(h1.fMag, h2.fMag)
h3.fDirection := weightedMean(h1.fDir, h2.fDir)
h3.updateTimeStamp()
SetVoxel(h3)

end function

Fig. 3. Contact hypotheses fusion and contact detection. Black boxes are
discarded hypotheses. Green boxes are hypotheses considered for contact
detection. Red spheres show the result of the contact detection after
clustering the thresholded contact hypotheses and calculating its centroid.

C. Contact condensation

When all the incoming hypotheses have been fused, the
hypothesis space contains a cloud of contact hypotheses with
different likelihoods. In order to summarize the information
and provide the estimated location of the contacts, two
strategies are proposed.

1) Threshold: A straightforward method is to set up a
high threshold for the likelihood (e.g H(x)≥ 0.6), and filter
the data to obtain the hypotheses that will be considered
contacts. This strategy is eligible if all the generators produce
very precise data, otherwise the likelihood will be distributed
among many hypotheses and none of them will be over the
threshold.

2) Threshold, cluster and centroid: On the other hand we
can use a low threshold (e.g H(x) ≥ 0.1) and calculate the
global centroid weighted by likelihood. This will reduce the
detected contacts to a single one. However if there are sepa-
rated contact regions the result will be the average of those
regions. Thus, before performing the centroid calculation,
the contact regions are detected using an euclidean cluster-
ing algorithm1. Then the centroid (likelihood weighted) is
calculated for each cluster (See red spheres in Fig. 3).

1Clustering algorithm taken from: http://www.pointclouds.
org/documentation/tutorials/cluster_extraction.php

IV. HYPOTHESES GENERATORS

A contact hypothesis generator can use the information
from a sensor, a controller, a simulator or any other source
that provides data about a perceived or a predicted contact
located in the space. Contact hypothesis generators provide
at least a cloud of contact hypotheses (that determine the pos-
sible contact locations) and the likelihood of each generated
contact hypothesis.

Contact hypothesis generators are classified into two main
types: single-contact (can only detect one contact at a time)
and multi-contact. Each contact hypothesis generator can use
the information available to determine where to generate
hypotheses, some examples are: the sensor’s shape, robot
geometry, sensitive geometry, constant volume and range
data to name a few.

The likelihood is calculated depending on the type of
the generator. For single-contact hypothesis generators, the
probability of the detected contact has to be distributed
among the generated contact hypotheses, see Eq.(2). The
likelihood can be distributed uniformly or with any other
distribution, depending on the contact hypothesis generator
data.

∑ p(c|xi,gsingle) = 1 (2)

For multi-contact hypothesis generators, we will allow
∑ p(c|xi,gmulti) > 1. The likelihood of each hypothesis can
be calculated regarding the information type from the data
source:
• Binary: (contact / no contact) it gives no clue about the

contact distribution, in that case a fixed value for all the
hypotheses is used.

p(c|x,gbinary) = constant (3)

• Value: If the value of the input data is related to the
contact likelihood. It can be calculated using Eq.(4)
where argmax(data) is used for normalization and
represents the maximum value of the current reading.

p(c|x,gvalue) =
datax

argmax(data)
(4)

• Distance: If the value for each hypothesis is a distance.
Eq.(5) can be used to determine the likelihood of each
hypothesis. Where λ determines the distance at which
the likelihood will be 0.5, this has to be tuned depending
on the precision of the range sensor and the calibration.

p(c|x,gdistance) =
λ 2

λ 2 +distance2 (5)

For example a bumper based contact hypothesis generator,
would be single-contact and will use the sensor geometry to
place the contact hypotheses on. On the other hand, a laser
combined with the robot geometry would be multi-contact,
use the robot geometry close to the range data to place the
hypotheses and use the distance between the range data and
the robot model as the likelihood of each contact hypothesis.



Fig. 4. Example of the hypotheses generated by the force-torque generator.
Left: Real contact. Center: Generated hypotheses before hand geometry
filtering. Right: Generated hypotheses.

V. IMPLEMENTED GENERATORS

In this section we show the implementation of several
contact hypotheses generators based on sensors that are
nowadays quite common in robotic manipulators. To see a
demo of the described contact hypotheses generators please
refer to the attached video.2

A. Experimental platforms

For the validation experiments we have used the UJI
Humanoid torso, also called Tombatossals. Tombatossals is
a humanoid torso with 29 DOF (see Fig. 1 Right). It is
composed of two 7 DOF Mitsubishi PA10 arms. The right
arm has a 4 DOF Barrett Hand and the left arm has a 7DOF
Schunk SDH2 Hand. Both hands are endowed with Weiss
Tactile Sensor system on the fingertips. Each arm has a JR3
Force-Torque sensor attached on the wrist between the arm
and the hand. The visual system is composed of a TO40
4 DOF pan-tilt-verge head with two Imaging Source DFK
31BF03-Z2 cameras. Attached to the forehead there is a
Kinect

TM
sensor. The robot used for the use case experiment

is ARMAR-IIIb (see Fig. 1, left), it is a humanoid robot with
43 actuated DOFs. For the experiment we have only used its
right arm (7 DOF) and hand (7 DOF). It has a force-torque
sensor on the wrist and tactile sensor pads on the palm and
fingertips. See [12] for more details about ARMAR-IIIb.

B. Force-torque hypotheses generator

Uses 6D force-torque sensor readings to determine the
contact hypotheses location. These types of sensors produce
a 3D force vector f and a 3D torque vector τ . The system
of equations shown in Eq.(6) can be used to determine the
contact point, where τ are the torque readings and f the force
readings for the three axis. τx = fz · y− fy · z

τy = fx · z− fz · x w.r.t. sensor frame
τz = fy · x− fx · y

(6)

Unfortunately that system has no single solution. To
generate a set of possible solutions, we will use only two of
those equations at a time (see Eq.(7)) and solve the leftmost
group for a set of possible values for x (if fx 6= 0), the center
group for y (if fy 6= 0) and the rightmost group for z (if

2Watch the HD video at: https://dl.dropboxusercontent.
com/u/6172197/robot_videos/HUMANOIDS14_felip_
morales_asfour.mov

Fig. 5. Example of the hypotheses generated by the range sensor generator.
Left: Real scenario. Center: Segmentation using spherical model. Right:
Generated hypotheses.

fz 6= 0). After this we have three lines of contact hypotheses
(see Fig.4, center). The lines are theoretically equal but due
to sensor noise and singularities they can be different.

The hypotheses that are not close to the robot hand surface
will be filtered out (see Fig.4, right). The filtering uses the
distance to the spherical model of the robot (see Fig.5,
center).

 y = fy·x−τz
fx

z = τy+ fz·x
fx

 x = τz+ fx·y
fy

z = fz·y−τx
fy

 x = fx·z−τy
fz

y = τx+ fy·z
fz

(7)

This is a single-contact hypothesis generator, it is not
possible to determine the location of multiple contacts with a
F/T sensor on the wrist. Moreover this generator assumes no
external force to be applied on the robot. Another approach
to determine the contact point regardless of end effector
geometry is shown in [13].

As it gives no information about the contact distribution,
the likelihood is uniformly distributed among all the gener-
ated hypotheses. The Force-torque hypotheses generator was
implemented both for ARMAR-IIIb and Tombatossals.

C. Tactile sensor hypotheses generator

Tactile sensors typically produce an array of pressure
values with measurements from a grid of sensing cells. In
combination with the joint positions and the robot model it
is possible to determine the spatial location of contacts. In
this kind of sensors, a single contact may generate marginal
readings in the nearby taxels. Thus we will consider that the
taxel pressure value is related with the contact likelihood.

This hypothesis generator is multi-contact and uses the
sensor values to calculate the likelihood of each generated
hypotheses, see Eq.(4). The hypotheses location is deter-
mined by the activated taxels of the sensor. The tactile
hypotheses generator was implemented both for ARMAR-
IIIb and Tombatossals.

D. Range sensor hypotheses generator

Range sensors can also be used to detect contacts. The
Kinect

TM
installed on Tombatossals’ forehead combined with

a robot spherical model and object tracking is used to gen-
erate contact hypotheses. The foreground, consisting of the
robot arm, and probably several obstacles is separated from
the background of the scene using a box pass through filter



that isolates the workspace. A spherical representation of the
arm and hand of the robot, together with proprioception are
used to segment the robot within the point cloud, (Fig.5,
center). The remaining clusters in the point cloud correspond
to objects. Using the isolated object points, ICP is applied
to detect object motion. When object motion is detected,
the hand moving direction and the object points are used to
determine the hypotheses location. More details about this
contact detection and localization method can be found in
[14].

The likelihood of each hypothesis is calculated using
the distance to the spherical robot model, see Eq.(5). For
our experiments we have set λ = 0.01m. Hypotheses with
very low likelihood (i.e. ≤ 0.01) are discarded to save
memory and computation time. The range sensor hypotheses
generator was implemented only for Tombatossals, although
it can be implemented also for ARMAR-IIIb using its stereo
head as a range data sensor.

E. Finger pose feedback hypotheses generator

The variation of compliant hand finger positions is used to
detect a contact on the fingers. Before starting the detection,
the current pose of each finger joint is stored. When a
variation on a joint is detected, the finger geometry is used
to place the contact hypotheses. Like for the force-torque
generator, the likelihood is uniformly distributed among all
the generated hypotheses.

This generator assumes that the hand joints are not actu-
ated to move. After moving the hand joints to a different
position, the generator is reset to get the reference values
updated. The finger pose feedback hypotheses generator was
implemented only for ARMAR-IIIb. Tombatossals does not
have compliant hands.

F. Motion estimation support hypotheses generator

Using the current motion of the robot, contact hypotheses
are generated on the next predicted hand position. As this
generator is not based on physical evidence, it produces only
Support hypotheses. The generator assumes that the robot
will continue moving as it did in the last time step. Thus the
predicted position of the robot joints q(t + 1) is calculated
using Eq.(8)

q(t +1) = q(t)+∆q (8)

This generator can detect multiple contacts at a time
and the data input is binary, thus the likelihood of the
generated hypotheses depends on the weight we want to
give to this support generator. During the experiments we
found that a good value is 0.3. Motion estimation support
hypotheses generator was implemented both for ARMAR-
IIIb and Tombatossals.

G. Simulator predictions support hypotheses generator

This generator is only implemented for Tombatossals. It
uses the integrated OpenGRASP simulator as a prediction
engine to detect where contacts are supposed to happen.

Fig. 6. Simulator prediction support contact hypotheses generator. Left:
Simulator, Right: Support contact hypotheses generated (green voxels).

The simulator requires the model of the robot, the envi-
ronment and the objects in the workspace. The generator
looks for geometry contacts using the available methods in
OpenRAVE/OpenGRASP and generates Support hypotheses
where contacts in simulation are detected (Fig. 6). As the
motion estimation generator, this is a multi-contact binary
generator and the likelihood of the generated Support hy-
potheses depends on the relevance that the simulator will
have. We found a good value on 0.5.

VI. EXPERIMENTS

We have conducted two experiments: a validation and a
use case. To do so we have implemented the method on the
two robotic platforms, sec. V-A. On Tombatossals we have
performed a validation test to show the method performance
and some hypotheses generators. On ARMAR-IIIb we have
applied the contact detection method on a real grasping
situation; using the contact output information to drive a
reactive grasp algorithm as in [15] or [16]. We have used the
same voxel size in the generators and in the integrator, 5mm
side. Thus the precision of the contact detection is limited
to the 5mm resolution of the hypothesis space. The selected
contact condensation method is the threshold, cluster and
centroid.

A. Experimental validation

The experimental validation is performed using the
Tombatossals robot. This experiment consists on touching
three different objects (a box, a cylinder and a sprayer bottle)
each one from 15 different approach directions. Then we
compare the contact locations obtained by the sensor fusion
method with ground truth data. The role of the simulator in
this experiment is twofold, as a ground truth tool and as a
prediction engine.

1) Ground truth data: The scenario consists of an object
on a table in front of the robot. The 3D model of the object
is known. To obtain the ground truth data, the position of the
object is calibrated using the robot left arm. The calibration
is manually performed: Touching several points of the real
object and moving the simulated object to fit those positions.
With the object position calibrated in the simulator, we
have used the joint positions recorded from the experiment
execution to get the exact hand-object contact points and
use them as ground truth data. Two of the experiments did
not really touch the object, they were removed leaving 43



TABLE I
RESULTS FOR EACH SENSOR MODALITY

Sensor Modality Detected contacts ε(cm) σ (cm)
Tactile 9/43 (20.9%) 1.25 ±0.20
Force 34/43 (79.1%) 5.37 ±1.18
Range 25/43 (58.1%) 3.74 ±0.73
All 39/43 (90.7%) 4.31 ±1.10
All + Simulator 39/43 (90.7%) 3.33 ±1.11

Number and % of detected contacts. ε shows the distance between the
ground truth and the detected contact. σ is the mean dispersion of the
centroid calculation.

touches. To keep the ground truth right the object is fixed
and cannot be moved by the robot during the experiments.

2) Hypothesis generators: The simulator is used as a
prediction engine to generate support contact hypotheses, for
this purpose we have added error to the calibrated position
of the objects. In order to model the uncertainty introduced
by state of the art 3D object recognition and pose estimation
methods we have added a Gaussian error, N (µ = 0,σ = 2)
in cm, to the objects calibrated position. The other contact
hypotheses generators used are: tactile, force-torque and
range.

3) Result discussion: The results, after the execution of
43 touches, are shown in Table I. The distance between the
ground truth contact and the result of the contact conden-
sation (See Sec.III-C) is used as the error measure ε . The
standard deviation of the centroid calculation performed by
the contact condensation is used as the precision measure
σ . In Table I the mean accuracy and precision considering
different sensor modalities is shown. Fig.7 depicts the indi-
vidual results for each touch experiment considering different
sensor modalities.

Although the tactile sensor modality has a small local-
ization error (around 1cm ±0.2) the contact detection is
quite low, 20.9%. This low detection rate is related to the
reduced area that the tactile sensors can cover, thus many
contacts happen outside the tactile sensor patches. Regarding
the force-torque generator, although the detection rate is
good (79.1%) the localization error is around (5cm ±1.18),
the force-torque contact hypothesis generation method is
very sensitive to noise and the effect of multiple contacts
decreases the accuracy. The range modality shows average
contact detection (58.1%) and good accuracy (3.7cm ±0.73),
the main problem of this modality are contacts on hidden
surfaces or occluded by the hand.

Fusing the modalities, the detection raises to 90.7%.
The accuracy depends on which sensors are detecting the
contact. The fusion method takes the most precise sensor
(i.e. the point with higher probability density). Note that
the error (4.31cm ±1.1) is increased by those cases where
only the force sensor generates hypotheses. This problem is
solved adding the predicted contacts from the simulator, then
the accuracy is improved (3.33cm). Moreover, beyond the
sensors precision, the object position uncertainty (modelled
by N (0,2) cm), the robot model error and the joint encoders
error also influence the total error.

B. Grasping application

For the real application problem, the experimental setup
consists of a bottle of water in front of the right hand of
ARMAR-IIIb. The objective is to grasp the bottle using the
provided contact feedback, to do so we have implemented
a robust grasp method similar to [15] that uses the contact
location output from the proposed method. We assume that
the bottle is in the trajectory of the hand but not exactly
in front of it. In this case the object is not fixed and can
be moved by the robot, only generators that depend on the
object position (simulator predictions) would be influenced
by this fact but for ARMAR-IIIb the simulator predictions
are not implemented.

The result of the experiment is shown in Fig. 8 and in
the attached video. The robot is able to detect the contact
location fusing the information coming from the force sensor
and from the arm motion. In this case, neither the tactile
sensors nor the finger position did detect the contact.

VII. CONCLUSION

In this paper we have shown theory, validation and appli-
cation of a sensor fusion method for contact detection. One
of the contributions is that the method allows the integration
of input from other sources but sensors, such as context, pre-
dictions or environment. We have shown that the projection
of predictions or beliefs into the sensor space improves the
results. The theoretical approach has been implemented in
two different robotic platforms. The experiments carried out
using Tombatossals have shown that the method is suitable to
be used in real environments providing a framework to fuse
sensor, simulation and prediction data to improve contact
detection and localization. The experiments also show that
the fusion of different sources performs better than the
sources separated.

Moreover, we have implemented the method on another
real platform, and conducted a grasping experiment where
contact information provided by the system is used to im-
prove grasping. The implementation on multiple platforms
shows that the approach can contribute to the sensor skills of
any robot or even enable the interaction of different robots
on sharing and combining their knowledge about existing
contacts. This opens the door to multi-robot scenarios, where
contact hypotheses generators from different robots can be
used together to share physical interaction information and
localize contacts. Further research on the proposed contact
hypotheses generators or the addition of more precise sensors
will help to improve the overall performance of the system.
Moreover, with a few modifications the framework can also
be used to detect surprise (prediction and sensing mismatch)
and enable low level reactive behaviours, internal model
refinement or higher level reasoning.
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