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Abstract— The framework of dynamic movement primitives
allows the generation of discrete and periodic trajectories,
which can be modulated in various aspects. We propose and
evaluate a novel modulation approach that includes force feed-
back and thus allows physical interaction with objects and the
environment. The proposed approach also enables the coupling
of independently executed robotic trajectories, simplifying the
execution of bimanual and tightly coupled cooperative tasks.
We apply an iterative learning control algorithm to learn a
coupling term, which is applied to the original trajectory in a
feed-forward fashion. The coupling term modifies the trajectory
in accordance to either the desired position or external force.
The strengths of the approach are shown in bimanual or two-
agent obstacle avoidance tasks, where no higher level cognitive
reasoning or planning are required. Results of simulated and
real-world experiments on the ARMAR-III humanoid robot in
interaction and object lifting tasks, and on two KUKA LWR
robots in a bimanual setting are presented.

I. INTRODUCTION

A sizeable part of robotics research directly or indirectly

deals with all aspects related to complex human environ-

ments [1]. Unstructured and changing human environments,

such as the kitchen, demand the ability to learn new tasks

using sensor feedback in a natural way and without the need

for an expert [2]. Besides trajectory generation, contact with

the environment is crucial for many robotic tasks. It needs

to be safe for both the robot and the environment, which

consequently means that the forces should be kept low.

Different ways of encoding trajectories allow for different

possibilities of modulation, interpolation, and categorization

[3]. There exist different approaches, for example splines and

wavelets [4], Gaussian Mixture Regression [5], or Hidden

Markov Models [6]. In this paper we build on dynamic

movement primitives, first introduced by Ijspeert et al. [7].

DMPs provide means to encode a trajectory as a set of

differential equations that can compactly represent control

policies, while their attractor landscapes can be adapted by

changing only a few parameters. The latter can be exploited

in several ways, for example for reinforcement learning [8],
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[9], [10], [11], statistical generalization [12], [13], or they

can even be combined in a dynamic way [14], [15].

The dynamic systems design of DMPs enables us to

incorporate sensory feedback, either in the transformation

system, e. g. for on-line obstacle avoidance [16], the canoni-

cal system, e. g. for different periodic tasks [17], or both. An

example of such is using the so-called slow-down feedback

to stop the execution of the trajectory [18], [19].

In this paper we propose a new approach to modifying

trajectories. We first record the trajectory data as the robot

moves along a defined trajectory, and then use this data to

improve its performance the next time it moves down the

same trajectory. We do not modify the original trajectory, but

learn a coupling term, which is fed into the original trajectory

similarly to an external limit modulation [3]. The coupling

term can either be the real force of interaction, or a virtual

force defined from the positions of two manipulators/agents.

The final waveform and amplitude of the coupling term is

learned in a few iterations in an iterative learning control

(ILC) [20] manner. Appeal to iterative learning comes from

the similarity to human learning processes, as people may

practice a task many times before being able to find correct

inputs to accomplish it with such a complex system as the

human body [21].

Use of force feedback and robotic force control are

well studied problems [22]. The use of force feedback to

change the output velocity of a manipulator was reported by

Hogan [23]. However, the DMP framework was, with notable

exceptions, thus far mostly constrained to the kinematic

domain. Using a force feedback term to learn and improve

task execution in the DMP framework was demonstrated

for a periodic task of wiping a flat or curved surface [2].

Contrary to the approach in this paper, complete trajectory

waveforms were modified within a few periods of the task

using regression methods. Similar was reported by Ernesti

et al. [24]. Notably, Pastor et al. [1] have implemented a

low-level position and force control system that integrates

with DMPs at an acceleration level, allowing for reactive and

compliant behaviors. The key idea in their approach is that

after an execution with a disturbance, they apply a controller

on the measured forces and use the output of the controller

in a feed-forward manner to realize grasping of an electric

torch [1] or a battery drill [25].

In this paper we present: 1) a force-based modulation

of the DMP at both velocity and acceleration levels; 2)

coupling of DMPs for bimanual tasks (both Section II);
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3) learning the open coupling terms with iterative learning

control (Section III); 4) improved stability when using both

levels as compared to only acceleration level modulations

(Appendix). Section IV describes experiments conducted on

the ARMAR-III robot and two KUKA LWR robots in a

bimanual setting. Concluding remarks are in Section V.

II. MODULATING DYNAMIC MOVEMENT PRIMITIVES

A. Dynamic Movement Primitives

DMPs have been thoroughly discussed in the literature

[7], [18], [19]. In the following we provide only the basic

information, based on the formulation in [18], [12]. For a

single degree of freedom (DOF) denoted by y, in our case

one of the external task-space coordinates, a DMP is defined

by the following system of nonlinear differential equations

τ ż = αz(βz(g − y)− z) + f(x), (1)

τ ẏ = z. (2)

f(x) is defined as a linear combination of radial basis

functions

f(x) =

∑N

i=1 wiΨi(x)
∑N

i=1 Ψi(x)
x, (3)

Ψi(x) = exp
(

−hi (x− ci)
2
)

, (4)

where ci are the centers of radial basis function distributed

along the trajectory and hi > 0 are their widths. Provided

that parameters αz, βz, τ > 0 and αz = 4βz , the system

(1) – (2) has a unique attractor point at y = g, z = 0. A

phase variable x is used in (1), (3) and (4) to avoid direct

dependency of f on time. Its dynamics is defined by

τ ẋ = −αxx, (5)

with initial value x(0) = 1. αx is a positive constant.

The weight vector w, composed of weights wi, defines

the shape of the encoded trajectory. [7] and [12] describe the

learning of the weight vector. Multiple DOFs are realized by

maintaining separate sets of eqs. (1) – (4), while a single

canonical system given by (5) is used to synchronize them.

B. Modulation

Online modulations are among the most important prop-

erties offered by the dynamical systems approach [19].

An example of spatial modulation is including an obstacle

avoidance term in Eq. (1) [16], [19]

τ ż = αz(βz(g − y)− z) + f(x) + Cm, (6)

where Cm is the modulation term. In this paper we term this

kind of modulation as a modulation at the acceleration level.

On the other hand, a simple repulsive force h(y) to avoid

moving beyond a given position in the task space [3] can be

specified by modifying Eq. (2) into

τ ẏ = z + h(y), (7)
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Fig. 1. Response in presence of an external limit according to Eq. (7) and
(8), with the limit set at yL = 0.9m. The red trajectory does not reach the
target position because the repulsive force acts before the actual limit.

while leaving Eq. (1) in the original form. In this paper we

term this as a modulation at the velocity level. A simple

repulsive force to avoid hitting yL can be defined as [3]

h(y) = −
1

γ(yL − y)3
, (8)

where yL is the known limit. Modification of a DMP that

encodes a straight trajectory from 1.3m to 0.9m in 5 seconds,

using Eq. (7) and (8) and γ = 105, yL = 0.9m, results in

the response as shown in Fig. 1.

Defining the repulsive force as in Eq. (8) prevents the robot

from getting into contact with objects and the environment

and therefore, it cannot be used for manipulation tasks.

We therefore propose a modification of the approach by

defining a different repulsive force, yet keeping Eq. (7) in

its current form. Instead of using Eq. (8), we propose using

the measured force F , which arises from the interaction with

the environment

τ ẏ = z + cF (t). (9)

where c is a scaling constant. F (t) can either be the real

measured force of contact or a virtual force, the latter defined

as (for one DOF)

F (t) = kd(t), (10)

where k is the object (or environment) stiffness and d is the

depth of penetration into the object.

Using only Eq. (7), i.e. only velocity level modulation,

results in an overshoot of forces upon environment contact,

see Fig. 2. To minimize this overshoot of forces (the error),

we add a derivative of the measured force at the acceleration

level. Similarly to PD controllers, this additional coupling

introduces damping. The equation of a DMP with coupling

at both the velocity and acceleration levels becomes

τ ż = αz(βz(g − y)− z) + f(x) + c2Ċ, (11)

τ ẏ = z + C, (12)

C = cF (t), (13)

with c and c2 scaling constants. Fig. 2 shows the effect of

damping, with c2 = 30, determined empirically. The bottom

plot shows that the resulting force overshoots at t = 5 s. This

overshoot results in oscillations in the direction of the force.

We show in the Appendix that adding the coupling term

to both velocity and acceleration level is better than only

to the acceleration level, because adding the coupling term

only to the acceleration level results in significantly larger
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Fig. 2. Simulation results that show the difference of adding a coupling
term at the velocity level (red) or also including the derivative of the force
at the acceleration level (blue). The trajectory was encoded to start at 1.3m
and end at 0.9m in 5 s. An obstacle is encountered at 1m, plotted in the
top plot by the black dash-dot line. The top plot shows the positions and
the bottom plot the resulting forces. The obstacle was intentionally not stiff
(k = 1000N/m) to emphasize the difference.

oscillations in the direction of the force. Such performance

would impose great restrictions on the use of the proposed

iterative learning algorithm.

Properly selected scaling factors c and c2 ensure rapid and

compliant behavior of the robot. Even so, the force F and

therefore the modification of the trajectory only appears after

the contact with the environment. To minimize the force of

contact we propose to employ an ILC learning algorithm,

which takes a few repetitions of the exact same task to learn

the waveform and amplitude of what we call the coupling

term. Using the coupling term, we can minimize the error or

force of contact and thus also mitigate the need for tuning

the scaling factors. The learning algorithm is explained in

detail in Section III.

C. Cooperative DMPs

Well studied control approaches for two robot arms with

a central controller exist, i.e. [26]. However, given a control

architecture where each robot is controlled on its own,

possibly with conflicting trajectories, an approach for motion

synchronization is needed. An example of this is cooperation

of two stand-alone robots/agents working together when car-

rying a large object. We used two independently controlled

robot arms for bimanual tasks.

Let us assume that two trajectories, both given by DMPs,

are executed by two different robot arms. By introducing a

virtual spring between the end effectors of both arms, we

introduce a force that alters both trajectories. For one DOF,

this force is defined as

F1,2 = k(dd − da), (14)

where dd is the desired distance between the robots (tips)

and da is the actual, measured difference. k is the virtual

spring constant. Measured force can be used instead of a

virtual spring. The force that acts on DMP1 is opposite to

the force acting on DMP2

F2,1 = −F1,2 = −k(dd − da). (15)

We introduce these forces, again scaled by c, into each DMP.

Eq. (16) – (21) define what we label cooperative DMPs:

τ ż1 = αz(βz(g1 − y1)− z1) + f1(x) + c2Ċ1,2, (16)

τ ẏ1 = z1 + C1,2, (17)

C1,2 = c F1,2 · lf1, (18)

τ ż2 = αz(βz(g2 − y2)− z2) + f2(x) + c2Ċ2,1, (19)

τ ẏ2 = z2 + C2,1, (20)

C2,1 = cF2,1 · lf2. (21)

The variable lf defines the relation leader-follower. If lf1 =
lf2 = 1, then both robots will adapt their trajectories,

reaching an equilibrium between the two. They will, in fact,

both follow the average trajectory, within tolerance (after

learning discussed in the next section), but at the defined

distance dd. On the other hand, if lf1 = 0 and lf2 = 1, only

DMP2 will change the trajectory to match the trajectory

of DMP1, again at the distance dd and again only after

learning. Vice-versa applies as well. Leader-follower relation

can be determined by a higher level planner, which is beyond

the scope of this paper. In general, it depends on the needs

and circumstances of a specific task.

III. ITERATIVE LEARNING CONTROL

The coupling terms C1,2 and C2,1 need to be learned in

such a way that the robots maintain the desired force and/or

displacement, i. e. Fd = F , where F is defined as in (10) or

(14). In the following we propose an ILC-based algorithm

to learn C1,2 and C2,1. The proposed algorithm avoids the

necessity to accurately model the dynamics of the robot and

the environment. See a thorough review by Bristow et al.

[20] for more details on ILC and for the stability analysis of

an ILC algorithm.

Upon the execution of the given task for the first time,

the sensors register the resulting force. If the task were

to be executed again without any difference, the sensory

readings would not change but for the noise. Therefore,

we propose that the second time the task is executed, the

sensor measurements from the first attempt are fed into the

trajectory generation in a feed-forward manner. The learning

update for the coupling terms (Ci stands for either C1,2, i or

C2,1 i) is then defined as suggested by the ILC theory [20]

Ci = c eF,i + Fc,i, (22)

Fc,i = Q(Fc,i−1 + L c ėF,i−1) (23)

eF,i = Fd,i − Fi (24)

where index i denotes the i-th epoch, c is the force gain,

eF is the force error calculated from the difference of the

desired Fd and measured F forces, Fc is the learned coupling

force, and Q and L are positive scalars. The coupling term

given by Eq (22) is known as current iteration ILC, since

it incorporates instantaneous feedback in the first term and

learning update in the second term.

The tunable parameters are Q, L and c. In our experiments

we use Q = 0.99, L = 1 and c = 0.5. In the learning and

subsequential execution of the learned movement we use the

coupling term Ci in Eq. (13) instead of C for interaction
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with the environment. Similarly we use Ci instead of cF1,2

in Eq. (18) and −Ci instead of cF2,1 in Eq. (21).

While the force depends on the execution of the trajectory

and thus time, there is no need to encode the learned coupling

force Fc as a vector of time-stamps and values. Just like

f(x), we represent Fc as a linear combination of radial

basis functions, the same as f(x) in Eq. (1), with x a phase

variable, see [12] for details. Several advantages speak in

favor of encoding the coupling term in this manner. For

example, the nonlinear encoding acts as a filter [3] and thus

cancels out the sensor noise. The main advantage is that

the amplitude depends on the same canonical system as the

trajectories.

IV. EVALUATION

A. Contact with the Environment

We performed several simulated numerical and real world

experiments. The real world experiments were performed on

the ARMAR-III robot [27] at 30 Hz.

We applied the proposed algorithm to minimize the force

upon impact (Fd,i = 0) with a cardboard box as shown

in Fig. 4. The movement was repeated 10 times. Fig. 3

shows the results. The resulting forces are reduced with each

epoch and they tend to appear later during the movement,

as shown in the bottom plot. Low repeatability of the object

(deformable cardboard box) can account for inconsistencies

in the appearance of the force. The trajectory was defined as

a minimum jerk trajectory going from 1.35m to 1m in 15 s,

modified upon impact with the small box at roughly 1.08m.

Note that here it is crucial that the DMP was modulated with

the measured force already in the first epoch, otherwise the

resulting forces would be far greater and would squish the

box. A force sensor in the wrist of the robot was used to

measure the contact force. Even though the resulting force

does not reach exactly 0N, the results show a great reduction

in the force. The error can be attributed to deformability

of the box, repeatability of the execution, low control loop

frequency (30 Hz), and very noisy force measurements.

The algorithm can be applied to produce a desired force of

contact, see Eq. (24). Fig. 5 shows the results of applying the

algorithm to produce a desired force of contact at Fd = 4N.
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Fig. 3. Minimization of the contact force after 10 repetitions of a real
robot movement that collides with a slightly deformable cardboard box. The
green line depicts the original desired trajectory and the blue lines are the
performed trajectories. The final trajectory is marked with a red dotted line.
The bottom plot shows the measured forces occurring during the contact.
The dotted line shows the desired force.

Fig. 4. Image sequence showing the collision of the ARMAR-III robot’s
hand robot with a slightly deformable cardboard box on the table. The third
image shows the deformation of the box after the first epoch. The last image
shows that contact after the 10th, final epoch. The image shows that there
is considerably less deformation of the cardboard box.

The desired force was defined to appear only after the impact.

B. Bimanual Tasks

We applied the proposed method to couple trajectories of

the arms of the ARMAR-III robot to lift a cardboard box. The

original trajectories of the arms defined a forward-upward

motion, which ended at different heights and distances from

the body for each arm. The left arm was to end 0.2m higher

and 0.14m more forward than the right arm. Note that we

treated the arms of the robot as two separate agents, without a

central controller. In order to use the given trajectories for the

task of lifting a box, for example to place it on a shelf, we ap-

plied our algorithm to couple the trajectories in pz (up-down)

and py (forward-backward) directions. After the learning,

both arms reached a common height and distance, effectively

maintaining the orientation of the box while lifting it. Fig. 7

shows the distances between the arms during the execution

of the trajectories, estimated using direct kinematics. The

movements were repeated 5 times. The dotted lines show

the original uncoupled trajectories while the red lines show

the final distance between the arms in both directions. Note

that both arms adapted their trajectories, as can be observed

from Fig. 6.

The leftmost image in Fig. 6 shows the final position of

the uncoupled trajectory. The other five images show the

learning progress (left to right) of the cardboard box position
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Fig. 5. Applying the learning algorithm to produce a desired force of
contact at Fd = 4N (measured force is -4N). The movement was repeated
9 times. The desired (green) and real trajectories are shown in the top plot.
The final trajectory is depicted in red. The bottom plot shows the measured
forces occurring during the contact (blue), while the red dotted line depicts
the final force. The black dotted line shows the desired force, set to appear
only after the contact.
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Fig. 6. Images showing the final position of the box in the bimanual manipulation task with the ARMAR-III robot. The first image shows the position of
the arms after the execution of the original, uncoupled trajectories. Note that they are at different heights. The following images show the end positions of
the box, held with the arms, after each epoch. The final image shows the position after the learning. Note that the arms have reached almost the desired,
parallel position and therefore the box is not tilted anymore.

after each learning epoch.

In this case study we showed that the arms can be coupled

using a virtual force, calculated from the distance of the arms

as given in Eq. (14). Besides showing the applicability of the

approach using positions, practical reasons would not allow

the use of the force sensor for this case. The contact of the

robot and the box was not rigid – the box was changing the

orientation in the arms, while the arms themselves were not,

which resulted in slight sliding and different force profiles

in each epoch. A rigid contact, for example when gripping

for the handles, would allow the use of real force feedback.

In the following case studies we used real force feedback.

C. Obstacle Avoidance in Bimanual Tasks

The framework of DMPs allows additional modulation of

the trajectories according to some external feedback, even

if the trajectories are coupled. Let us consider a task of

carrying a large object with two independently controlled

agents/robots, where one of the robots encounters an obstacle

and has to adapt its trajectory in order to avoid collision. The

change of trajectory results in a difference in the relative

position to the other robot and therefore a force along the

manipulated object. Our proposed learning algorithm can be

applied to minimize the force along the object in a few

iterations when one of the robots has to adapt the trajectory,

for example for obstacle avoidance.

In our experiments we used two KUKA LWR robots with

7 DOFs, but again without a common controller. The robots

were carrying a rigid object and their grip on the object was

strong enough to be considered rigid. The robots are shown

in Fig. 9. We applied the same online obstacle avoidance

algorithm as presented in [16]. We applied it to the left robot.

The cooperative DMPs were set in a leader-follower

relation, the left robot being the leader (lf,L = 0). From
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d
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t
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]
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Fig. 7. The distance between the arms in py and pz directions during each
epoch of learning for bimanual box manipulation. The dotted lines show the
original, uncoupled trajectories, while the red line show the distance after
the final, 5th epoch.

the start both robots had identical 20 s vertical trajectories

(yLR = ±0.4m), but the left robot encounters an obstacle

at px = 0.7m, py = 0.45m, pz = 1m and therefore has

to apply obstacle avoidance. Our proposed algorithm was

utilized to minimize the forces between the rigidly connected

robots. Fig. 8 shows the results of learning to minimize the

forces between the robots after 7 movements. The top plot

shows the py − pz trajectory plot. The trajectories are for

presentation purposes depicted at yL,R±0.2m, but they were

executed at yL,R = ±0.4m. The dotted red lines show the

original trajectories. The black line connecting the robots

show the connecting stick every 5 s. The bottom plot shows

the resulting forces between the robots, in py direction (blue),

and the resulting torques around the global z (vertical) axis.

Fig. 10 shows the results of a similar real world experi-

ment, where also the right robot encounters an obstacle at

px = 0.75m, py = −0.4m, pz = 0.9m. The obstacle is

set so that the robot must avoid it in the −px direction.

The resulting movement leads to a rotation of the stick

between the robots around the world z axis. This was a

direct result of cooperation and no higher level planners were

applied. The results indicate the ability of the algorithm to

provide trajectories which can guide wide objects through

narrow passages, e. g. a long board through a door, without

any higher-level planning. In the top 3-D plot we can also

notice the initial oscillations. These are the result of obstacle

avoidance and cooperative terms acting on the trajectory of

the right robot. The oscillations disappear by the final, 7th
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Fig. 8. Real world results of obstacle avoidance with the right robot
following the left one. The top plot shows the py − pz trajectories,
the original trajectories depicted with red dotted lines. The bottom plot
shows the resulting forces and the resulting torques (scaled 20 times for
presentation purposes).
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Fig. 9. Two obstacles avoidance. The leader robot (left arm) encounters an
obstacle on the left (orange ball). Before that, the follower robot encounters
an obstacle in front of itself (pink foam). All robot experiments are presented
in the video accompanying the paper.
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Fig. 10. Real world results of double obstacle avoidance of cooperative
DMP trajectories. The left robot is the leader, which encounters an obstacle,
but the follower also encounters an obstacle. The top plot shows the
trajectories, the final, 7th plot marked in red. Dotted red lines show the
original trajectories. The bottom plot shows the resulting force in py
direction and the resulting torque (scaled 20 times for presentation purposes)
around the world z axis.

epoch, marked with red. The bottom plot shows the resulting

forces in the py direction and the resulting torque around the

world z axis.

V. CONCLUSION

The proposed approach enables learning of coupling terms

that establish desired contact forces with the environment and

the adaptation of trajectories for cooperative task execution.

We showed in the Appendix that it is important that the cou-

pling terms are added at the appropriate level, i. e. velocity

and acceleration. We demonstrated in a number of experi-

ments that the approach can be applied to actual interaction

and bimanual cooperation tasks and that it can work with

real-world noisy signals such as force measurements.

The introduction of forces and torques into the well

defined and studied framework of DMPs allows the execution

of a vast array of tasks, which were previously inconceivable

with purely kinematic variables. Remaining in the frame-

work of the DMPs is therefore one of the key features

of the proposed approach. Furthermore, the extremely low

number of learning epochs makes on-line learning of the

coupled/interactive trajectories a viable possibility. Unlike

reinforcement learning methods, which require tens and

even hundreds of repetitions [28], we managed to achieve

the learning goals in under 10 for all the demonstrated

experiments.

The combination of feedback and learned coupling allows

the method to adapt to changes between epochs. It should

be noted, that if the method is to converge, it needs a target

to converge to. The changes during epochs can be partially

handled by the feedback and partially by the ILC, which can

be made more robust with proper parameter setting [20].

Once the target converges, the algorithm will converge as

well.

APPENDIX

Even though single DMPs are stable, the stability of cou-

pled DMPs, given by Eqs. (16) – (21) is not guaranteed. Co-

operative DMPs change the system from single-input-single-

output (SISO) into a multiple-input-single-output (MISO)

system. The two DMPs both have inputs (g1, g2), but the

system only has one output since their outputs are subtracted.

The coupling comes from the arising force, which depends

on the positions of the two robots as given in Eq. (14), where

the actual distance is da = p1 − p2 and p1 and p2 are the

positions of the two robots. In our theoretical analysis we

assume that the robot tracks the desired trajectory perfectly,

i. e. p1 = y1, p2 = y2, thus da = y1 − y2. Also note that the

sign of c has to be set according to Eq. (15), otherwise the

system becomes unstable.

For the given, stable DMP parameters, the gain c of the

coupling term determines the behavior of the MISO system.

We can derive the state-space system (25) – (26) from Eqs.

(16) – (21) with the applied feedback C1,2 = −C2,1 =
k(dd − da), lf,1 = lf,2 = 1,

ẋ(t) = Ax(t) +Bu(t) (25)

y(t) = Cx(t), (26)

where the nonlinear parts f1(x) and f2(x) have been omitted.

The system matrices for the controllable canonical form are

given by

A =

[

−
αzτ+2ck(c2+τ)

τ2 1

−
αzβzτ+2ck

τ2 0

]

, (27)

B =

[

2k(c2+τ)
τ2

2ck(c2+τ)
τ2 0

2kαz

τ2

2ckαz

τ2

kαzβz

τ2

]

, (28)

C =
[

1 0
]

. (29)

The input vector and scalar output are u = [Fc, Fd, g1−g2]
T

and y = F (in Eq. (26)), respectively. The state vector is

defined as

x =

[

F

Ḟ −
αzτ+2ck(c2+τ)

τ2 F

]

. (30)

Since the nonlinear parts f1(x) and f2(x) in Eqs. (16) and

(19) are bounded and tend to zero as the phase tends to

0, it is sufficient to prove the stability of the linear part of
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Fig. 11. Root locus plot of the coupled DMP structure with modulation at
acceleration level (right) and both the velocity & acceleration levels (left).
We varied the gain ck from 0 to 10000 while the gain c2 was fixed at 1. The
system has two poles denoted with red and green. The full circles denote
roots at ck = 0 and the empty circles at ck = 10000.

the system (16) – (21), i. e. of system (25). We assume the

environment stiffness as defined by Eq. (10).

The eigenvalues of A determine the stability and conver-

gence of differential eqn. system (25). These eigenvalues are

given as

λ1,2 =
1

2

(

−
αzτ + 2ck(c2 + τ)

τ2
± (31)

√

(

αzτ + 2ck(c2 + τ)

τ2

)2

− 4
αzβzτ + 2ck

τ2



 .

Since all parameters αz, βz, c, k, c2, τ are positive, the eigen-

values λ1,2 are negative for all cases in which both eigenval-

ues are real numbers. It can also happen that the eigenvalues

are complex numbers, but in such cases the real part of both

eigenvalues is again negative. This means that the system

(25) converges to a unique attractor point for all positive

parameter values. We obtain complex eigenvalues only for

unreasonable parameter values, e. g. for large τ .

The difference of the acceleration-velocity based scheme

versus only the acceleration based scheme is shown in the

Root-locus plot in Fig. 11. It shows that both schemes

remain stable with increasing gain ck. On the other hand, the

imaginary part of conjugate-complex eigenvalues increases

only in the case when just the acceleration level modulation

is used, whereas it remains zero when modulating both the

velocity and acceleration levels. The results clearly support

the proposed velocity & acceleration levels, where the re-

sponse is always damped, whereas the convergence is slower

for modulation at acceleration level only.
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and R. Dillmann, “ARMAR-III: An Integrated Humanoid Platform
for Sensory-Motor Control,” in 2006 6th IEEE-RAS International

Conference on Humanoid Robots, 2006, pp. 169–175.
[28] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable

impedance control,” The International Journal of Robotics Research,
2011.

5635


