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Abstract— Compliant robot behavior is crucial for the re-
alization of contact-rich manipulation tasks. In such tasks,
it is important to ensure a high stiffness and force tracking
accuracy during normal task execution as well as rapid adap-
tation and complaint behavior to react to abnormal situations
and changes. In this paper, we propose a novel approach
for learning predictive models of force profiles required for
contact-rich tasks. Such models allow detecting unexpected
situations and facilitates better adaptive control. The approach
combines an anomaly detection based on Bidirectional Gated
Recurrent Units (Bi-GRU) and an adaptive force/impedance
controller. We evaluated the approach in simulated and real-
world experiments on a humanoid robot.The results show that
the approach allow simultaneous high tracking accuracy of
desired motions and force profile as well as the adaptation
to force perturbations due to physical human interaction.

I. INTRODUCTION

In human-centered applications, robots should be able to
perform a wide variety of the tasks in a compliant way
to meet the safety requirement. To assist human, the robot
usually manipulates an object in a certain way or works with
a specific tool for a task. This could be addressed as motion
and force control problem in a contact-rich environment. For
example, the robot cleans an arbitrary unknown surface with
a sponge. The surface is static or dynamically varying and
the human might also interrupt the cleaning task. We should
also consider the situation where the robot might not always
see through vision system what is going to happen in the
dynamic environment. Thus, creating compliant controllers
based only on the motion and force feedback is necessary.

Some tasks require a large force to be exerted on the
objects or the tools, such as cleaning heavily polluted surface.
The robot should keep high stiffness to ensure the quality
of the task execution. However, since the dynamic model
for a contact-rich manipulation is difficult to obtain and the
robot needs e. g. to react to sudden collision in a human-
centered environment. A conventional model-based control
system with high stiffness might result in dangerous actions
and thus can usually not be applied in such scenarios.

By observing human wiping and interacting with others,
we found some major abnormal events, for example, another
person interrupts the subject by blocking the trajectory, the
subject collides with an object or another person or suddenly
loses contact when wiping out of the surface. These will
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Fig. 1: ARMAR-6 cleans an arbitrary surface.

happen to the robot as well. Therefore, the robot must learn
how to distinguish between normal and abnormal situations
for a certain task based on motion and force feedback, as we
do. This can be achieved by training a predictive model as an
anomaly detector based on the data collected during normal
executions of the tasks and using it in the future execution.

Proper adaptation law is also needed to modify the compli-
ance behavior in different situations so that the robot could be
super compliant and thus maintain safe. When the situation
goes back to normal, the control strategies in the normal
situation will be resumed to continue the task with higher
stiffness.

II. RELATED WORKS

In order to realize both high tracking accuracy and compli-
ant behavior, the authors in [1] proposed to learn a mapping
from the task parameters to the position and torque tra-
jectories. The position trajectories were obtained by human
demonstrations. While the torque trajectories were recorded
with a high stiffness tracking controller. After learning the
torque trajectory. A torque based compliant controller can
track the target position trajectory accurately with compliant
behavior. However, with the proposed method, the robot can
only stop and restart from the beginning when encountering
the external disturbance, because the learned torque con-
troller does not know how to recover from the disturbance.

In the active interaction control field, there are multiple
approaches to achieve fast, stable and coupled force-motion
control, such as indirect and direct force control [2]. The for-
mer approach, e.g. hybrid impedance control [3] [4], shows
stable compliant behavior by properly setting the stiffness of
the robot and a biased trajectory w.r.t the modeled surface.
However, HRI usually involves unmodeled environment and
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unexpected human interactions, thus, requires time-varying
compliance behavior.

One of the aspects of direct force control is the explicit
force control, which makes the robot to be an effort-source.
The force and torque feedback signals are used to calculate
the force control command directly, without using inner-loop
motion control. This feature makes it respond faster to the
sudden change of the environment. However, it’s also more
sensitive to impact or losing contact and more vulnerable to
instability factors in the real-time control system. To observe
its stability, the authors in [5] [6] proposed several passivity-
observer based approaches to adapt the gain of the direct
force control strategy. Another example is the task-energy
tank based unified force-impedance control [7], which shows
safe adaptation when loose-contact is detected. However,
designing passivity-observer for complex interaction tasks is
not easy.

An another aspect of direct force control is to add an
inner motion control loop. The outer control loop, e.g.
explicit force control, sends a position or velocity command
to the inner loop. A compliant and asymptotically stable
behavior could be achieved by assigning a critically or over-
damped impedance to the motion controller. An admittance-
coupled DMP framework is proposed in [8] and later is com-
bined with passivity analysis and iterative learning control
(ILC) [9] to achieve online adaptation to changing surface.
However, ILC based adaptation is quite time-consuming,
hence does not fit the contact-rich unmodeled environment.

III. BASIC KNOWLEDGES

A. Motion Representation

In order to represent the learned motion from human
demonstrations, we use Via-points Movement Primitive
(VMP) presented in our previous work [10]. VMP consists
of two parts: elementary trajectory and shape modulation:

y(x) = h(x) + f(x), (1)

where the elementary trajectory directly connects the start
and end points. While the shape modulation encodes the
shape of the trajectory. In the wiping experiment, the ele-
mentary trajectory is the position of the anchor point, which
can be changed to translate the whole wiping motion. The
shape modulation encodes the wiping pattern. Both parts
of VMP are differentiable, which allows VMP to provide
both target position and velocity. The target velocity of
VMP provides the velocity source for the force impedance
controller mentioned in subsection III-B (see Figure 3).

B. Impedance Controller

Since the explicit force control with an inner motion
control loop shows good stability and extensibility feature,
we choose this framework as the base for our controllers.
Within this framework, the environment is treated as an
effort-source and the controller makes the robot as a velocity-
source as shown in Fig 2. Two major velocity sources are
used. One is for motion control, which is encoded in VMP
(VVMP). The other one is the PID-based force controllers

Fig. 2: Impedance Control Framework. Desired motion is
encoded as a VMP velocity source and force PID controllers
are additional velocity sources for tracking of target force
profile and force direction regulation. The environment is
treated as an effort source.

(VF-tasks), which is used to track a force profile or regulate
the desired force direction. The total desired velocity, the
control-flow and the velocity of the robot are represented
as Vd,Vc,Vr respectively. The impedance of the motion
controller, the robot and the environment is denoted as Zc, Zr

and Ze. The diode means that we only deal with uni-literal
contact.

IV. ADAPTIVE CONTROL WITH FORCE PREDICTIVE
MODELS

A. Adaptive Force Impedance Control

The task space dynamic equation of the robot is:

Λẍ+C(x, ẋ)ẋ+G(x) = Fm + Fe, (2)

where Λ,C,G are task-space inertia matrix, Coriolis matrix
and gravititional force respectively, and Fm,Fe ∈ R6 are the
actuation force and contact force applied on the robot.

We design the adaptive compliant controller by extending
the velocity source for force control based on the impedance
control framework as described in the last section and
embedding an adaptive law based on the anomaly detector
(see section IV-B).

The velocity source for motion control is based on our pre-
vious work about VMP, which provide the velocity reference
VVMP . To track the target force profile Fd, a PID controller
is added to the second velocity source. In frequence domain,
the controller is expressed by

Vf (s) = (Fd(s)− Fe(s))(Kpf +
Kif

s
+ sKdf ), (3)

where the Kp,Ki,Kd are PID gains. In addition, PID
controllers to regulate the desired force direction αd or to
track a torque profile τd are added in the same manner as
PID force controller. And the control flows are denoted as
Vr(s),Vt(s) respectively. The total velocity source is the
combination of all these controllers described above,

Vd(s) = VVMP (s) + Vf (s) + Vr(s) + Vt(s). (4)

The task space control force applied to the robot is

Fm = (Vd(s)− Ve(s))(Dc +
Kc

s
+ sMc). (5)



Fig. 3: The proposed system consists of two different parts: adaptive force impedance control and force predictive models.
Right: The control framework indicated by the light yellow block contains multiple adaptive controllers, which tracks the
target force and direction in the contact-rich manipulation. Velocity sources include VMP for motion tracking and PID force
controllers. Force command is calculated by the impedance controller and finally mapped to the joint torque commands by
the inverse dynamic controller. Left: Several bi-directional GRU models are used as the force predictive models to predict the
mixture distribution of the force profiles. The learned distribution is then used to evaluate the current force profile regarding
the contact-rich manipulations to check whether it is abnormal or not. The results further affect the adaptive strategy to
decide which control mode takes over.

The torque control command is computed by

τm = JT (Fm +C(x, ẋ)ẋ+G(x)) +N (q, q̇), (6)

where J is the Jacobian matrix and N (q, q̇) is the null-space
controller.

In order to guarantee the tracking accuracy for both VMP
encoded trajectory and target force profile, we consider
obtaining the velocity sources with high stiffness impedance
controller and high gain PID controllers. The impedance
parameters Kc, Dc,Mc, and PID parameters, however, can
change with two different modes: adaptive mode and recov-
ery mode. With Kp used to represent all these adaptable
parameters for simplification, in the adaptive mode, we have

Kp(t) = max(Kp(t0)− αp(t− t0), 0), (7)

and in the recovery mode,

Kp(t) = min(Kp(t0) + βp(t− t0),Kp,max), (8)

where t0 is the timestamp when the mode is switched and
t is the current timestamp. Kp,max is the corresponding
maximum value

During the task execution, one of these two modes takes
over. The adaptive mode modifies the robot to an extreme
compliant status and the recovery mode allows the robot to
continue the original task. In this work, the high stiffness
Kp,max and adaptive parameters α and β are empirically
determined. They are so determined to allow a rapid drop
from Kp,max to 0 in less than one second in the adaptive
mode and recover relatively slower to keep safe and avoid
control instability.

B. Learning Force Predictive Models

In order to be able to know when to switch the mode,
we consider creating an anomaly detector which can detect
the abnormal force observed by the force sensor. Once the
anomaly in the current force profile is identified, the adaptive
mode is activated to adapt to the external disturbance such as
human interruption or the collision with the object. Anomaly
detection can take the normal force profile into consideration
and allow compliance for the contact-rich tasks. Similar
to [1], we assume that there exist a set of high stiffness
controllers with appropriate parameters mentioned before
that are stable and perform well in the task. And we allow
that the high stiffness controllers run at least once to execute
the task without the external disturbances. For example, in
the periodic task such as wiping, it is not difficult to find
one period where no disturbance occurs.

As an example, during the robotic wiping, the friction
between the wiping tool and surface is necessary for the
task. In this case, in order to guarantee the motion on the
wiping surface, an impedance controller with high stiffness
is required, which does not allow human interaction or can
cause problems when the robot’s end-effector collides with
some obstacles. With an anomaly detector, we can identify
the abnormal force and switch to the former mentioned
adaptive control mode.

The straightforward anomaly detection is mainly based on
the one class classification, where a classifier is trained only
on the non-anomalous data. Some other methods are based
on the unsupervised learning models such as an autoencoder,
which can learn the underlying structure of the data. The



reconstruction error of a well-trained model indicates an
anomaly. For the time-series data like in our case, a predictive
model can be constructed and trained on the non-anomalous
sequences. The prediction error of this trained predictive
model is evaluated to determine whether the new data is
abnormal or not.

For many contact-rich tasks, there is a tight relationship
between the motion of the robot’s end-effector and the force
exerted on it:

Ft+1 = f(vt, ht), (9)

where Ft+1 is the force at the next time step and vt is the
current velocity. In the wiping task, both are represented
in the local frame to have more generalizability. ht is the
hidden state related to some temporal features. In the wiping
experiment, this relationship might encode the shape of the
wiping surface. A bidirectional gated recurrent unit (Bi-
GRU) is created as the predictive model, which is connected
with a mixture density network (MDN) ([11]) to output a
Gaussian mixture distribution of the force profile based on
the current velocity profiles and hidden states.

During the training, we minimize the negative-log-
likelihood (NLL) of the observed target force profile such
that

lNLL(ΘΘΘ) =−
N∑
i=1

log

( K∑
k=1

πk(VVV ;ΘΘΘ)

N
(
FFF ;µµµ(VVV ;ΘΘΘ),ΣΣΣ(VVV ;ΘΘΘ)

))
,

(10)

where ΘΘΘ is the parameters of the whole network and µµµ(·) and
ΣΣΣ(·) are the result functions for both mean and covariance.
VVV and FFF are sequential velocity and force profile which are
collected by the sliding window with fixed sequence length
L (which is 20 in our experiments).

C. Force Predictive Model based Adpative Strategy

In the task execution, the last L steps velocities and
forces are collected in two separate queues. The velocity
queue is sent to the trained Bi-GRU model, which outputs a
Gaussian mixture distribution of the force profile. With this
distribution, we can calculate the probability of the collected
force queue. The logarithm of this probability is called score.
And its integral along the time is called abnormal score. We
use integral to avoid reactions on some sudden and short
disturbances which should not affect the robot task execution.
In Figure 7, we show that this score can drop very fast
because of the logarithm function. Once the abnormal score
is low, the control mode is switched to the adaptive mode.
The simple linear adaptation of the control parameters is
triggered (see Equation 7)

We don’t expect to have enough data to learn a well
generalizable model, hence, allow overfitting to simplify the
training process. This is suitable for many repeatable tasks
such as wiping, where each period can have similar force
profiles if the environment does not change a lot. However,
for a changing enviornment, one single Bi-GRU might not
be enough to generalize to different situations, especially

Fig. 4: A single predictive model can cause the problem in
the recovery mode. The robot might be stuck and cannot
resume to the original tasks.

when it might overfit the training data. An overfitted model
will annotate every situation which is slightly different from
the original training data as low probability, thus, abnormal
event, where the control parameters are almost all zero ac-
cording to our linear adaptation strategy. Hence, we consider
to add more than one predictive models.

For a specific task, the overall process is as follows:

1) At the beginning, no predictive models exist. We let the
robot execute the task with a high stiffness controller
and collect data for training the first predictive model;

2) Once we have at least one predictive model, we let the
robot execute the task with the adaptive controller based
on the control diagram in Figure 3;

3) If the behavior of the robot is not as expected, such
as stopping during the recovery control mode or during
task execution without any external interference, we col-
lect those data to train an another predictive model. All
predictive models work together to output a hierarchical
mixture distribution according to the sum rule of the
probability.

By iterating between step 2 and 3, we can finally end up
with a combined predictive model which takes all situations
that might occur during task execution and recovery from
the disturbance into the considerations.

For the wiping task as an example, the first predictive
model is trained in the normal situation, where wiping is
conducted with high stiffness controllers and without any
disturbance. However, with only this model, the robot can be



(a) Slope (b) Threshold (c) Half Circle

Fig. 5: Experiments in Mujoco show the force based orien-
tation control of our wiping controller.

stuck during the recovery mode, which is shown in Figure 4.
This can be avoided by learning the second predictive model
that is trained with the collected force profile shown in Fig-
ure 4. With the help of this predictive model, the robot can
go through the recovery mode and resume the high stiffness
controller. This strategy can be used also for the change of
task parameters. For example, the friction of the table has
a huge change, in which case the first learned predicitive
model always prevents the robot from the wiping task.

V. EXPERIMENTS AND EVALUATIONS

To evaluate our method, we mainly focus on the wiping
task in both simulator and real enviornment.

A. Result from Simulation

In the simulator as shown in Fig 5a, we setup surfaces
with different slope and friction coefficient. To automatically
detect the friction coefficient, which is necessary to extract
current force direction, we add a simple online linear re-
gression model to our controller. The parameters are tuned
such that the robot can accurately track arbitrary motion and
force profile. Then the data for training anomaly detector
is collected when the robot wipes the surface with high
stiffness.

The result is plotted in Fig 6 when a sine-wave shaped
target force profile is assigned,

F (t) = 10− 5 sin(
2π

T
t), (11)

where T is the time-duration of one loop of wiping motion.
After training, the mean value of predicted forces and its
confidence intervals according to 3-σ-rule are plotted with
colored areas. It shows that in a normal situation, the learned
model has a good prediction result.

Further experiments, such as wiping over a threshold
(Fig 5b) and inside a half-circle (Fig 5c) show that, without
re-training the network in these scenarios, it also gives
reasonable prediction results. Since the model outputs a
distribution instead of a point estimate, it can still generalize
to most of the situations, even if the trained model might
overfit the training data,

B. Result from Real System

For the real robot experiment, we consider the user-case
scenario that the robot is wiping a table (Fig. 8). In the

Fig. 6: Evaluation in Mujoco. The robot wipes a slope
as in Fig 5a while tracking a sine-shaped force profile.
Force measurement, mean value of predicted force and its
confidence interval according to 3-σ-rule are plotted.

normal situation, such as wiping a flat surface (Fig. 8a), a
slope (Fig. 8b) and an arbitrary curved surface or a dynamic
surface (Fig. 8c). The robot keeps high stiffness and high
gain PID controller. The PID controllers for regulating the
target force and its direction ensures that the robot applies
the target force perpendicular to the surface. Any interference
event that blocks the cleaning task is considered an abnormal
situation, as shown on top of Fig. 7 (b) collision with a fruit
tray, (c) human interruption by occupying the cleaning area,
(d) human interaction by dragging the arm away.

The adaptive impedance controller runs on ARMAR-6
within 1kHz, and the force predictive model outputs the
predicted force profile with 30Hz. the force target (10N )
is plotted in the first row of Fig 7. In the normal situation
(phase (a), corresponds to Fig 8a), the root mean squared
error of force regulation of the PID force controller in the
target force direction (z axis) is 1.047N . The mean value of
the predicted forces and the confidence intervals according to
3-σ-rule are also plotted, which shows decent force tracking
and prediction. The second and third row show the score
and the abnormal score mentioned in subsection IV-C. With
an empirical threshold, e.g. −1000 for wiping, the robot
immediately detects the abnormal events in less than 70ms
as the abnormal score drops below the threshold.

The last row of Fig 7 gives an example of stiffness
adaptation during different phases, e.g. at 11s the stiffness
drops in 300ms to 2% of the value in normal case. Similar
adaptation happens to the force and rotation PID controller,
which means these velocity sources are switched off, thus
the target pose does not change much.

After the abnormal events, the recovery mode (e) takes
over and the control parameters increase back to maximum
values for the high stiffness control and the normal situation
is resumed. To ensure a safe recovery, compared to the
adaptive mode, the recovery of the parameter to default is
set much slower to avoid control instability. In Figure 7 from
20s to 25s, a recovery mode occured between two successive
abnormal events, where the control parameters could jump
to cause jiggled motions if their recovery was as fast as in
the adaptive mode.



Fig. 7: Force prediction and stiffness adaptation. The five photos on top of the image show the (a) normal situation, (e)
recovery mode and three abnormal events (b) Collision, (c) Interruption and (d) interaction. In the lower part, the time point
or period of these events are marked. The 1st row shows the actual force measurement, the mean value of predicted force
and its corresponding confidence interval according to 3-σ-rule. The 2nd row shows the score values of 2 predictive models,
the sum of scores and the 3rd rows shows the final abnormal score, which indicates abnormal events when it drops below
−1000. The last row gives an example of how the stiffness of the impedance controller is adapted and recovered in different
phase.

(a) Flat Surface (b) Slope (c) Curved Surface

Fig. 8: Cleaning Task. Experiments are carried out with
three different surfaces, where the robot execute the wiping
task with high stiffness and keeps applying the target force
perpendicular to the surface.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a novel adaptive compliance
control by combining Bi-GRU based force predictive models
with an adaptive force-impedance controller. This controller
allows the robot to 1) keep higher stiffness and high force
tracking accuracy in normal situations to guarantee task
execution quality and 2) be compliant when abnormal excep-
tions occur. The evaluation was conducted on the ARMAR-6

robot in the simulated and real-world environment in several
use-case experiments. The results show accurate tracking
behavior in the normal situation, as well as smooth, safe
recovery and compliant interaction behavior during the ab-
normal events.

Our approach is extensible in different manners, such as
the consideration of additional velocity source and adding
more force predictive models to deal with more complex
tasks. We will investigate such questions and extend the
work to implement controllers, which generalizes to complex
contact-rich manipulation tasks.
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