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K-VIL: Keypoints-based Visual Imitation Learning
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Fig. 1: Overview of the K-VIL approach. (a) Human demonstration videos of manipulation actions involving categorical objects
with shape, pose, and trajectory variations. (b) Sampling of dense candidate points from the object surface. (c) Extraction of
sparse keypoints k1,k2 subject to certain types of geometric constraints (point-to-point and point-to-curve), their associated
local frames F and the movement primitives which represent the demonstrated keypoint motions. (d) Adaptation of the learned
generalizable geometric task representation to a new scene, and execution by the robot.

Abstract—Visual imitation learning provides efficient and intu-
itive solutions for robotic systems to acquire novel manipulation
skills. However, simultaneously learning geometric task con-
straints and control policies from visual inputs alone remains a
challenging problem. In this paper, we propose the keypoint-based
visual imitation learning (K-VIL) approach that automatically
extracts sparse, object-centric, and embodiment-independent task
representations from a small number of human demonstration
videos. The task representation is composed of keypoint-based
geometric constraints on principal manifolds, their associated
local frames, and the movement primitives that are then needed
for the task execution. Our approach is capable of extracting
such task representations from a single demonstration video, and
of incrementally updating them when new demonstrations are
available. To reproduce manipulation skills using the learned set
of prioritized geometric constraints in novel scenes, we intro-
duce a novel keypoint-based admittance controller. We evaluate
our approach in several real-world applications, showcasing
its ability to deal with cluttered scenes, viewpoint mismatch,
new instances of categorical objects, and large object pose and
shape variations. Our evaluation demonstrates the efficiency
and robustness of our approach in both one-shot and few-shot
imitation learning settings. Videos and source code are available
at https://sites.google.com/view/k-vil.

Index Terms—Learning from Demonstration; Visual Learning;
Manipulation Planning; Learning of Geometric Constraints.

I. INTRODUCTION

Observational learning, i.e., the ability to develop new skills
from observed actions and their outcome, is an important
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learning mechanism in our daily lives [1]–[3]. For example,
by watching a few videos showing people pouring water from
a kettle into different teacups (as in Fig. 1a), we can easily
learn “what” a pouring task is and “how” to perform it. From
a computational point of view, the spout and bottom of the
kettle can be represented by two keypoints k1,k2. As shown
in Fig. 1c, a pouring task then simply consists in aligning
the spout k1 with a point above the rim of the cup (point-
to-point constraint) and similarly aligning the bottom k2 with
a curve that controls the kettle’s angle of inclination (point-
to-curve constraint). Such sets of keypoints and keypoint-
based geometric constraints can generally be used to represent
daily manipulation tasks, i.e., to parameterize the motion
of their functional parts relative to some local frames of
reference. Moreover, these keypoints and local frames can also
be associated with local visual features of object functional
parts.

In this paper, we propose to exploit such task represen-
tations to teach manipulation skills to robots from video
demonstrations. We additionally aim for generalizable skills,
which can be reused in novel scenes (see Fig. 1d for an
example). In this context, three main challenges arise, namely,
(i) the detection and efficient extraction of task-relevant key-
points on objects; (ii) the definition of generalizable and
embodiment-independent task representations; and (iii) the
reproduction of the demonstrated task and its adaptation to
new scenes. To address the first two challenges, we first
densely sample a set of candidate points from the object
mask provided by Mask R-CNN [4] and leverage the cor-
respondence detection of Dense Object Net (DON) [5] to
track their motions in the demonstration videos and obtain
their 3D positions (see Section III for a short background).
Then, we jointly extract a set of sparse keypoints and a set
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of keypoint-based geometric constraints representing the task,
as shown in Fig. 1b (see Section IV). To do so, we exploit
principal manifold estimation algorithms (PME) [6], which
are intrinsically more data- and time-efficient than approaches
based on supervised learning [7], [8] and reinforcement learn-
ing (RL) [9], [10]. The resulting geometric constraints are
expressed relative to local frames defined on target objects
and are easily adjustable to pose and shape variations of
the target object. As shown in previous works [7], [9], [11],
such object-centric task representations facilitate the transfer
of manipulation skills between demonstrators and imitators. It
also allows our approach to deal with demonstrations provided
from different viewpoints. The representation of the task in the
form of keypoints and their constraints also enables the use of
simpler control policies [12], such as movement primitives, for
executing the given task. In this paper, we exploit this property
to address our third challenge. Namely, we encode the keypoint
motions relative to the corresponding local frames as via-
point movement primitives (VMPs) [13], which are flexible
in terms of temporal scaling and trajectory adaptation while
maintaining the demonstrated motion styles. The learned key-
point motions can then be executed on a robot by leveraging
our novel keypoint-based admittance controller (Section V).
We validate our approach by learning various real-world daily
tasks from video demonstrations and reproducing them with
a humanoid robot (Section VI). The results show that K-VIL
efficiently extracts generalizable manipulation skills, handles
viewpoint mismatch, and deals with large pose and shape
variations of categorical objects in cluttered scenes.

Our contributions are threefold: (i) We introduce the Key-
point-based Visual Imitation Learning (K-VIL) approach for
automatic and incremental extraction of sparse, object-centric,
viewpoint-invariant, and embodiment-independent task repre-
sentations. K-VIL extracts task representations from a single
demonstration video and improves them as new demonstra-
tions are available. The task representations consist of key-
point-based geometric constraints on principal manifolds, their
associated local frames, and the movement primitives required
to reproduce the task. (ii) We formulate and learn a large
variety of geometric constraints, which allow the proposed
task representation to be flexible and efficient. (iii) We propose
a novel keypoint-based admittance controller that handles a
set of prioritized geometric constraints and allows successful
reproductions of the learned task in novel scenes.

II. RELATED WORK

Visual Imitation Learning (VIL) is a class of imitation
learning (IL) frameworks in which only visual sensory input
is presented to the imitator. The main challenges of VIL
are (i) the detection of visual correspondences between the
demonstrator’s and imitator’s context, i.e., context transla-
tion [14], [15]; (ii) the fine-grained understanding of scene
structures [16], along with the design of generalizable task
representation; and (iii) the design of sample efficient and
scalable control policies. This latter challenge is often tackled
along with the former ones, as described next.

A. Context Translation

Context translation has typically been addressed by training
context translators in the demonstrator context to predict the
observations in the imitator (e.g., the robot) context. Pixel-level
translators were used in [15], [17]–[19] to further train RL
policies by maximizing the similarity between predicted and
received robot observations. Despite the performance of such
models, their training is computationally expensive and time-
consuming. To improve learning efficiency, Sharma et al. [14]
combined a goal-level translator with a task-agnostic control
policy, which was trained independently and shared among
different tasks. In contrast to these works, K-VIL represents
the context via a set of object-centric keypoints and their
respective geometric constraints, thus facilitating the context
translation between demonstrators and imitators. In addition,
by leveraging Mask R-CNN and DON models — which
are trained beforehand in a task-agnostic manner and shared
among tasks — K-VIL’s representations can be acquired from
a single or few demonstrations.

B. Fine-grained Understanding of Scene Structure

The above approaches do not scale to categorical objects
as they do not explicitly extract the scene structures with
respect to objects and their functional parts. In the literature,
the understanding of fine-grained scene structures is mainly
achieved through 1) the viewpoint-invariant representation of
fine-grained scene features; 2) the extraction of a hierarchy of
the scene structure; and 3) the definition of task constraints.

1) Viewpoint-invariant representation: Dense visual de-
scriptors such as DON [5] and Neural Descriptor Fields
(NDFs) [20] represent fine-grained scene features by detecting
dense correspondences of categorical objects, thus allowing
point-based representation of object functional parts. However,
in [20]–[22], access to the robot state space was required
in addition to the visual demonstrations, thus violating the
purpose of visual imitation. Yang et al. [23] proposed a
transporter-based representation learning model to extract key-
points from the task-agnostic human and robot play data.
Building the similarity function of such a model requires robot
execution videos with a similar view setup as the demonstra-
tion videos. The same requirement applies to the approaches
presented in [24]–[26] and prevents robots from learning from
human demonstrations taken from a very different viewpoint.
Sermanet et al. [27] proposed Time-Contrastive Networks
(TCN) to learn viewpoint-invariant latent representations of the
scene. This approach requires a large number of demonstration
videos and robot play videos to build the correspondence
between human and robot arms, which makes the approach
embodiment-dependent. Similar to our paper, Karnan et al.
[28] proposed to leverage task-agnostic keypoint detection
algorithms for vehicle navigation tasks. This approach requires
storing the demonstration video and searches the closest
demonstration image for reward construction. This reduces the
number of demonstrations compared to the pixel-level context
translations of [15], [17]–[19]. However, by overlooking the
different types of geometric constraints that the keypoints
are subject to, this approach suffers from averaging problem
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similar to [20] (see Section II-B3 for details). In contrast, K-
VIL uses dense point-based object representation and corre-
spondence detection to align demonstrations recorded from
different viewpoints. This significantly reduces the required
number of demonstrations. Moreover, K-VIL explicitly ex-
tracts viewpoint- and embodiment-independent scene structure
and task constraints, thus addressing the average problem
and achieving better extrapolation capability in fine-grained
manipulation tasks.

2) Hierarchy of scene structure.: The variance across
demonstrations was used to efficiently select appropriate local
frames from some candidates in several imitation learning
frameworks as a solution to extract hierarchical scene struc-
ture [29], [30]. Representing the learned task in such local
frames was shown to facilitate the transfer of skills between
different embodiments and the design of control policies.
However, in the absence of visual sensory input, the candidates
were manually defined at object level in [29], [30]. In our
work, we instead show that combining dense visual descriptors
and a variance-based criterion allows for the efficient extrac-
tion of keypoints and local frames at a fine-grained level.

3) Task constraints: Early works on visual servoing [31]–
[33] hand-crafted task constraints as simple geometric con-
straints (e.g., point-to-point, point-to-line). To represent more
complex constraints, Sieb et al. [16] proposed visual entity
graphs (VEGs) based on DON to disentangle the scene struc-
ture into multiple levels, including objects, parts, and points.
A path integral policy was then trained on the similarity
loss between the VEGs learned from the demonstrator and
the VEGs observed by the robot. The task constraints are
implicitly learned in VEGs, similarly to the neural pose
descriptors in [20], and are therefore averaged when large
shape or pose variations occur in the demonstrations. To
address this issue, Jin et al. [12], [34] introduced an explicit
representation of geometric constraints using visual geometric
skill kernels and graph neural networks, which generalized
better to categorical objects. However, this approach requires
∼ 30 demonstrations to learn a generalizable representation,
since both task correspondences and geometric constraints
need to be learned in the graph structure. In this paper, we
exploit the correspondence detection of DON and the variation
information to jointly extract explicit, sparse keypoints and
endow them with geometric constraints of various types (see
Section IV-B). This allows us to learn generalizable skills
from only a few demonstration videos while alleviating the
averaging problem of [16]. Moreover, our task representation
allows us to replace the RL policy used, e.g., in [16], with
simpler movement primitives that reproduce the demonstrated
keypoint motions and adapt to new goal configurations.

III. BACKGROUND

In this section, we introduce the dense visual correspon-
dence models, the principal manifold estimation algorithm,
and the VMPs, which are essential building blocks of K-VIL.

A. Dense Visual Correspondence
Dense Object Net (DON) [5] maps an RGB image

A ∈ RW×H×C to a dense descriptor image AD̄ ∈ RW×H×D̄,

where W,H,C denote the width, height and the number of
channels of the image, and D̄ is the dimension of the descriptor
space. Therefore, each pixel of the input image is represented
by a D̄-dimensional descriptor d ∈ RD̄. To train a DON model
on an object category, multiple views of posed RGB images
of multiple instances of this object category are first collected.
The object meshes are then reconstructed using any state-of-
the-art scene reconstruction method. The reconstructed meshes
are then exploited to automatically acquire object masks and
retrieve dense correspondence signals, which are used to train
the model. A fully trained DON model maps similar local
patches of two images of the categorical objects to patches in
the descriptor space with similar descriptors. In other words,
the dense visual correspondence between two pixels is detected
if the distance between their descriptors is smaller than a
certain threshold. For example, the spout of the kettle in
different image frames is mapped to similar descriptors.

In this paper, we aim at retrieving dense correspondences
among different instances of the same object category. More-
over, once a set of sparse keypoints is extracted, we aim
at identifying these keypoints during the task reproduction
on new instances of the same object category using their
descriptors. To do so, we construct a correspondence function
p = fc(A,d) using the DON model and the camera intrinsic
and extrinsic parameters, which can be used to extract the
3D position of a keypoint represented by the descriptor d.
Similarly to [5], [35], we use 34-layer, stride-8 ResNet as
the DON model and set D̄ = 3. We also train Mask R-CNN
models [4] with the automatically generated object mask
dataset similar to [16]. We refer the interested readers to [5],
[35] for additional details of DON models. For the case where
the human hand is involved in the demonstrated tasks, we treat
it as a special object and utilize a hand keypoint detection
algorithm, e.g., MediaPipe [36], which provides more robust
correspondence detection on human hands.

B. Principal Manifold Estimation (PME)

Within K-VIL, we are interested not only in extracting a
set of keypoints, but also in learning the constraints that they
satisfy in order to represent the task. Specifically, we use
geometric constraints, which allow us to restrict the keypoint
target positions, e.g., as in Fig. 1c. In a 3-D space, a simple
geometric constraint can be viewed as a low-dimensional
manifold corresponding to a point, a line, a plane, a curve,
or a surface. In this paper, we leverage the principal manifold
estimation (PME) algorithm [6] to uncover the geometric
constraints as low-dimensional embedding from a set of 3D
points varying in time (obtained via DON). In PME, the
principal manifold is defined as a minimum of the functional
with a regularity penalty term derived on a Sobolev space.
Specifically, the PME algorithm minimizes the loss

L(f, πd) = E ∥x− f(πd(x))∥2 + λ∥κf∥2, (1)

where πd : RD → Rd is the projection index that maps a ran-
dom D-dimensional vector x onto a d-dimensional principal
manifold with d < D, f : Rd → RD is the reconstruction
function, ∥κf∥2 represents the high-dimensional generalization
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Fig. 2: Overview of K-VIL’s architecture. After preprocessing the demonstration videos, K-VIL jointly extracts a set of sparse
keypoints, a set of keypoint-based geometric constraints, and a set of movement primitive parameters that fully represent the
task. The robot then leverages the proposed keypoint-based admittance controller to reproduce the task in novel scenes.

of the total squared curvature of the principal manifold, and
λ ∈ [0,∞) controls the model complexity. Therefore, the
former term of the loss represents the reconstruction error,
while the latter regularizes the model to avoid overfitting.
Note that PME reduces to linear principal component analysis
(PCA) when λ → ∞. The linearity and the dimension d
of the principal manifold determine the subspace type. For
example, a nonlinear principal manifold of dimension d = 1
is a principal curve and corresponds to a curve constraint. We
refer the reader to [6] for the details of the PME algorithm.

C. Via-point Movement Primitive (VMP)
In addition to extracting the keypoint constraints, we are

interested in learning their motions from human demonstration
videos. In imitation learning, motions are often represented
by movement primitives. Here, we use via-point movement
primitives (VMPs) [13]. A VMP combines a linear elementary
trajectory hvmp with a nonlinear shape modulation fvmp, so that

y(x) = hvmp(x) + fvmp(x) = g + x(y0 − g) +ψ(x)Tw,

where x is the canonical variable decreasing linearly from 1 to
0, y and y0 are current and start positions, and g is the target
position. The shape modulation term is defined as a linear re-
gression model based on Nk squared exponential (SE) kernels
ψi(x) = exp(−hi(x− ci)

2), i ∈ [1, Nk], where hi, ci are pre-
defined constants. Similarly to probabilistic movement primi-
tives (ProMP) [37], VMPs assume that the weight parameter
w ∼ N (µw,Σw) follows a Gaussian distribution, and thus
can be learned via maximum likelihood estimation (MLE).
VMPs provide enhanced extrapolation capability compared to
ProMP, as they handle via-points (including start and target
positions) adaptation to points that lie out of the demonstrated
distributions. In this paper, we leverage VMPs to learn the
demonstrated motion styles of each keypoint and to adapt
the corresponding trajectories to via-points identified using
the dense correspondence function fc of DON. In contrast to
control policies based on RL (e.g., [16]) or on visual servoing
(e.g., [12]), VMP-based control policies endow K-VIL with
flexible temporal scaling and reliable via-point adaptation.

IV. KEYPOINT-BASED VISUAL IMITATION LEARNING

In this section, we present the proposed K-VIL approach.
Given N demonstration videos V = {Vn}Nn=1 of a task in D-

dimensional task space, where D ∈ {2, 3}, K-VIL first prepro-
cesses the RGB-D videos and generates the data required for
learning the task. This includes densely sampled candidate
points, their descriptors and trajectories, the spatial properties
and roles of the objects, as well as all potential local frames
(see Section IV-A). A sparse set of keypoints and their geo-
metric constraints are then estimated via principal constraint
estimation (PCE). As detailed in Section IV-B, our proposed
PCE first extracts a set of keypoints and their geometric
constraints by leveraging PME algorithms. These algorithms
rely on observed distances, as well as on the demonstration
variability when several demonstrations are provided. For the
cases where the resulting set contains redundant selections of
keypoints, our PCE then leverages Hierarchical Agglomerative
Clustering (HAC) to resolve this redundancy and obtain a final
set P of sparse keypoints. As explained in Section IV-C, P is
then used to extract the task representation consisting of a set
of keypoints defined by visual descriptors D = {dl}Ll=1, their
associated geometric constraints C = {Cl}Ll=1 and the weights
of the via-point movement primitives Ω = {wl}Ll=1, which
are then exploited to reproduce the keypoint motions. The
extracted task representation is finally used by the keypoint-
based admittance controller (KAC) presented in Section V to
reproduce the demonstrated skill on the robot. The proposed
K-VIL approach is shown in Fig. 2, and its different steps are
detailed next. The main notations are listed in Table I.

A. Preprocessing

As previously mentioned, K-VIL first preprocesses the
RGB-D videos V provided as demonstrations. This is achieved
via the following five steps, also depicted in Fig. 2.

1) Sampling of candidates: First, we query the list of
objects categories O = {Oi}Ii=1 involved in the task by feeding
the Mask R-CNN model with an image randomly sampled
from V. From the visible region of each object Oi, Pi candidate
points are then densely and uniformly sampled and form a set
Pi. Each candidate point is a potential keypoint or a potential
origin of a local frame, and may later be selected as such by
K-VIL. Note that we here assume that all relevant points are
located in the region on the object surface that is always visible
to the imitator (see Fig. 3a). We denote the set of all candidate
points from all objects as Pc =

⋃I
i=1 Pi. Their corresponding



IEEE TRANSACTIONS ON ROBOTICS, PREPRINT VERSION, JULY 2023 5

Notation Meaning Notation Meaning

C geometric constraint ξ1, ξ2 lower and upper thresholds of spatial variability
d the intrinsic dimension of a principal manifold λ the regularization factor of PME
D, D̄ the dimension of the task space, descriptor space κf the curvature of the principal manifold
g1, g2 force scaling parameters d the descriptor vector of a keypoint / candidate
H the total number of candidate points f a force vector
I the number of objects hc the Coriolis and gravitational force in task space
L the number of constraints k, k̇ the position and velocity vector of a keypoint
N the number of demonstrations p a position vector of a point
P the number of points sampled on an object w,Σw a weights vector of the VMP and its covariance
Q the number of neighboring points µw the mean of w
C the set of constraints ν the explained variance
D the set of descriptors η the spatial variability
F a local frame K diagonal stiffness, damping and inertia matrices
θ̂F the configuration of a canonical local frame S the canonical shape
Θ̂F the set of canonical local frame configurations τ a trajectory
M a manifold σ(·) the density force on the d-dimensional manifold
O,O an object category, the set of objects ∇σ(·) the density field
P the set of keypoints / candidate points fc(·, ·) the correspondence function
γ,R the role of the object, the set of object roles f(·) the projection index of a principal manifold
S the set of canonical shapes of all objects πd(·) the reconstruction function of a principal manifold
V the set of demonstration videos ψ(·) the squared exponential (SE) kernels in VMP
φ,Φ the spatial scale, the set of spatial scales ψi(·) the squared exponential kernel

TABLE I: Summary of K-VIL’s notations.

(a) Visible region of a tissue box (b) Local frames

Fig. 3: (a) Illustration of the visible region of a tissue box. (b)
Example of local frame matching on two cups. The canonical
shape of the cup category (top) is defined on a white cup by
the positions of its candidate points (•). The correspondence
points (•) of the canonical shape are detected on a yellow
cup (bottom). A canonical local frame F̂ is parametrized by
Q = 50 neighboring candidates (×). These candidates are then
used to find the same local frame F on the yellow cup.

deep visual feature descriptors are derived from DON [5] as
Dc = {dh}Hh=1 with dh ∈ R3 and H = |Pc| the cardinality of Pc.

2) Trajectories of candidate points: We extract the task
space trajectory of all candidate points from the videos using
the DON-based correspondence function fc(·, ·) (see Sec-
tion III-A), which finds the correspondence pixel of the can-
didates and maps them to 3D coordinates in the camera local
frame. The obtained trajectories are then smoothed and nor-
malized in time with T timesteps. We obtain a set T = {τh}Hh=1

of trajectories of all candidates, where τh ∈ RN×T×D denotes
the trajectory of the hth candidate point. These trajectories are
used in the remaining preprocessing steps and in Section IV-B
to extract keypoints and geometric constraints.

3) Object properties: We define the canonical shape
Si ∈ RPi×D of each object category Oi as the positions of
all candidates on the object at the first time step of the first
demonstration. This notion of canonical shape is illustrated for
a cup in Fig. 3b. Moreover, we define the spatial scale φi ∈ R

as the maximum distance between each pair of candidates on
the canonical shape, which will be used in Section IV-B2 to
determine object-independent thresholds.

4) Object roles: Geometric constraints do not suffice to
entirely represent a task. For example, one of the constraints
of a pouring task is the kettle-cup alignment, which could be
achieved by moving the cup toward a static kettle. Instead,
pouring requires a motion of the kettle. K-VIL addresses
this issue by considering the role of the objects for the task
at hand. Namely, we detect object motion saliency similarly
to [29] to determine the role of the objects R = {γi}Ii=1, where
γi ∈ {master, slave}. The master Om is the object with the
lowest average variance of candidates’ trajectory, while other
objects are slaves Os. K-VIL accounts for the objects’ roles
by constructing local frames only on the master and extracting
keypoints only on the slaves. Therefore, we split the set Pc

of all candidates by the object roles to Pm and Ps, denoting
the set of candidates on master and slave objects respectively.
Similarly, Dc is splitted to Dm and Ds.

5) Local frame detection: As previously mentioned, K-VIL
aims at representing the demonstrated task from an object-
centric perspective. This is achieved by defining local frames
on the master object. To do so, we initially define one canon-
ical local frame F̂j equal to identity for each candidate point
j ∈ Pm of the master canonical shape (see Fig. 3b-top). Each
local frame F̂j is assigned the Q closest candidates to j, whose
positions in F̂j are denoted as the reference values p∗q . In
other words, F̂j is parameterized by ϑ̂F̂j

= {{dq}Qq=1, {p∗q}
Q
q=1},

where dq are the descriptors of the Q neighboring candidates.
These neighboring candidates are then used to detect the same
local frame on another instance of the same object category at
a different time t (see Fig. 3b-bottom). Namely, the local frame
Fj is detected by minimizing the mean squared displacement
of the observed coordinates {pq(t)}Qq=1 of the neighboring
candidates at time t with their reference values {p∗q}

Q
q=1, i.e.,

Fj(t) = argminF
∑Q

q=1

∥∥p∗q − pq(t)∥∥2 .
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(a) p2p (b) p2l (c) p2P (d) p2c (e) p2S

Fig. 4: Five types of geometric constraints. The constraints are obtained from candidate points (•) from N demonstrations. The
density function σ(x),x ∈ Rd is estimated from the projections (•) of the candidate positions on the d-dimensional principal
manifold. We also depict the mean pm (•), the spatial variability ( , ) on the principal manifold along the principal
components, the stress vector s ( ), and examples of extrapolation of the keypoints (×) on the manifolds.

The set of local frames on the master object is denoted as
Θ̂F = {ϑ̂Fj : j ∈ Pm}.

In summary, the preprocessed data for all objects contain the
sets Pm and Ps of the candidate points on master and slave

objects, respectively, their corresponding descriptors Dm,Ds

and trajectories T, the set S = {Si}Ii=1 of the object canonical
shapes, the set Φ = {φi}Ii=1 of the object spatial scales, the set
R of the object roles, and the set Θ̂F of all local frames.

B. Principal Constraints Estimation (PCE)

Given the preprocessed data, our goal is to jointly extract
a set P of keypoints and a set C = {Cl}Ll=1 of geometric
constraints. As shown in Fig. 4, we consider five basic types
of geometric constraints for keypoints in a 3D Cartesian space,
namely point-to-point (p2p), point-to-line (p2l), point-to-plane
(p2P), point-to-curve (p2c) and point-to-surface (p2S). The
p2p, p2l, and p2P constraints are linear and can therefore be
estimated by analyzing the variance of the keypoint positions
in multiple demonstrations using PCA [38]. In contrast, p2c
and p2S are nonlinear geometric constraints, which we esti-
mate with the iterative PME (see Section III-B). Note that
more complex constraints such as colinear, coplanar, parallel
and perpendicular result from combinations of our five basic
types of constraints. To ensure that the constraints are reli-
ably estimated, the criterion of the proposed PCE is adapted
to the number of demonstrations. Specifically, the single-
demonstration case (i.e., one-shot IL) is considered a special
case as it does not provide sufficient information to learn gen-
eralizable skills. Therefore, we propose heuristically-designed
distance-based criteria (Section IV-B1). In contrast, when
several demonstrations are available (i.e., few-shot IL), the
keypoints and geometric constraints are learned based on the
variability of the demonstrations (Sections IV-B2 and IV-B3).
Moreover, nonlinear constraints are considered only if enough
demonstrations are available.

1) Distance criteria for a single demonstration: A single
demonstration (N = 1) does not provide examples of variations
in the demonstrated task, and thus prevents the learning of
generalizable skills. Therefore, in this case, we learn a set
of constraints that fully determines the pose of the objects.
To do so, we assume that the objects are rigid and extract
3 keypoints for each slave object in order to fully constrain
their position in a 3-D space. Note that K-VIL can also be
applied to 2-D cases, where 2 keypoints are sufficient to

determine the pose of an object. We map the trajectories of
all candidates on the slave objects into each of the canonical
local frames Fj(t) on the master object at time step t, where
j ∈ Pm. Therefore, all demonstrations obtained from arbitrary
viewpoints are aligned in a common viewpoint defined by the
local frame Fj(t) (see Section VI-B2). Then, τ̃ k

j (t) ∈ RN×D

with k ∈ Ps represents the positions of the kth candidate point
in all demonstrations viewed from the jth common viewpoint
at time step t, we use this variable to denote the candidate
positions in the remaining of the paper. We observed that, for
a variety of daily manipulation tasks, the closest point k1 on
the slave object to the master object is often crucial to respect
contact or avoid a collision, whereas the furthest point k2, in
combination with k1, controls the pose of the object. Motivated
by these heuristics, we propose the following procedure for
each slave object. First, we choose the local frame F∗(t) from
the canonical local frames as the closest on average to all
candidates on the slave objects. The two keypoints k1, k2 on
the slave object then correspond to the closest and farthest
candidates from the selected local frame F∗(t). For a 3-D
task space, we select an additional keypoint k3 as the farthest
candidate from both k1 and k2. To fully determine the pose
of the slave object, the three keypoints are subject to linear
p2p constraints. For each slave object, we finally obtain a set
Pd = {kl}Dl=1 of keypoints and the corresponding geometric
constraints C = {Cl}Dl=1, where Cl = {Mpoint(kl), t, θF∗(t), p2p}
defines a p2p constraint on a 0-dimensional principal manifold
Mpoint on point kl at time t in the local frame given by ϑF∗ .

2) Variance criteria for linear constraints: When several
demonstrations (N > 1) are available, we leverage their vari-
ability to estimate linear constraints beyond p2p. To do so,
we obtain the candidate positions τ̃ k

j (t) in the canonical local
frames Fj(t) at time t as described in Section IV-B1 and
compute the explained variance νk

j (t) = VPCA[τ̃
k
j (t)] ∈ RD of

each candidate using PCA. The spatial variability ηk
j (t) is

then defined as ηk
j (t) =

(
νk
j (t)

)1/2
/φ̃i, with φ̃i the spatial scale

of the slave object Oi to which the kth candidate belongs. In
contrast to the explained variance, spatial variability removes
dependencies on the object size. This allows us to empirically
define two object-agnostic lower and upper thresholds ξ1, ξ2 to
identify appropriate linear geometric constraints based on the
computed spatial variability. Namely, the constraints of each
candidate k are determined by the following three conditions:
(i) ηkj,1(t) < ξ1 implies a low spatial variability in the first
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0 t−∆t1 t T −∆t2 T

(a) Time clustering

k1 : p2p

k2 : p2l

(b) Position clustering

F∗

(c) Equivalent local frames F

F∗
k1

k2

(d) Insertion

Fig. 5: Hierarchical agglomerative clustering for inserting a stick into a paper roll (see also Section VI for the task description).
(a) The selected candidates are first clustered in time ( ) to identify the adjacent timesteps. (b) The candidates (×) in each
time cluster (e.g., here in the last time cluster [T −∆t2, T ]) are then clustered based on their positions in the canonical shape
( ) of the stick for each constraint (here p2p and p2l). For each position cluster, the keypoint ( ) with the lowest variability
is finally selected. (c) Since the paper roll has no shape variation, i.e., all canonical local frames are equivalent, the closest
frame F∗ to the selected keypoints is selected. (d) Final task representation (see also Fig. 13).

components, as well as across all other dimensions since all the
components of the spatial variability are ranked in decreasing
order, i.e., ηkj,e > ηkj,e+1, where e = {1, 2}. This also means
that the position of the candidate k remains close to a fixed
point Mpoint across all demonstrations. Therefore, k is subject
to a p2p constraint; (ii) ηkj,2(t) < ξ1 and ηkj,1(t) > ξ2 imply
that k is constrained on a line Mline along the first component,
i.e., k is subject to p2l constraint; (iii) Similarly, ηkj,3(t) < ξ1
and ηkj,2(t) > ξ2 indicate that k is constrained on a plane
Mplane going through the first two components, i.e., k is subject
to a p2P constraint. Any spatial variability ηk

j (t) satisfying
the above conditions indicates the joint selection of the kth

candidate, the jth local frame and tth time step. All candidates
selected as such form a set Pl of keypoints subject to linear
geometric constraints. Note that, due to the fact that two
distinct points define a line and three non-collinear points
define a plane, we learn p2l constraints when N > 2 and
of p2P constraints when N > 3.

3) Variance criteria for nonlinear constraints: The lin-
ear constraints may not suffice to represent a given task
accurately despite them being easily estimated from a few
demonstrations. For instance, the pouring task of Fig. 1c
requires a point-to-curve constraint. Therefore, we additionally
estimate nonlinear (p2c and p2S) constraints with PME. In the
following, a set Ps of all candidate points on slave objects that
do not satisfy any linear constraints are considered as potential
candidates for nonlinear constraints. In our case, we replace
the random D-dimensional vector x in (1) with the candidate
point τ̃ k

j (t) on the demonstrated trajectory τ̃ k
j at time step t,

so that the PME loss in Section III-B becomes

L(f, πd) = E
∥∥τ̃ k

j (t)− f(πd(τ̃
k
j (t)))

∥∥2 + λ∥κf∥2, k ∈ Ps.

After obtaining πd from PME, we compute the projections
of candidates onto the manifold, i.e., τ̂ k

j (t) = πd(τ̃
k
j (t)), where

τ̂ k
j (t) ∈ RN×d. Then, analogously to Section IV-B2, we define

the explained variance νkj,∥(t) in the tangential direction of
the principal manifold as the variance of the projections, i.e.,
νkj,∥(t) = V[∥τ̂ k

j (t)∥] ∈ R. The explained variance νkj,⊥(t) in the
orthogonal direction corresponds to the variance of the length
of the stress vectors s = τ̃ k

j (t)− f(τ̂ k
j (t)), i.e., νkj,⊥(t) = V[∥s∥].

Similar to the linear case, the spatial variability is defined

as ηkj,z(t) =
√
νkj,z(t)/φ̃i, z ∈ {⊥, ∥}. The set Pnl of keypoints

subject to nonlinear geometric constraints is then selected as

Pnl =
{
k | νkj,⊥(t) < ξ1, ν

k
j,∥(t) > ξ2, k ∈ Ps

}
.

The type of the geometric constraints is determined by the
intrinsic dimension d of the learned principal manifold, i.e.,
d = 1 and d = 2 indicate a p2c and a p2S constraint,
respectively. Notice that, in order to guarantee their reliable
estimation, nonlinear constraints are considered only when
enough demonstrations (N > 10) are available.

4) Hierarchical Agglomerative Clustering (HAC): As ex-
plained in Section IV-B2, each selected candidate point k
in the resulting sets of linear and nonlinear constraints Pl

and Pnl corresponds to jointly selected time step t and local
frame j. Redundancy may occur due to adjacent timesteps,
neighboring keypoints, or equivalent local frames. To resolve
this redundancy, we first cluster the keypoints in time us-
ing Hierarchical Agglomerative Clustering (HAC) to identify
adjacent timesteps. Fig. 5 shows an example of HAC for
an insertion task. We then use HAC again to cluster the
keypoints within each time cluster based on their positions
in the canonical shape of the slave object, thus identifying
neighboring keypoints. The redundancy is finally resolved
by keeping only the keypoint with the lowest variability to
represent each position cluster. This keypoint is selected for
its robustness against sensor and correspondence detection
noise. If a selected keypoint at a selected time step is subject
to multiple constraints represented in different local frames,
we select the closest local frame to the keypoint on average.
In summary, the proposed PCE retrieves a sparse set of L
keypoints as the union P = Pd ∪ Pl ∪ Pnl and their associated
(non)linear constraints C = {Cl}Ll=1, which are exploited to
represent the task as explained next.

C. Extraction of K-VIL’s complete task representation

While the keypoints and associated constraints estimated in
Section IV-B allow us to understand the demonstrated task, a
control policy is additionally required for reproducing the task.
Here, we propose to model the observed keypoints trajectories
as VMPs [13]. For our purposes, we train the VMPs from
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an object-centric perspective and according to the constraints
estimated via PCE. Specifically, for each keypoint subject to a
p2p constraint, a VMP is trained on its observed trajectory
τ̃l retrieved in the corresponding local frame j from time
step 1 to the extracted time step t, i.e., τ̃l = (τ k

j (1) . . . τ
k
j (t))

T,
where k and l indicates that the kth candidate point in the
dense set Ps is selected as the lth keypoint in the sparse
set P. Note that, for the case of intrinsic dimension d > 0
(i.e., p2l, p2P, p2c, p2S constraints), the constraint is fulfilled
if and only if the corresponding keypoint is placed at the time
step t on the principal manifold that defines the constraint.
Although the location of the keypoint on the manifold does
not affect the fulfillment of the constraints, it may influence
the similarity between the demonstrated object poses and
those obtained in the reproduction. Therefore, we propose to
decompose the control of such keypoint by considering the
orthogonal and the tangential direction with respect to the
corresponding principal manifold independently (see Fig. 6).
The keypoint motion along the orthogonal direction represents
the demonstrated style of approaching the principal manifold
and guarantees the fulfillment of the constraints, while the
motion along the tangential direction realizes the extrapolation
of the keypoint target position and controls the similarity of the
object pose between the demonstrations and the reproduction.
Due to potential large shape variations in the objects used
when reproducing the task, the final keypoints’ target positions
on the principal manifold may not align with the demonstrated
targets. Therefore, we only train the VMP on the keypoint
trajectories projected onto the orthogonal direction, i.e., τ̃l,⊥.
An example of the projected and reproduced trajectories
obtained using the learned VMP in the case of a p2c constraint
is shown in Fig. 7. At each time step during reproduction,
we uncover the 3D target position of a keypoint by adding an
offset generated by the VMP in the orthogonal direction to the
orthogonal projection of the current keypoint onto the principal
manifold (see k∗2 in Fig. 8 and Fig. 9). Therefore, by setting
the VMP goal to 0, the keypoints fulfill the corresponding
geometric constraints at the end of their trajectory. The motion
of the keypoints along the orthogonal and tangential directions
is controlled via the keypoint-based admittance controller
presented in the next section. In summary, K-VIL’s final task
representation is composed of a set of keypoints represented by
their descriptors D = {dl}Ll=1, their associated geometric con-
straints C = {Cl}Ll=1, and their associated movement primitives
encoded via the set of weights Ω = {wl}Ll=1.

V. KEYPOINT-BASED ADMITTANCE CONTROLLER

After learning the representation of a given task from
demonstrations, we aim at reproducing this task with a robot.
This means that the robot should be able to interact with the
objects such that their keypoints follow the learned constrained
trajectories. This requires filling the gap between K-VIL’s task
representation and real-time robot controllers. To this end,
we propose a Keypoint-based Admittance Controller (KAC),
which (i) handles variable numbers of extracted keypoints for
different tasks; (ii) enables the extrapolation of keypoint target
positions on their learned principal manifolds; (iii) resolves

Mline Mplane Mcurve Msurface

Fig. 6: Orthogonal direction ( ) to the principal manifolds.

τ̃l

Mcurve

t = 0
τ̃l,⊥

τl,⊥

Fig. 7: Projected and reproduced trajectories using a VMP
for a p2c constraint. The demonstrated trajectory τ̃l ( ) is
projected at each time step in the orthogonal direction ( ) of
the principal manifold Mcurve. The projected trajectory τ̃l,⊥
( ) is used to train movement primitives, which is then used
to reproduce trajectories, e. g. , τl,⊥ ( ) with a new start
position at 0.1m and goal position at 0m. The arrows ( )
mark the corresponding projected trajectory between the 3D
and 2D plots at two timesteps.

potential interference between different types of geometric
constraints. Note that (ii) and (iii) are required to handle large
object shape variations in the task reproduction.

Specifically, a KAC associates each keypoint in P with a
virtual spring-damper system, whose attractor is computed via
the corresponding VMPs (see Section V-A). As detailed in
Section V-D, the sum of the attraction forces of the spring-
damper systems of all keypoints is then used as the task-space
force command for the robot. This allows the KAC to handle
a varying number of keypoints for different tasks. Regarding
(ii), the extrapolation of keypoint target positions subject to
a p2p constraint is not allowed. For non-p2p constraints,
this is achieved by decomposing the control in orthogonal
and tangential directions of the learned principal manifolds
(see Section IV-C). As a result, the keypoints approach the
principal manifolds using the motion profiles learned from
the projected trajectories in orthogonal directions. The control
force generated by the virtual spring-damper system of each
keypoint remains orthogonal to the principal manifold at each
time step, and the keypoints reach the corresponding geometric
constraints when the execution of the VMP finishes. While
this leads to the extrapolation of keypoint target positions on
the principal manifold, it does not account for the distance
between the demonstrated and extrapolated targets. Therefore,
we propose to balance extrapolation and regulation by esti-
mating the density function of the demonstrated targets on the
principal manifolds, as described in Section V-B. This density
is then used to compute an additional force, i.e., the density
force, that drives each keypoint toward the demonstrated
targets. Finally, we address the interference issue (iii) by
assigning different priorities to different types of geometric
constraints in Section V-C. The different steps of KAC are
detailed next.
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m
1 )

f2f1

Fig. 8: Illustration of the attraction and density forces when
the keypoints k1 and k2 are subject to p2p and p2l constraints,
respectively. Left: The approach force fa of k2 is computed
by the virtual spring-damper system between the attractor k∗2
and k2. The density force fσ is then projected onto the tangent
space of the sphere at k2. The control force of k2 is the
combination of the attraction and the projected density force.
Right: k1 is controlled by the attraction force f1 following the
attractor k∗1 and the VMP ( ) to reach the target kg1 , which
coincides with the demonstrated target km1 . Note that the target
kg2 of k2 does not coincide with km2 due to object shape
variation, i.e., the distance ( ) between k1 and k2 during
reproduction is longer than for the demonstration ( ).

A. Attraction force

Given K-VIL’s task representation and a new image frame
A for the task reproduction, we can identify the keypoints
representing the task. Namely, their positions kl ∈ RD, with
l ∈ [1, L], represented in the root frame Fr of the robot are
obtained using the visual descriptors dl and the DON-based
correspondence function fc(A,dl) (see Section III-A). The
attractor k∗l of the virtual spring-damper system at each time
step is computed for each keypoint by the corresponding
VMPs projected onto Fr. The attraction force generated by
the virtual spring-damper system is then computed as

fa,l = K̄p(k
∗
l − kl) + K̄d(k̇

∗
l − k̇l),

where K̄p, K̄d are diagonal stiffness and damping matrices,
respectively, and k̇k and k̇∗l are the velocity of kl and k∗l ,
respectively. As explained in Section IV-C, in the case of
non-p2p constraints, the VMPs are trained on trajectories
projected in directions that are orthogonal to the principal
manifold. Therefore, the learned VMPs and the attraction
forces enable the reproduction of the demonstrated motion
patterns in the orthogonal direction. This implies that the final
positions of the keypoints can be extrapolated anywhere on
the principal manifolds, e.g., to satisfy object shape variations
and other geometric constraints. However, without considering
the demonstrated targets on the principal manifold, we may
lose important information about successful task execution or
a specific style of execution. We obtain such information using
kernel density estimation and provide additional density forces
driving the keypoints toward the demonstrated targets.

B. Density force

Given a non-p2p constraint, we project the demonstrated
keypoint positions τ̃l(t) at the extracted time step t onto

k2

k1

k∗2

k′2

fa

fσ

fσ

f ′
σ

f2σ(x)

Mplane

M′
plane

TxMs

Ms

k̄
k2

kg2
km2

k1

k∗1
kg1(k

m
1 )

f2

f1

Fig. 9: Illustration of the attraction and density forces when
k2 is subject to a p2P constraint. In contrast to Fig. 8, the
density force fσ is projected onto the intersection line ( ) of
the shifted principal manifold M′

plane and the tangent space.
Legend as in Fig. 8.

the corresponding d-dimensional principal manifold using the
learned projection index πd, i.e., k̂ml = πd(τ̃l(t)) ∈ RN×d. Since
at time step t, the lth keypoint is supposed to fulfill the
geometric constraints, we interpret k̂ml as its demonstrated
target positions on the manifold. We then estimate the density
function σ(x) of the keypoint target positions from k̂ml using
kernel density estimation [39] with SE kernels. Examples
of estimated density functions for p2l, p2P, p2c, and p2S
constraints are depicted in Figs. 4b to 4e. This density function
indicates the probability of a keypoint target position on
the corresponding principal manifold given the demonstrated
target positions. In other words, the density function indicates
the confidence level of K-VIL when extrapolating the keypoint
target positions to new locations on the principal manifold,
which may occur due to object shape variations in the repro-
duction. Examples of extrapolated keypoint target positions
(×) during reproduction are depicted in Figs. 4b to 4e. Notice
that the target position in Fig. 4b-left has a lower probability
(i.e., a lower extrapolation confidence) than the one in Fig. 4b-
right due to its increased distance with the demonstrated target
positions. This illustrates that the control of such keypoints
must not only fulfill the geometric constraints, but also be as
close as possible to the demonstrated targets on the constraints.
Therefore, in addition to the attraction force fa,l that guar-
antees the fulfillment of the geometric constraint, we define
a density force fσ,l to drive the keypoints into regions with
higher probability. To do so, we first define the driving force
fσ,1 computed from the density field ∇σ(x) as

fσ,1 = g1 · f(∇σ(x)). (2)

For the regions where fσ,1 is too small to drive the keypoints,
we then define a minimal driving force fσ,2 as

fσ,2 = g2 · f( km−k′
l

∥km−k′
l∥2

), (3)

where k′l = πd(kl) ∈ Rd is the projection of the keypoint onto
the principal manifold, f(·) is the reconstruction function (see
Section IV-B3), g1 and g2 are the force scaling parameters.
Note that fσ,2 points directly to the mean of the demonstrated
targets k̂ml on the principal manifold, i.e., km = avg(k̂ml ). Then
the density force is the maximum of fσ,1 and fσ,2, i.e.,

fσ,l = argmaxf ∥f∥2, f ∈ {fσ,1,fσ,2} (4)
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Examples of such density forces fσ in the case of p2l and p2P
constraints are shown in Figs. 8 and 9.

C. Priority

In the case of large object shape variations, controlling a p2l
constraint with the same priority as a p2p constraint may lead
to a violation of the latter. To reduce such interference, we
propose to set a higher priority to p2p constraints compared
to the other constraint types. For the sake of clarity, we use
Figs. 8 and 9 to explain this concept, where Fig. 8 shows
the case of two constraints, p2p for k1 and p2l for k2, while
k2 is subject to a p2P constraint in Fig. 9. In both cases,
we construct a sphere centered at k1 with radius ∥k2 − k1∥
and define the tangent space of the sphere at k2 as the plane
formed by all the lines tangent to the sphere at k2. For
clarity, Figs. 8 and 9 also depicts the corresponding principal
manifolds Mline,Mplane shifted in parallel to go through k2
as M′

line,M′
plane. Assuming solid connections ( ) between k1

and k2, large density forces fσ generated for k2 will also drag
k1 along the same direction. This may lead to the violation
of the p2p constraint of k1, and cause collision if k1 it is
close to the master object. To reduce such interference when
the principal manifold is a line Mline, we project fσ onto the
tangent space TxMs of the sphere Ms, so that the motion of
k1 remains unaffected by the projected density force f ′

σ (see
Fig. 8). Similarly, when a principal manifold is a plane (Fig. 9),
we project fσ onto the intersection between the tangent space
and the shifted principal plane M′

plane. This also holds for
the nonlinear constraints (p2c and p2S), for which a linear
approximation is considered at each time step.

In summary, on the one hand, the density force allows the
reproduced task to be similar to the demonstrations on the
principal manifold. On the other hand, the priority mecha-
nism reduces the interference of the density force with p2p
constraints, while maintaining the extrapolation capability of
K-VIL. Overall, the decomposition of the control force into
attraction force (Section V-A) and projected density force
(Sections V-B and V-C) is key to balancing the similarity of
the reproduced task to the demonstration and the extrapolation
capability. In practice, the stiffness and damping gains of
the virtual spring-damper systems are empirically tuned for
good tracking accuracy and control stability. Notice that one-
shot IL is considered as a special case (see Section IV-B1).
This is due to the fact that the learned task representation is
composed of 3 keypoints subject to p2p constraints. In this
case, no density force is needed, and the constraint priorities
are defined as Pri1 > Pri2 > Pri3, since k1 usually represents
the contact point of two objects. Therefore, to ensure a higher
control precision of k1, we set the stiffness gains of the
three keypoints to K̄p,1= 5K̄p,2= 10K̄p,3 and the respective
damping gains to K̄d,l = 2K̄

1/2
p,l , where l ∈ [1, 3], which ensure

a critically damped behavior for control stability.

D. Admittance control

The goal of the KAC is to compute the control command of
the robot arm from the attraction forces fa and the projected
density forces f ′

σ of all keypoints. To do so, we first compute

(a)

1 2 3 4 5 6 7 8 9 10

(b)

1 2 3 4 5 6 7 8

(c)

(d)

1 2 3 4 5

(e) (f)

1 2 3 4 5 6 7 8 910

(g)1 2 3

1 2 3 4

Fig. 10: Objects used in our paper include (a) tissue boxes,
(b) teacups, (c) a rack and a hat, (d) kettles, (e) a paper roll,
(f) sticks, (g) dustpans and brushes. Note that the rack can be
assembled with stick #6-10 to have multiple shape variations.

the control force of each keypoint as fl = fa,l + f ′
σ,l and define

a virtual tool-center-point (TCP) k̄ =
∑L

l=1 kl/L as the mean
of all keypoint positions (see Fig. 8-right, Fig. 9-right). The
virtual TCP is driven by a virtual force and torque

ff =
∑L

l=1 fl and fτ =
∑L

l=1(kl − k̄)× fl

with × denoting the vector cross product. The total control
force fv = [fT

f ,f
T
τ ]

T is applied to the robot end-effector (i.e.,
the humanoid hand) to calculate the virtual acceleration as

ẍv = K̃p(x0 − xv)− K̃dẋv − K̃mfv,

where x0,xv are the initial and virtual poses of the robot end-
effector, ẋv is its virtual velocity, and K̃m, K̃d, and K̃p are the
inertia, damping and stiffness factors, respectively. The robot
is controlled using a task space inverse dynamics controller,
whose task space control force fm is calculated as

fm =Kp(xv − x) +Kd(ẋv − ẋ) + hc,

where x, ẋ are the current end-effector pose and velocity, Kd,
and Kp are the damping and stiffness factors of the impedance
controller, respectively, and hc represents the Coriolis and
gravitational force in the task space.

VI. EVALUATION

We evaluate our approach in five daily tasks involving
different types of geometric constraints and various categorical
objects (see Fig. 10). Namely, the considered tasks are press
button (PB, Fig. 11), fetch tissue (FT, Fig. 12), insert sticks
into a paper roll (IS, Fig. 13), pour water (PW, Fig. 14), hang
hat on a rack (HH, Fig. 15), clean table with a dustpan and a
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Fig. 11: Press a button on the kettle to open the lid with
variations in hand orientation. The candidate points (colored
points) and the skeleton of hands (colored line segments)
are overlain on the objects at time step T . Different colors
denote different trials. The keypoints kl ( ) are extracted
from different number N of demonstrations in each subfigure.
The demonstrated trajectories ( ), the local frames F , and
the estimated principal manifolds ( ) are also depicted.
Notice that the demonstrations were provided from different
viewpoints, although they are here represented aligned to the
local frame F for a better illustration of the extracted keypoints
and constraints (for viewpoint mismatch, see Fig. 16.)
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(c) p2p: k1

Fig. 12: Fetch tissue with variations in hand orientation.
Legend as in Fig. 11.

brush (CT, Fig. 16). As a prerequisite for our experiments, we
train DON in a self-supervised and task-agnostic manner. The
training dataset was collected with a handheld Azure Kinect
camera moving around objects such as tissue boxes, teacups,
a rack, a hat, kettles, a paper roll, sticks, dustpans and brushes
(see Fig. 10). The collected data was then post-processed via
a 3D reconstruction process using Open3D [40]. We used
MediaPipe to detect 21 keypoints on the human hands and
treat the hands as a special type of object. It is important to
emphasize that K-VIL is not limited to DON and MediaPipe,
but instead can be used with any correspondence detection
model, e.g., NDFs. In all experiments, we sample Pi = 300

(for hands Pi = 21) candidate points on each slave object and
use Q = 50 (for hands Q = 10) neighboring candidates on the
master object as references for local frame detection. We use
20 kernels for the VMPs. The empirical thresholds ξ1, ξ2, and
the controller gains are fine-tuned for each task. A full list of
control parameters is included in the example code.

We first evaluate the ability of K-VIL to extract general-
izable task representations given different number of demon-
strations (see Section VI-B1 and Section VI-B3 for a one-shot
and a few-shot visual imitation learning setup, respectively, as
well as Figs. 11 to 16). We demonstrate how variations in
objects’ pose and shape contribute to the efficient extraction
of generalizable task representations and evaluate the ability
of K-VIL to reproduce the corresponding tasks learned from a
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Fig. 13: Approach the insertion position to insert sticks with
3 length variations into a paper roll. Legend as Fig. 11.

different number of demonstrations. We discuss the problems
that arise when only scarce demonstrations are provided in
Section VI-B4. We then show how they are resolved by
providing more demonstrations and summarize the number of
demonstrations required to learn a generalizable representation
for each task. The proposed KAC is finally evaluated in
terms of the control accuracy, precision, and success rate
in Section VI-C. For more visualizations of the evaluation
results on one/few-shot imitation learning, reproduction of
skills learned from a different number of demonstrations, and
other types of geometric constraints, we refer the interested
reader to the accompanying videos and to the paper website.

A. Evaluation Protocols

For each task, we record a few demonstration videos (RGB-
D) of a human performing the task using an Azure Kinect
mounted on the head of the humanoid robot ARMAR-6 [41].
For tasks involving categorical objects, we distinguish between
the object instances used for training of the vision models
(the DON and Mask R-CNN models), for the demonstrations,
and for the reproductions. If we only have one instance
of a specific object category, this instance is used for the
training, demonstrations, and reproductions. We define a set
of extraction tasks TE = {PB, FT,PW,HH, IS,CT} for which
we evaluate K-VIL’s ability to extract generalizable task
representations given N ∈ {1, 3, 4, 5, 11} demonstrations,
respectively. For clarity, we only evaluate the representations
of the last time cluster, i.e., the goal configuration of each
task when t = T . We then define a set of reproduction
tasks TR = {Task N : Task ∈ TE}, each of which is
the reproduction of the Task by ARMAR-6 with the task
representation extracted from N demonstrations. In order to
evaluate the reproduction and adaptation of the learned task
representations, e.g., the geometric constraints, in new clut-
tered scenes, the scene is perturbed arbitrarily before each trial
of execution. Specifically, the involved objects and the robot
hands are placed in arbitrarily different locations within the
workspace and the view of the camera. The first image frame
captured by the robot is used to parameterize the task with
K-VIL’s representation. This includes optimizing the local
frames, identifying the keypoints, configuring the geometric
constraints, and generating keypoint motion trajectories using
the learned VMPs. We consider a task learned from N demon-
strations and from a third-person view to be generalizable
when it can be successfully reproduced by the robot with

https://sites.google.com/view/k-vil
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Fig. 14: Pouring task with variations in the shape of cups
and the orientation of the kettle. The principal plane in (b) is
represented by orthogonal vectors Mplane,x ( ) and Mplane,y

( ). Other legends as in Fig. 11.

categorical objects in new cluttered scenes. Next, we describe
the specifications of each considered task in terms of the
collection of demonstrations and successful reproductions by
the robot. Table VIII provides the list of considered tasks.

Press Button (PB): A human demonstrates how to open
the lid of a kettle by pressing the corresponding button with
the tip of the middle finger of either the left or the right hand.
The kettle #5 of Fig. 10d is considered in this task. Both
hands look similar and the demonstrator approaches the button
with different hand poses (e.g., see Fig. 11). To reproduce the
demonstrated human motion by the robot, we design fixed
maps between keypoints of human hands and keypoints on
the robot hand. The reproduction of the PB task is considered
successful if the robot reaches the button with its fingertip
within 5mm to the target (the button) and if the lid is opened
by closing the finger with a small angle.

Fetch Tissue (FT): A human demonstrates how to fetch
tissue from two tissue boxes (#3 and #4 in Fig. 10a) with
different hand poses (see Fig. 12). The tissue boxes #1-3 are
used to train the vision models, whereas #4-10 are used for
reproduction. The reproduction is considered successful if the
robot can successfully grasp the tissue and pull it out of the
boxes with a predefined pulling action. Although the shape
variations between the tissue boxes #3-4 in the demonstrations
are not obvious, box #10 introduces large shape variations for
reproduction.

Insert Stick (IS): The sticks #2-4 in Fig. 10f are used to
train the vision models and to demonstrate the insertion task
by a human (see Fig. 13). Note that we do not insert the
stick into the paper roll, as otherwise the keypoints will be
occluded (we defer tasks with occlusion to future work). No
pose variations are considered in this task. However, shape
variations are introduced via sticks of different lengths and
thicknesses. Moreover, we place the sticks with an initial
tilting of ∼ −30° to 80° in the reproduction, thus extrapo-
lating the demonstration range (∼ 0° to 45°). A successful
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Fig. 15: Hang a hat on a rack. Note that there are only slightly
deformations of the hat in (a)-(c) and relatively more obvious
deformations in (d) (see (e)), while pose variations in the hats
are considered in all cases. The racks in (c) have two shape
variations. Legend as Fig. 11.

reproduction is obtained by placing the lower tip of the stick
right above the hole in the center of the paper roll without
collision with the paper roll during execution (see Fig. 10e).

Pour Water (PW): The vision models for this task are
trained with the teacups #5-8 in Fig. 10b and the kettles #4-5 in
Fig. 10d. A human demonstrates the pouring task several times
with the kettle #5 and teacups #1 and #3. The demonstrations
incorporate teacup shape variations and kettle pose variations
(see Fig. 14). The teacups #1-4 and all the kettles are used in
reproduction. The reproduction of the PW task is successful
if the spout of the kettle aligns above the rim of the teacup
and the kettle is tilted appropriately.

Hang Hat (HH): The rack can be assembled with different
lengths of sticks (#6-10 in Fig. 10f). The racks assembled with
sticks #7-8 are used for training the vision models and for the
demonstrations and #6-10 are used for the reproduction. In
particular, the stick #7 is used in Figs. 15a, 15b and 15d and
the sticks #7-8 are used in Fig. 15c. Successful reproductions
are observed if the rim of the hat is placed on top of the tip
of the stick regardless of the stick length and the initial pose
of the hat.

Clean Table (CT): The dustpans #2-3 and the brushes #3-4
in Fig. 10g are used for training the vision models and for the
demonstrations, while the dustpan #1 and the brushes #1-2 are
used for the reproduction. The CT is successful if the head of
the brush aligns parallel above the edge of the dustpan.

B. Evaluation of K-VIL’s Task Representation

As discussed in Section IV-B, K-VIL’s task representation
can be acquired from one or a few demonstration videos based
on the distance and variance criteria. Therefore, the number of
demonstrations and the variations in object poses and shapes
play an essential role. In this evaluation, we are interested
in the following questions: (i) How do task representations
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learned from a different number of demonstrations affect the
performance of task reproduction? In other words, what are
the limitations of the task representations learned from scarce
demonstrations? (ii) How many demonstrations are required to
learn generalizable task representations? (iii) How do the shape
and pose variations contribute to the successful extraction of
such task representations? We evaluate K-VIL in one-shot
and few shots imitation learning setups in Section VI-B1
and Section VI-B3, respectively. We finally answer the above
questions in Section VI-B4.

1) One-shot Imitation Learning: We first apply K-VIL
to one-shot imitation learning scenarios, where one demon-
stration (N = 1) is provided for each task. As previously
explained, when a single demonstration is provided, K-VIL
learns a task representation based on the distance criteria of
Section IV-B1, resulting in a set of 3 linear p2p constraints.

Task extraction: The insertion task is first learned from
a single demonstration consisting of inserting the stick #4 of
Fig. 10f in a paper roll. In this task, the master object is the pa-
per roll, and the slave object is the stick. As shown in Fig. 13a,
K-VIL extracts 3 keypoints subject to p2p constraints on the
stick. Note that the local frame F and the keypoint k1 are
located near the contact point, and k2 is the farthest point on
the stick from the paper roll (i.e., the master object). Similarly,
in Figs. 11a, 12a, 14a and 15a, local frames are constructed on
the master objects (i.e., the kettle, the tissue box, the teacup,
and the rack, respectively) and 3 p2p constraints are extracted
to fully constrain the pose of the slave objects (i.e., the hand,
the hand, the kettle and the hat, respectively).

Task reproduction: As described in Section V-C, the
priorities of the 3 keypoints are ranked as Pri1 > Pri2 > Pri3.
This respects the fact that k1 is usually the contact point of
two objects, and allows the KAC to reproduce the motion
of k1 more accurately than the motions of k2 and k3. The
first five columns of Table II show examples of reproduction
of the insertion task IS learned from a single demonstration
(task N: IS 1 ), as well as reproductions obtained by removing
the priority from KAC as an ablation study (task O: ISnp 1 ).
For illustration purposes, we display the cases with a short
stick (#10), a long stick (#6, longer than the sticks used in
the demonstration), and an extra long stick (the concatenation
of #8 and #9). The largest length difference is ∼300mm.
The images in the first row show the ability of K-VIL to
correctly adapt the task representations of an insertion task in
new scenes. This includes constructing the local frame F on
the master object (the paper roll) and the three p2p geometric
constraints in F , identifying the keypoints on the slave object
(the sticks) and generating the VMP trajectories. It is important
to notice that, without priority in the KAC, the keypoint k1 in
ISnp 1 -short is not able to reach its target as accurately as in
IS 1 -short. Moreover, as opposed to ISnp 1 -long, IS 1 -long
is successfully executed without collision between the stick
and the paper roll, thanks to the priority in KAC. However,
both IS 1 -ext. long and ISnp 1 -ext. long result in a collision
between the stick and the paper roll during execution due to the
extended length of the stick compared to the demonstrations.
The collision is more acute without priority in the KAC.

Moreover, one-shot VIL may generally fail when the learned

(a) (b) (c)

Fc
Fb

Fa

dustpansbrushes

(d) (e)

(f)
k1
k2

(g) (h)

Fig. 16: K-VIL handles viewpoint mismatch in the three
demonstrations (a)-(c) by aligning the corresponding local
frames on the master object dustpan in (d), which results
in an aligned viewpoint in (e). Two p2l constraints and
their probability density functions on the principal lines are
visualized. The robot reproduces the CT 3 task from a new
viewpoint with a novel brush and dustpan (f), with the key-
points ( k1, k2) detected on the brush hair (g). The local
frame on the dustpan is determined by the Q = 50 neighboring
points as shown in (g). (f) and (h) depict the keypoints and
their movement primitives in 2D and 3D respectively.

geometric constraints are not reachable. This problem is exac-
erbated when demonstrations are provided from a third-person
view. For example, consider Fig. 11a and Fig. 12a, that show
the task representations learned from a single third-person-
view demonstration of the PB and FT task, respectively. The
reproductions of such task representations fail (see tasks A:
PB 1 and D: FT 1 in Table III) due to unreachable target
keypoint positions. This also indicates that task representations
learned from one demonstration are not necessarily generaliz-
able enough for motion reproduction.

Despite a few failures in the execution, K-VIL’s task repre-
sentations are reliably adapted to new scenes. In other words,
K-VIL is able to successfully identify the keypoint positions,
locate their targets, and generate the corresponding VMPs
by learning their representation thanks to the combination
of the proposed task representation with dense visual cor-
respondence models. It is worth noting that this is already
achieved by learning the corresponding representation from a
single demonstration. Moreover, thanks to the prioritized KAC,
K-VIL can handle shape variations in categorical objects via
the extrapolation of the keypoint target positions. However,
it cannot cope with very large shape variations. In other
words, providing a single demonstration limits the learning of
embodiment-independent generalizable task representations.
Therefore, we then evaluate the performance of K-VIL in the
case where several demonstrations are available.

2) Handling viewpoint mismatch: When demonstration
videos are collected from different viewpoints, e.g., in the
CT 3 task in Fig. 16, we first align the demonstrations into
a common viewpoint by projecting the motions of the slave
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Tasks N: IS 1 O: ISnp 1 N: IS 1 N: IS 1 O: ISnp 1 P: IS 3 Q: ISnp 3 P: IS 3 Q: ISnp 3

stick short short long ext. long ext. long short short ext. long ext. long

T
R

3×p2p p2p, p2l

F F F F F F F F F

R
ep

ro
du

ct
io

n

TABLE II: Reproduction of the insertion tasks with/without priorities. Given an image of the scene before execution, K-VIL’s
task representation (TR) of each task is used to identify the local frame F , the keypoints ( k1, k2, k3), their targets
positions ( kg1 , kg2 , kg3), their movement primitives ( , , ), and the line principal manifold ( ) in tasks P and Q.
The short, long and extremely long sticks correspond to sticks #10, #6, and the concatenation of #8 and #9. Task names and
statistics are listed in Table VIII. The subscript np indicates that the task was reproduced without priority in KAC. The figures
in each column are from one of the 20 trials for each task.

Tasks A: PB 1 B: PB 3 C: PB 4 D: FT 1 E: FT 3 F: FT 4

T
R

3×p2p p2p, p2l p2p 3×p2p p2p, p2l p2p

F F F F F F

R
ep

ro
du

ct
io

n

TABLE III: Reproductions of tasks PB and FT learned from a third-person view without enough demonstrations lead to failure,
due to unreachable geometric constraints, see tasks A, B, D, E. Generalizable task representations of PB and FT learned from
enough demonstrations can be successfully executed in C and F. Legend as in Table II.

objects (e.g., the brush) into each candidate local frame F̂j on
the master object (e.g. the dustpan) (see also Section IV-B1).
In all |Pm| aligned common viewpoints, we apply PCE to
extract the task representations. This solves the viewpoint
mismatch problem of Fig. 16d. The geometric constraints
become obvious in the aligned viewpoint as shown in Fig. 16e.
K-VIL extracts two p2l constraints for the CT 3 task, the
combination of which forms a parallel constraint. The esti-
mated probability density functions of the two keypoints on
the corresponding principal lines ensure their target positions
to be above the edge of the dustpan. It is important to
note that, not only the demonstrations can be recorded from
different viewpoints, but also the reproduction of the learned
skill by the robot can be performed from a viewpoint that
is significantly different from any demonstration, as shown

in Figs. 16f and 16h. For the seek of clarity, we discuss the
results of K-VIL in the aligned viewpoints in the remaining
evaluations, although the demonstrations and reproductions
happen in different viewpoints as discussed for the CT 3 task.

3) Updating Constraints Incrementally: Here, we apply
K-VIL to few-shot imitation learning scenarios where addi-
tional demonstrations are incrementally provided for each task.
In this case, K-VIL is trained based on the variance criteria to
learn more generalizable task representations based on various
linear and non-linear constraints (see Sections IV-B2- IV-B3).
Figs. 11 to 15 show the task representations of each task in
TE learned by K-VIL from several demonstrations.

Task extraction and reproduction of insertion tasks IS.
Providing several demonstrations allows us to consider
variations in the demonstrated task, and thus to extract
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Tasks G: PW 1 H: PW 3 I: PW 4 J: PW 11
T

R

3×p2p p2p, p2l p2p, p2P p2p, p2c

F F F F F F F F F

R
ep

ro
du

ct
io

n

TABLE IV: Reproductions of tasks PW learned from different number of demonstrations. For task H, I and J, we mark the
learned principal manifold Mline ( ), Mplane ( , ) and Mcurve ( ), respectively. Additionally, the point ( ) indicates
the mean of the demonstrated targets of keypoint k2 on the corresponding principal manifolds. Other legends as in Table II.

Tasks A: HH 1 B: HH 1 C: HH 3 D: HH 3 E: HH 3 F: HH 3

T
R

3×p2p p2p

F F F F F F

R
ep

ro
du

ct
io

n

TABLE V: Reproductions of tasks HH. Legend as in Table II.

prioritized geometric constraints. For example, the keypoint
k1 in Fig. 13b is the most invariant point on the stick across
all demonstrations, while k2 is subject to a p2l constraint.
Note that this contrasts with Fig. 13a, where all keypoints
were subject to p2p constraints. With such task representation,
KAC successfully handles all stick lengths by fulfilling the
p2p and p2l constraints, as shown in Table II for IS 3 (P).
Despite a drop in accuracy and precision (see Section VI-C,
Table VIII), the KAC without priority still leads to successful
task completion in this case (see ISnp 3 (Q) in Table II).
Overall, the extrapolation abilities of K-VIL are significantly
increased by providing 3 demonstrations instead of 1. Note
that, due to the nature of the p2l constraint and the priority
mechanism in KAC, sticks of arbitrary length can be handled.
As the line manifold goes through both k1 and k2, K-VIL
implicitly learns a colinear constraint for the two keypoints.

Task extraction and reproduction of PB and FT tasks.
For these two tasks, 3 demonstrations are not sufficient to
completely represent the task, and K-VIL may coincidentally
extract a superfluous p2l constraint (see Mline in Fig. 11b and
Fig. 12b). This forces the robot to place its hand similarly as
demonstrated by the human. However, due to the third-person
view adopted for the demonstration, this cannot be achieved by
the robot, therefore resulting in failed executions of the tasks

PB 3 and FT 3 as for PB 1 and FT 1 (see Table III). The
unnecessary p2l constraints are removed by providing K-VIL
with an additional demonstration (see Figs. 11c and 12c),
allowing the tasks to be successfully reproduced (see PB 4

and FT 4 in Table III).

Task extraction and reproduction of PW tasks. Similarly
to PB and FT tasks, K-VIL’s representation obtained from
3 demonstrations for PW results in superfluous p2p and p2l
constraints. Although the task may still be executed by the
robot (see PW 3 in the second column of Table IV), the
superfluous constraints may lead to collisions between the
kettle and the environment in other cases. For example, in the
third column in Table IV), with some specific initial poses
of the kettle, the generated VMPs and the line constraints
lead to rotation of the kettle in reversed direction during the
execution, thus causing reproduction failures. These restrictive
task representations are alleviated by providing K-VIL with
an additional demonstration. By doing so, the problematic
constraints are updated to different types, e.g., the p2l con-
straint in Fig. 14b becomes a p2P constraint in Fig. 14c.
This significantly improves K-VIL’s extrapolation abilities, as
the p2P constraint is necessary to constrain the kettle in a
vertical plane while being less restrictive than the previous
p2l constraint. Notice that the density force within the plane
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constraint ensures the tilting angle of the kettle is similar to
the demonstrations. A successful reproduction of such task
representations is shown in Table IV (PW 4 ). When enough
demonstrations are provided (N = 11 in Fig. 14d), K-VIL
instead extracts a p2c constraint for the keypoint k2 at the
bottom of the kettle. The reproduction results with different
types of kettles are shown in the last five columns of Table IV
( PW 11 ). Intuitively speaking, the p2c constraint aligns better
with our understanding of a pouring task. Moreover, the last
column in Table IV shows that, given a tilted initial pose of
the kettle, KAC is able to correct the pose of the kettle in the
end. The set of PW tasks in Table IV also demonstrates that
the proposed approach generalizes well to categorical objects
with different colors, sizes and shapes, and is robust to change
of background and viewpoints.

Task extraction and reproduction of HH tasks. Unlike
PB, FT and PW tasks, K-VIL’s representation obtained from
3 demonstrations for HH does not result in superfluous p2l
constraints. Instead, due to the obvious pose variations in the
hat, K-VIL consistently extracts a single keypoint k1 on the
backside of the hat with a p2p constraint, which encodes the
demonstrated position invariances observed in the local frame
near the end of the hanging stick. As shown in Table V, the
target poses of the hat in HH 3 vary according to its different
initial poses, while in HH 1 they are fully determined by the
3 p2p constraints. Figs. 15c to 15e show the influence of the
shape variations on the selection of local frames F .

4) Evaluation summary: As shown by our experiments,
K-VIL’s task representations allow the successful learning of
diverse tasks and their reproduction in new cluttered scenes
with large shape and pose variations in categorical objects.
As opposed to [23], [24], our approach is not constrained to
conserving the same viewpoint between demonstrations and
reproductions, and thus is more flexible. Here, we further
discuss the influence of the number and diversity of the
demonstrations on such task representations.

Limitations of scarce demonstrations. The task represen-
tations learned from scarce demonstrations hinder the perfor-
mance and the extrapolation ability of K-VIL in three ways,
namely, (i) they may be embodiment-dependent, and thus
cannot be reproduced by the robot, e.g., in Table III for PB 1 ,
PB 3 , FT 1 and FT 3 ; (ii) they may lead to collisions during
the execution, e.g., in IS 3 -ext. long (see Table II) and PW 3

for improper kettle start pose (see Table IV); (iii) when repro-
duced successfully, the control accuracy is reduced compared
to the task representations learned from more demonstrations
(see Section VI-C for details). These limitations motivate us
to evaluate the number of demonstrations that are required
to learn a generalizable task representation according to the
criteria of Section VI-A for each considered task.

Adequate number of demonstrations. Table VI summa-
rizes the extracted geometric constraints of the five extrac-
tion tasks for different number N of demonstrations. It is
interesting to notice that the learned task representations do
not change anymore, i.e., converge, after a certain number
of demonstrations, e.g., N = 4 for PB and FT, N = 11
for PW, and N = 3 for HH and IS. Moreover, the task
representations become generalizable almost at the same time

Number of demonstrations (N)

TE 1 3 4 5 11

a PB 3× p2p p2p, p2l p2p p2p p2p
b FT 3× p2p p2p, p2l p2p p2p p2p
c PW 3× p2p p2p, p2l p2p, p2P p2p, p2P p2p, p2c
d HH 3× p2p p2p p2p p2p p2p
e IS 3× p2p p2p, p2l p2p, p2l p2p, p2l p2p, p2l
f CT 3× p2p p2l, p2l p2l, p2l p2l, p2l p2l, p2l

TABLE VI: Extraction tasks and the geometric constraints of
each task learned from different number of demonstrations. We
mark the cases ( ) where the learned task representations
converge, and highlight the cases (in blue) where the learned
task representations are generalizable.

index TE role object PV SV TR

1 PB
master kettle - ✗ Figs. 11b and 11c
slave hand ✓ ✗

2 FT
master tissue box - ✓ Figs. 12b and 12c
slave hand ✓ ✗

3 PW
master teacups - ✓ Figs. 14b to 14d
slave kettle ✓ ✓

4 HH
master rack - ✗ Fig. 15b
slave hat ✓ ✗

5 HH
master rack - ✓ Fig. 15c
slave hat ✓ ✗

6 HH
master rack - ✗ Figs. 15d and 15e
slave hat ✓ ✓

7 IS
master paper roll - ✗ Figs. 13b and 13c
slave stick ✗ ✓

8 CT
master dustpan - ✓ Fig. 16
slave brush ✓ ✓

TABLE VII: Pose variations (PV) and shape variations (SV)
in the demonstrations along with the detected master and
slave objects. The corresponding task representations (TR) are
linked in the last column. Pose variations of the master objects
are not relevant (-) as the local frames representing the object
pose are constructed on the masters.

as they converge. As an exception, the representations of PW

already generalize with a p2p and a p2P constraint learned
from 4 demonstrations. Importantly, the learned geometric
constraints do not have to include a p2p constraint, see
e.g., the CT task that is represented by two p2l constraints.
Overall, this demonstrates that our approach efficiently ex-
tracts generalizable task representations from considerably less
demonstrations than state-of-the-art approaches.

Object pose and shape variations. Importantly, K-VIL’s
task representations rely on the variations observed in the
demonstrations to extract appropriate constraints. For example,
in PB, the pose variations of the demonstrator’s hand (Fig. 11c)
allow K-VIL to distinguish the tip of the middle finger (used
to press the button) from the other candidate points on the
hand. In other words, these variations enable the efficient
extraction of the keypoint k1 subject to a p2p constraint. The
spatial distribution of keypoints across demonstrations is also
obtained via pose variations. For instance, this allows K-VIL
to associate the keypoint k2 with geometric constraints such
as p2l (Figs. 14b and 16e), p2P (Fig. 14c) and p2c (Fig. 14d).

Shape variations also facilitate the efficient extraction of
keypoints and geometric constraints. For example, the stick
length variations in the insertion task IS allow K-VIL to
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extract the keypoints k1 and k2 subject to a p2p and p2l
constraint, respectively, as intuitively shown in Fig. 13b. In
other cases, shape variations in the master objects help to
remove redundancy in canonical local frames. For example,
all the J = 300 canonical local frames on the rack in task
HH of Fig. 15b are equivalent. This is due to the absence
of variations in the rack across the provided demonstrations.
In this case, K-VIL selects the local frame F as the closest
on average to the keypoint k1 on the hat. This redundancy is
removed by introducing shape variations in the master objects.
For example, by considering two variations of the rack in the
task HH as in Fig. 15c, k1 is position-invariant only if it is
represented in the local frames near the contact point between
the rack and the hat. This allows K-VIL to focus on these local
frames and to filter out the others. We showed in Fig. 15d
that K-VIL’s representation converges and remains the same
as Figs. 15b and 15c even if more demonstrations with large
shape and pose variations in the hats are available. Similarly,
shape variations in the tissue boxes in FT allow the selection of
local frames around the grasping point, while shape variations
in the teacups (PW) ensure that local frames for the pouring
task are around their rim. A summary of the effect of pose and
shape variations in the considered tasks is given by Table VII.
Overall, pose or/and shape variations of master and slave

objects in the demonstrations are not only handled by K-VIL,
but also facilitate the efficient, joint extraction of local frames,
keypoints, and geometric constraints.

C. Evaluation of KAC

In Section VI-B, we demonstrated K-VIL’s ability to ex-
tract generalizable task representations from a small number
of demonstrations. In particular, we showed that these task
representations successfully adapt to new cluttered scenes
with categorical objects, regardless of whether the task can
be reproduced by the robot. Therefore, in this section, we
evaluate the proposed KAC in terms of control accuracy,
control precision (i.e., repeatability) and success rate on the
18 tasks described in Section VI-A (see also Table VIII). Each
task is reproduced Nr = 20 times according to the evaluation
protocol in Section VI-A. For each task, we record the trajecto-
ries of all relevant keypoints during the execution period. Since
we are particularly interested in the regulation behavior of
KAC when the keypoints satisfy their corresponding geometric
constraints, i.e., when the VMPs finish, we record the keypoint
trajectories for an additional 2 s time window, denoted by Tend.
These trajectories are then compared to the corresponding
keypoints’ target trajectories, which correspond to the VMP
trajectories for keypoints subject to p2p constraint, and to the
attractor trajectories for keypoints subject to other types of
constraints. Notice that, for the latter, the 3D position of the
attractor is recovered from the corresponding 1-dimensional
VMP in the orthogonal direction of the corresponding princi-
pal manifold (see also Section V-A).

First, we evaluate the ability of KAC to satisfy the learned
keypoints’ geometric constraints. To do so, we compute the
regulation error of each keypoint during Tend of each trial as

ev = 1
Tr

∑Tr

t=0 ∥k
g
l,v(t)− kl,v(t)∥2, v ∈ [1, Nr],
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Fig. 17: Regulation errors between each keypoint and its target
estimated in Tend over Nr = 20 trials for tasks C to R in
Table VIII. The mean regulation error, i.e., control accuracy
Acc., is depicted as . The box shows the first and third
quartiles of the regulation error of each keypoint, with the bar
inside it indicating the median.

where Tr is the total timesteps recorded in Tend, and kl,v,kgl,v
are the recorded and target positions of the considered keypoint
in the vth trial, respectively. Fig. 17 displays the distribution
of the keypoint’s regulation errors for 20 trials of each task,
where the mean values ( ) correspond to the control accuracy

Acc. = 1
Nr

∑Nr

v=0 ev.

Second, we evaluate the control precision (i.e., repeatability)
of KAC for all keypoints and all tasks. It is computed as

Prec. =

√√√√ 1

Nr

1

Tr

Nr∑
v=1

Tr∑
t=1

∥kl,v(t)− µkl,v
∥22, (5)

where we defined µkl,v
= 1

Tr

∑Tr

t=1 kl,v(t). Finally, we also
report the success rate obtained for each task according to the
evaluation protocols described in Section VI-A.

Table VIII presents the evaluation results of KAC in terms
of the three aforementioned metrics. As suggested by the
qualitative evaluations in Table III, when learned from fewer
than 4 demonstrations, the tasks PB and FT result in a 0%
success rate (see A-B, D-E in Table VIII). As discussed in
Section VI-B3, this is due to geometric constraints that are
unreachable for the robot. In contrast, the task representations
learned from 4 demonstrations are generalizable (see Table VI
in Section VI-B4), and thus KAC reaches sub-millimeter
control accuracy and precision, as well as ≥ 90% success
rates (see C and F in Table VIII).

As shown in Fig. 17 and Table VIII (G-J), PW 4 and
PW 11 outperform PW 3 in terms of control accuracy,

precision, and success rate. This is due to the fact that, in
contrast to PW 3 , PW 4 and PW 11 are generalizable (see
Table VI and Table IV). Although PW 1 displays a relatively
high control precision and success rate, its control accuracy
remains low and the pose of the kettle is fully constrained
by 3 p2p constraints, which hinders K-VIL’s extrapolation
abilities. Interestingly, while k1’s control accuracy in the task
PW increases with the number of demonstrations, k2’s highest
control accuracy is obtained in PW 4 (I). This is due to k2’s
p2P constraint in PW 4 , which is easier to fulfill than the p2c
constraint in PW 11 . We observe a lower precision in PW 4

than in PW 11 for the same reason.
Similarly as in PW, HH 3 (M) and IS 3 (P) are reproduced

with higher control accuracy and precision than HH 1 (L)
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and IS 1 (N), respectively. Moreover, thanks to the priority
introduced in KAC, HH 1 (L) and IS 1 (N) achieve 95% and
62% success rate, respectively, despite the single available
demonstration. The lower performance of IS 1 is explained
by the fact that we consider an extremely long stick, which
requires high generalization capabilities, in the reproduction
(see Table II). In contrast, the hat in HH is only slightly
deformable and thus results in low shape variations. Notice
that, for HH and IS, we do not compare the control accuracy
between keypoints subject to different geometric constraints
(in gray in Table VIII). As these keypoints are controlled
according to different priorities within KAC, their reported
accuracy highly depends on the shape variations occurring in
these two tasks. For example, when using sticks of various
lengths in the insertion task IS 1 (N), KAC assigns the
highest priority to the keypoint k1, so that k1 is obviously
controlled with higher accuracy than k2 and k3. Interestingly,
k2’s highest regulation error in this task is ∼150mm, which
corresponds to the maximum length difference between the
sticks used in the demonstration and in the reproduction.
Therefore, in HH and IS, the control accuracy of k2 and k3 is
rather affected by the experiment setups (e.g., stick lengths)
than by KAC. Since the two p2l constraints in CT 3 share the
same priority, the two keypoints are equally controlled towards
the region with high likelihood on the corresponding principal
lines. The two spring-damper systems for the two keypoints
result in equilibrium. Therefore, the control accuracy and the
precision of the two keypoints are comparable.

Compared to IS 1 , the ablation study ISnp 1 (O), conducted
without KAC’s priorities, shows a drop in success rate (25%),
as k3 achieves the highest accuracy at the expense of k1
and k2. This is expected as the three identical virtual spring-
damper systems for k1,k2 and k3 are in equilibrium, and k3
usually locates in the middle of k1 and k2. As the ablation
tasks PWnp 11 (K) and ISnp 3 (Q) are reproduced from gener-
alizable task representations, removing KAC’s priorities does
not affect their success rate. However, the control accuracy
and precision drop compared to PW 11 (J) and IS 3 (P).

VII. DISCUSSION

In this paper, we proposed the novel keypoints-based vi-
sual imitation learning (K-VIL) approach that learns sparse,
object-centric, and embodiment-independent task representa-
tions from a small set of demonstration videos. K-VIL’s
task representations are based on the extraction of geomet-
ric constraints by a PCE, which covers a wide range of
constraints. The proposed PCE enables one-shot and few-
shot VIL and updates the learned task representations when
additional demonstrations are incrementally provided, thus
endowing them with enhanced extrapolation capabilities. K-
VIL’s task representations also include task-specific keypoint
control policies encoded as VMPs, which are leveraged for
task execution by a prioritized keypoint-based admittance
controller (KAC). Compared to control policies based on RL
or on visual servoing, VMPs allow a flexible temporal scaling
and support via-points (including start and target position)
adaptation. Therefore, they crucially contribute to K-VIL’s

Acc. (mm) Prec. (mm)

TR TR k1 k2 k3 k1 k2 k3 R (%)

A PB 1 Fig. 11a × × × × × × 0
B PB 3 Fig. 11b × × × × × × 0
C PB 4 Fig. 11c 0.67 - - 0.34 - - 90

D FT 1 Fig. 12a × × × × × × 0

E FT 3 Fig. 12b × × × × × × 0

F FT 4 Fig. 12c 0.82 - - 0.65 - - 100
G PW 1 Fig. 14a 4.81 15.01 32.09 0.75 0.78 0.72 95

H PW 3 Fig. 14b 3.56 3.21 - 1.20 2.12 - 87

I PW 4 Fig. 14c 2.01 0.88 - 1.04 5.67 - 94

J PW 11 Fig. 14d 0.93 6.80 - 0.42 0.56 - 100

K PWnp 11 Fig. 14d 9.71 20.08 - 0.90 1.16 - 100

L HH 1 Fig. 15a 13.53 51.33 54.28 0.67 0.67 0.67 95

M HH 3 Fig. 15b 1.48 - - 0.47 - - 95

N IS 1 Fig. 13a 17.77 125.40 51.98 1.55 1.30 1.34 62

O ISnp 1 Fig. 13a 74.55 77.05 13.40 1.03 0.97 1.02 25

P IS 3 Fig. 13b 1.01 0.63 - 0.36 0.36 - 95

Q ISnp 3 Fig. 13b 2.46 1.50 - 2.32 1.39 - 90

R CT 3 Fig. 16e 8.89 10.22 - 2.04 2.03 - 95

TABLE VIII: Evaluation of KAC in terms of control accuracy
(Acc.), precision (Prec.), and success rate (R) for each category
of tasks with task representations (TR) learned from different
numbers N of demonstrations. Ablation studies (denoted by
·np) are also conducted in tasks K, O, and Q by removing the
priority (see Section V-C) from KAC. The cases where data
is not available due to failure execution and where a specific
keypoint is not required are denoted as × and -, respectively.
Gray numbers in N and O indicate inconsequential values.

generalization capabilities by extrapolating the keypoint target
positions on the learned principal manifold.

As highlighted in our evaluation, K-VIL consistently learned
generalizable task representations for six daily manipulation
tasks, which involved highly cluttered scenes, new instances
of categorical objects, and large variations in object poses and
shapes. Importantly, we showed that the learned task represen-
tations converges and becomes generalizable with significantly
fewer demonstrations than state-of-the-art approaches such as
[12], [14], [22], [27]. Interestingly, the sparse keypoint-based
geometric constraints extracted by K-VIL mostly aligned with
human intuition. This includes the extraction of a single p2p
constraint for pressing a button, of a pair of p2p and p2l
constraints for the insertion task, and of a p2p coupled with a
p2c constraint for the pouring task, among others.

It is important to emphasize that the decomposed control
and priority mechanism of the KAC allowed us to endow
K-VIL with reliable extrapolation capabilities. Indeed, our
quantitative evaluations demonstrated K-VIL’s ability to re-
produce the learned task representations with high control
accuracy, control precision, and success rate. Particularly,
K-VIL accurately handled very large shape variations in the
considered insertion task. In contrast, previous works did
not or only briefly discuss the extrapolation capabilities of
their approaches [12], [16], [19], [23]. For instance, Jin &
Jagersand [12] only showed extrapolation to another instance
of the hammer category with very small shape variation
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without providing any quantitative evaluations.
It is important to note that the variations in object poses

and shapes play an essential role in learning generalizable
task representations. This is even more relevant when only
a small number of demonstrations are provided. Without such
variations, K-VIL can still generalize to categorical objects
thanks to the dense visual descriptors, but achieve lower
control accuracy, precision, and success rate, and may fail in
some extreme cases, e.g., in the one-shot VIL setup.

A. Limitations and Future Work

K-VIL imposes limitations in terms of visual perception
models and task representations. On the one hand, we assume
that the keypoints are on the surface of objects and omit
transparent, reflective, and thin objects (note that this is also
discussed in [20], [42]). This hinders K-VIL from being
used in many real-world tasks. Furthermore, all keypoints
must be visible in the demonstrations, which may not always
be enforced in reality. In other words, K-VIL learns from
demonstrations with and without viewpoint mismatch, as long
as the keypoints of interest are not occluded. In the long
run, we believe that the dense correspondence models should
be combined with state-of-the-art scene representation models
(e.g., [42]) or with point generative models (e.g., [43]) for
better correspondence detection and for tackling the occlusion
problems. This would allow the imitator to observe objects
that are visually more challenging and to learn the task from
demonstrations with (self-)occlusions.

It is worth noticing that K-VIL’s keypoints correspond to
the sub-symbolic parameters of a motion. Therefore, they do
not necessarily have a clear semantic interpretation, which
is also important for learning comprehensive task models.
Bridging the gap between the symbolic and sub-symbolic
levels remains an important challenge in (visual) IL. Impor-
tantly, the symbolic representation of a task [44], [45] also
has limitations, which can be alleviated by integrating sub-
symbolic information. For example, a contain affordance in a
pouring task implies that the opening of the spout of the kettle
should be placed above the contain affordance region [46].
However, this semantic representation alone cannot describe
different types of pouring: For example, pouring beer requires
tilting the glass and aligning the beer with the side of a glass.
Instead, additional sub-symbolic parameters would allow re-
alizing specific styles of task execution.

In this sense, K-VIL deals with the sub-symbolic part of
the task. Namely, its ability to update the geometric constraints
allows us (i) to reproduce a task with a specific style, and (ii) to
eliminate unnecessary keypoints and geometric constraints and
to update the distribution of the keypoints on the extracted
constraints when more demonstration styles are available.
K-VIL may then be augmented with an extraction method [47]
to estimate the links between the extracted keypoints and
the symbolic task representation. For instance, the probability
distribution of the keypoints on their principal manifolds may
be used to determine the affordance regions [46], [48], the
spatial relations [49], and the grasping or effect points [10],
[47]. We will investigate these aspects in our future work.

In this paper, we only considered uni-manual manipulation
tasks that can be modeled as the combination of five basic
geometric constraints in Fig. 4 in a single layer of master-
slave relationship. As future work, we plan to extend K-VIL
to include other types geometric constraint and to biman-
ual manipulation tasks by considering bimanual coordination
strategies [50] and a hierarchy of master-slave relationships.
Moreover, we will extend K-VIL for periodic motions such
as stirring or wiping motions [23], as well as for handling
articulated objects [51], [52].
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