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Abstract— Task-oriented object grasping and rearrangement
are key skills for robots, which have to perform versatile real-
world manipulation tasks. However, they remain challenging
due to partial observations of the objects and shape variations
in categorical objects. In this paper, we present the Multi-
feature Implicit Model (MIMO), a novel object representation
that encodes multiple spatial features between a point and an
object in an implicit neural field. Training such a model on
multiple features ensures that it embeds the object shapes
consistently in different aspects, thus improving its performance
in object shape reconstruction from partial observation, shape
similarity measure, and modeling spatial relations between
objects. Based on MIMO, we propose a framework to learn
task-oriented object grasping and rearrangement from single
or multiple human demonstration videos. The evaluations in
simulation show that our approach outperforms the state-of-
the-art methods for multi- and single-view observations. Real-
world experiments demonstrate the efficacy of our approach in
one- and few-shot imitation learning of manipulation tasks.

I. INTRODUCTION

Performing accurate manipulation tasks with everyday
objects is an intricate problem that poses several challenges
for robots. The robot must first find the optimal grasps
for specific tasks and generate a suitable motion trajectory
to achieve this configuration. For instance, a side grasp
by the mug handle is suitable for pouring water out of a
mug (see Fig. 1a), while a top grasp by the rim is more
suitable when placing the mug into a container to avoid
collision between the hand and the container (see Fig. 1b).
Additionally, suitable pose configurations of the mug relative
to the bowl and the container are needed in such an object
rearrangement task.

To generate task-oriented grasps, previous works [1]–[3]
have focused on training neural networks on large man-
ually annotated datasets. Despite their performance, these
approaches fail to generalize to novel objects with large
shape variations. Moreover, manual annotation is costly and
difficult to acquire. In contrast, visual imitation learning
(VIL) approaches like [4], [5] provide efficient means to
teach robots manipulation skills from human demonstrations
and enable generalization to new scenarios with categorical
objects. This paper focuses on the line of works that utilize
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(b) Top-down Grasp and Placement.

Fig. 1: Learning task-oriented object grasping and rearrange-
ment from human demonstration videos of manipulation
tasks. We illustrate two tasks: (a) side picking a mug and
pouring into a bowl; and (b) top-down picking a mug and
placing it into a container. For each task, we show the RGB
image, the observed point clouds ( • ), reconstructed object
meshes ( ), extracted hand mesh ( ), grasp poses
(Td

g), and the execution on a humanoid robot.

neural fields, e. g., [6]–[9], which implicitly encode object
spatial properties. Neural fields can be trained in a self-
supervised manner by exploiting an inherent bias towards
object classes, thus eliminating the need for manual annota-
tion. This bias plays an important role in establishing dense
3D correspondences across categorical objects, enabling the
adaptation of object manipulation skills to previously unseen
object instances. However, these approaches require multiple
object views, which are often unavailable in real-world
applications. When confronted with a partial view or cate-
gorical objects with large shape variations, these approaches
inevitably result in less precise grasp or object target poses,
which can lead to collisions or unstable placement.

To address the above-mentioned challenges, we introduce
the Multi-feature Implicit Model (MIMO), which is designed
to predict multiple spatial properties of a 3D point relative
to an object. This enables our model to generate a richer
descriptor space and thus more precise dense correspon-
dences, which facilitates the accurate transfer of grasps
and object target poses to new situations. MIMO can also
reconstruct object shapes when only a partial observation is
available, which is beneficial for coping with task constraints



defined on the hidden part of the object. Leveraging MIMO’s
capabilities, we propose a framework that efficiently learns
and generates task-oriented grasps from single or multiple
human demonstration videos. Moreover, we use an eval-
uation network to predict the success probability of the
generated grasps and refine them if necessary.

The contribution of this paper is twofold: (1) We propose
the novel Multi-feature Implicit Model (MIMO) that predicts
multiple spatial features of a point relative to an object, which
yields an informative point and pose descriptor space. It
outperforms the state-of-the-art neural field methods in terms
of dense correspondence, shape reconstruction, and pose
transfer. The model can be trained in a self-supervised man-
ner without relying on human annotations. (2) We integrate
MIMO into visual imitation learning and propose a frame-
work to efficiently learn, generate, and refine task-oriented
grasps. We achieve one- and few-shot imitation learning and
demonstrate a direct transfer of the learned manipulation
tasks to categorical objects.

II. RELATED WORK

Deep learning-based methods for grasping have made
significant progress in robotics thanks to advances in implicit
object representation. Explicit modeling of the relevance of
manipulation skills for a given task is essential to ensure
generalization to novel situations. In this regard, we focus
on implicit representation through neural fields, along with
recent advances in task-relevant grasping and manipulation.

A. Neural Fields and Neural Descriptors

Neural-fields-based approaches involve training neural net-
works to learn continuous representations by predicting the
physical and spatial properties of a 3D point relative to
its surroundings [6]. The learned representations, known as
descriptors, are used in various tasks such as 3D recon-
struction [10], [11] and manipulation [12], [13]. Leveraging
dense correspondences allows the transfer of manipulation
skills between similar objects. Previous works [14]–[16]
used Convolutional Neural Networks to obtain pixel-wise
descriptors from RGB images to detect correspondences.
However, they rely on visible 2D descriptors and fail to
model task constraints on hidden parts of objects. To over-
come this limitation, Neural Descriptor Fields (NDFs) [7]
encode SE(3)-equivariant point and pose descriptors directly
from the object 3D point cloud. Later, the Neural Interaction
Field and Template (NIFT) [8] introduced space coverage
features (SCF) [17] for richer descriptors, but compromised
the capacity of object shape reconstruction. These methods
perform well for grasp transfer with multiple views and a
few demonstrations (5-10) but lose accuracy with partial
views or a single demonstration. In contrast, we train an
implicit model to predict multiple spatial features of a point
relative to an object, creating a more informative descriptor
space while preserving shape reconstruction capabilities. Our
approach outperforms [7] and [8] in tasks such as shape
similarity measure and pose transfer, especially with partial

observations. This also improves performance in one-shot
imitation learning of manipulation tasks.

B. Modeling Task Relevance
In task-oriented grasping, modeling task relevance is es-

sential to determine the grasp poses that best support the
downstream task. Previous approaches have used semantic
segmentation models to detect grasp affordance regions from
RGB images [1]–[3], [18] or 3D point clouds [19]–[22].
These methods often require extensive annotated datasets,
necessitating time-consuming manual annotation, and are tai-
lored to grasping rather than object rearrangement. The for-
mer challenge is alleviated in [23], [24] via self-supervision
in simulation. To address the latter, recent works focus on
modeling task relevance using 2D or 3D neural descriptors,
e. g., 2D affordance regions [25], [26] and 3D affordance
maps [27], [28]. These neural descriptors measure shape sim-
ilarity, facilitating the transfer of task-relevant grasps, object
poses, or regions to new scenarios. However, the approaches
in [25] and [26] are limited to top-down planar grasps, while
multiple calibrated RGB images are required in [27] and [28]
for scene reconstruction, which is time-consuming and not
always feasible. In contrast, we introduce a novel neural pose
descriptor derived from partial observations to model task-
oriented grasp distributions and rearrangement tasks.

C. Category-Level Manipulation
Previous works, like [29]–[31], utilized semantic keypoints

for transferring manipulation skills between categorical ob-
jects. However, they necessitate extensive manual annotation
for keypoint detection and careful assignment of keypoints
for each task and object. To address this problem, category-
level non-rigid registration [32]–[34] was proposed to recon-
struct object shapes and infer object 6D poses. However,
these models struggle with large object shape variations.
Another line of work [7], [8] leverages category-level neural
descriptors for skill transfer, assuming a known and fixed
interacting object. Relational-NDF (R-NDF) [9] relaxed this
limitation by manually selecting keypoints and associated
local frames in task-relevant regions. However, it struggles
with precise dense correspondences under partial obser-
vations, a limitation addressed by [35] through subtasks,
including pose estimation, shape reconstruction, similarity
measure, and grasp transfer. Yet, each subtask demands a
separate model. In contrast, we address partial observation
by leveraging MIMO’s capability in shape reconstruction.
This enhances the precision of task relevance and knowledge
transfer for object grasping and rearrangement and allows the
usage of MIMO for all tasks, offering an efficient solution
for manipulation tasks.

III. MIMO FOR MANIPULATION

In this paper, we focus on learning task-oriented grasping
and object rearrangement tasks from human demonstration
videos. We first introduce the Multi-feature Implicit Model
(MIMO) and its applications in Section III-A, and then
propose a novel grasping framework in Section III-B to learn
and generate task-oriented grasps.
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Fig. 2: Multi-feature Implicit Model (MIMO) and its applications. (a) MIMO takes as input an object point cloud P and a
point coordinate x and outputs multiple spatial features of x relative to P, including occupancy Φocc, signed distance Φsdf,
extended space coverage feature (ESCF) Φescf and closest distance direction (CDD) Φcdd. The concatenation of activation
layers of the decoder for Φescf and Φcdd forms the point descriptor z of x. (b) The CDD is represented as the inner product
of two unit vectors vp and vd. (c) The high-dimensional point descriptors of each reference object are reduced to a 3D space
using Principal Component Analysis (PCA) representing the RGB channels of the color map. Each point of other categorical
object instances (at each row) is colorized according to the most similar point (smallest L1 distance in point descriptors)
from the corresponding reference object at the same row. The MIMO can be used for (d) object shape reconstruction and
(e) grasp pose transfer.

Ref. Obj. Obs. MIMO NDF NIFT

Fig. 3: Point correspondence and shape similarity measure
using point descriptors from partially-observed point clouds
( • ). Given a point on a reference object, we colorize
the novel object mesh based on the L1 distance of point
descriptors to the reference point, where blue means more
similar, and marks the most similar points ( • ).

A. Multi-feature Implicit Model

As shown in Fig. 2a, MIMO uses a Vector Neurons-
PointNet [36] encoder ε(P), embedding the geometric infor-
mation of the point cloud P in an equivariant latent code,
and a partly shared Multi-Layer Perceptron (MLP) decoder
with multiple branches, representing SO(3)-invariant spatial
relations of a point x relative to P. The occupancy Φocc
[10] and signed distance Φsdf [11] branches enable MIMO
to reconstruct object shapes. Specifically, given the fully- or
partially-observed point cloud of an object, we extract the
object mesh from the trained occupancy branch using the
Multi-resolution IsoSurface Extraction algorithm [10] (see
Fig. 2d). We experience that, jointly training the signed
distance and occupancy branches yields more precise shape
reconstruction compared with training the occupancy branch
alone. Additionally, we introduce two novel feature branches,
namely, 1) the extended SCF (ESCF) branch Φescf; and
2) the closest distance direction (CDD) branch Φcdd. In
contrast to the SCF branch utilized in NIFT [8], where the
power spectrum of each degree in the spherical harmonics
expansion is considered, our ESCF branch is directly super-

vised by the coefficients of spherical harmonics expansion
across all orders and degrees. This enables ESCF to capture
finer geometric details. To further enhance the neural field’s
direction awareness, we introduce CDD, defined as the inner
product of unit vectors vd and vp, where vd points from a
point x to the closest point on the object, and vp follows
a chosen principal direction, e. g., pointing upward when
the object is positioned vertically (see Fig. 2b). Similarly
to NDF, we concatenate the activation layers of the partly-
shared decoder for Φescf and Φcdd as the point descriptor
z = κ(x|P), which forms a descriptor space to measure ge-
ometric similarity (see Fig. 2c). Trained with four branches,
our descriptor space is more informative in distinguishing
fine geometric details. In practice, we observed that the
performance of the similarity measure drops when directly
inferring z from the noisy partially-observed point cloud
P. To address this problem, we reconstruct the mesh, from
which a point cloud Pr is sampled as input to MIMO to infer
the point descriptor z = κ(x|Pr). As shown in Fig. 3, MIMO
finds point correspondence between the reference object and
a partially-observed categorical object precisely, while NDF
yields an imprecise point correspondence and NIFT often
fails to distinguish the up and down direction of the bottle or
the mug. Further evaluation results are shown in Section IV-
A. Since all the features can be automatically computed, no
further human annotation is required to collect the training
dataset. Next, we detail the loss functions for training MIMO.

1) Multi-task Loss Function: To train MIMO with four
distinct feature branches, we combine the loss functions
of each branch through a weighted sum. However, man-
ually tuning these weights is challenging. To address this
problem, we introduce homoscedastic uncertainty [37] for
each branch, where the likelihood is defined as a Gaussian
p(yi|fWi

(x)) = N (fWi
(x), σ2

i ), i ∈ [1, 4] with the model
output fWi

(x) as the mean and the variance σi representing
the uncertainty. The objective is to minimize the negative log-
likelihood, i. e., L =

∑4
i=1(

1
2σ2

i
Li(Wi) + log(σi)), where



Pd,Td
g

Pc

Pc, {Ta
g}

MIMO
(Grasp Transfer)

MIMO
(Discriminator)

∪⃝ Simulation

GMM

{Tr
g}

{T̄r
g}

P

ϵ(P)
^

Tg ,Pk

⊕ ϕ(·)

Po

MIMO
(Grasp Transfer)

Evaluation

Refinement
T∗

g

T̂g
T̃g

(a) Task-relevant Grasp Learning

(b) Grasp Evaluation Network

(c) Inference

Fig. 4: Proposed MIMO-based Grasp Framework. (a) Given a human demonstration of a grasping scene, we obtain the
object point cloud Pd and a grasp pose Td

g. We generate task-agnostic grasp poses {Ta
g} using a grasp generator [38], and

use MIMO as a discriminator to select the task-relevant candidates {Tr
g} based on pose descriptor similarities between Td

g

and Ta
g . Alternatively, we can directly transfer the demonstrated grasp pose Td

g to the canonical point cloud Pc using MIMO.
We then simulate the candidates {Tr

g} to find the successful grasp poses {T̄r
g} to train a GMM. (b) Given an object point

cloud P, a grasp pose Tg and a set of hand keypoints Pk, the grasp evaluation network encodes P using the frozen encoder
ϵ(·) of MIMO and outputs the grasp success probability using MLP. (c) During inference, the sampled grasp pose T̂g relative
to the canonical point cloud Pc is transferred to a partially-observed point cloud Po using MIMO, and the transferred grasp
pose T̃g is evaluated and refined (if necessary) to obtain the optimal grasp pose T∗

g.

Li are binary cross entropy loss for occupancy, clamped L1
loss for signed distance, and L1 losses for ESCF and CDD,
respectively. For numerical stability, we set si = log(σ2

i ), i =
{1, 2, 3, 4} as per [37]. Thus, the total loss is reformulated
as L =

∑4
i=1(e

−siLi(Wi) + si). During training, both
the model weights Wi and uncertainties si are optimized
automatically, eliminating the need for manual tuning.

2) Pose Descriptor: Similar to [7], we adopt the Basis
Point Set (BPS) [39] sampling strategy, and concatenate the
point descriptors of a set of points around an object as
their pose descriptor Z. Specifically, given a set of points
X ∈ RN×3 sampled from a rigid object OB in pose T
around the point cloud PA of object OA, we obtain pose
descriptor of OB using the trained MIMO of object category
A, i. e., AZB = φ(T,X|PA). It measures the similarity of the
poses relative to OA, where similar poses have a small L1
distance between their pose descriptors. Speaking in terms
of the example in Fig. 1, OA would be an instance of the
“mug” class, while OB would be the hand and, therefore,
AZB associated to a grasp pose T. To deal with partial
observation, we reconstruct the mesh of OA, from which
a point cloud PA

r is sampled as input to MIMO to infer the
pose descriptor AZB = φ(T,X|PA

r ).
3) Pose Transfer: Given a trained MIMO of object

category A, a reference pose descriptor AẐB and a pair
of arbitrary object instances (ŌA,ŌB) from category A
and B, we optimize the pose of ŌB relative to ŌA by
T∗ = argminT ∥φ(T,X|P̄A

r )− AẐB∥1, where P̄A
r is the re-

constructed point cloud of ŌA. We adopt the same opti-
mization procedure as in [7]. In a visual imitation learning
(VIL) setup, the reference pose descriptor can be derived
from human demonstration videos. Specifically, we find the
closest point pair on OA and OB at the last timestep of

the demonstration as keypoints. Similarly to [9], we then
sample BPS around keypoints of OA and OB respectively, to
compute the corresponding reference pose descriptors, which
can be used to transfer ŌA and ŌB to align with OA and OB ,
respectively, with the optimization steps described above.
The rearrangement target pose of ŌB relative to ŌA can be
derived from the optimized poses. Note that the keypoints
and sampled BPS do not need to lie on the object. We
refer interested readers to [9] for more details. In terms of
grasping, where OB is the human or robot hand and OA is an
arbitrary object to be grasped, the pose descriptors measure
the grasp similarity, which can be used for transferring
grasps to similar objects. Next, we introduce a novel grasp
framework based on MIMO.

B. MIMO-based Grasp Framework

Leveraging MIMO’s strengths in measuring pose simi-
larities and transferring poses, we introduce a framework
designed to learn task-specific grasping and object rear-
rangement from one or multiple human demonstrations. This
framework can generate optimal grasp poses for new object
instances based on partial observations, as shown in Fig. 4.

1) Human Observation: Given human demonstration
videos consisting of sequences of RGB and depth images of
a manipulation task, we estimate the hand poses in all frames
using [40] and train a movement primitive [41] representing
the hand motion. We then determine the grasping timestep
tg and detect grasp pose Td

g ∈ SE(3) following [42]. The
object being grasped is the source object Os, and the other
object, which sets a reference frame for placing Os at the last
timestep tT , is the target object Ot. We obtain the segmented
point clouds of both objects at tg and tT using Grounded
SAM [43], [44].



2) Task-oriented Grasp Learning: To learn a distribu-
tion of task-relevant grasp poses from a single or multiple
inaccurate human demonstrations, we introduce a grasp
exploration and learning step. As shown in Fig. 4 (a), we
generate task-agnostic grasp candidates {Ta

g} using [38] on
a canonical point cloud Pc for the class of the source object
Os. We present two strategies to obtain task-relevant grasp
candidates, i. e., (i) using MIMO as a discriminator for pose
similarity to find the most similar grasps in {Ta

g} to Td
g (see

Section III-A.2); or (ii) using MIMO to directly transfer the
demonstrated grasp Td

g relative to the object point cloud Pd

to a set of candidate grasps relative to canonical space (see
Section III-A.3). We fuse the task-relevant grasp candidates
{Tr

g} from the two strategies and simulate them with a
humanoid hand in Issac Gym [45]. Specifically, the grasp
is successful if the object is picked up and does not drop
after a random shaking action. We then simulate the object
rearrangement given the successful grasps and determine
the set of task-relevant grasps if the tasks are accomplished
without failure (see Section IV for a definition of possible
tasks). The successful and task-relevant grasps {T̄r

g} in
canonical space are used to train a GMM on a Riemannian
manifold (i. e., R3 × S3), which can be used to generate
task-oriented grasps.

3) Grasp Evaluation: The sampled task-relevant grasps
from the GMM are not guaranteed to be successful. To
address this problem, we propose a task-agnostic grasp
evaluation network to compute the success probability of
a grasp pose Tg relative to an arbitrary point cloud P

(see Fig. 4). We first encode P using the frozen encoder
of MIMO, i. e., c = ε(P). We then use a MLP decoder
conditioned on c to predict the success probability given
a set of keypoints Pk on the humanoid hand representing
its pose, i. e., ϕ(Tg,P

k|ε(P)) ∈ [0, 1]. We train this model
using a binary cross-entropy loss on a dataset fusing the task-
agnostic grasp candidates for all objects in all tasks, along
with their binary labels indicating successful grasps obtained
in Section III-B.2.

4) Inference: During inference, we sample grasp poses
T̂g from the trained GMM relative to the canonical point
cloud Pc, which are then transferred to a partially-observed
point cloud Po of a novel categorical instance following
Section III-A.3. We compute the success probability of
the transferred grasps T̃g using the trained task-agnostic
grasp evaluation network. If the grasp success probability
is lower than a certain threshold ξ, we refine the grasp
pose by maximizing the grasping success likelihood using
the grasp evaluation network from Section III-B.3, i. e.,
∆T∗

g = argmax∆Tg
ϕ(∆TgTg,P

k|ε(P)), and finally obtain
the optimal grasp pose T∗

g = ∆T∗
gTg.

IV. EVALUATION

We evaluate the proposed MIMO and grasping frame-
work in different manipulation tasks and compare with
NDF [7], R-NDF [9], and NIFT [8]. More details,
evaluation videos, and source code are available at
https://sites.google.com/view/mimo4.

A. Evaluation of MIMO in Simulation
We first evaluate the performance of MIMO against dif-

ferent approaches from the state of the art. To show the
effectiveness of the novel ESCF and CDD features in MIMO
(denoted MIMO4), we provide additional evaluation results
of a variant of MIMO (denoted MIMO3) with three branches
in the decoder to predict occupancy, signed distance, and
SCF separately. Additionally, we evaluate the results of
MIMO4 without shape reconstruction (denoted MIMO4-) to
validate the effectiveness of the shape reconstruction step.

1) Generation of Training Data: Training MIMO can be
done without manual annotation of the training data. NDF
and NIFT each provide their own datasets that could be
used for training. However, we observed two issues in these
datasets, namely (i) the bottom of the bottle’s meshes from
NDF is hollowed out, which influences the shape reconstruc-
tion quality; (ii) the mesh scaling is non-uniform, leading to
wrong labels for SCF and signed distance. Therefore, we
generate a new dataset made from watertight meshes from
the ShapeNet dataset [46] using [47] with rendered point
clouds for each mesh. The remainder of the data generation
and training of the models is similar to the procedure used for
NIFT. We train NIFT and our model using the new dataset
on a single NVIDIA A100 GPU, and use the pre-trained
weights of NDF and R-NDF provided by the authors.

2) Setup and Metrics: We consider three settings, namely
(S1) 10 demonstrations and four viewpoints, where the point
cloud is fused from 4 depth cameras at 4 corners of the
table; (S2) a single demonstration and four viewpoints, with
the same camera positions as before; and (S3) a single
demonstration and single viewpoint, in which the mug handle
and bottle opening are visible. We use BPS for all models
in the evaluation tasks. To evaluate SE(3)-equivariance of
the trained neural fields, we distinguish between upright (U)
and arbitrary (A) initial object poses, where the objects are
positioned upright on the table for U while the objects are ar-
bitrarily positioned in the air for A. For MIMO4 and MIMO3,
we reconstruct object shapes from partial observations and
transfer poses as discussed in Section III-A.3. For the setting
(S3), we implement MIMO4- using the partial observation
without shape reconstruction. The overall task is successful
if the object is grasped without dropping (grasp success) and
the bowl/bottle stands upright on a shelf, or the mug is hung
on the rack without penetration at the optimized target pose
(placement success).

3) Comparison with NDF: We use the simulation envi-
ronment and evaluation proposed from NDF, including 3
pick-and-place tasks: (T1) picking a mug by the rim and
placing it on the rack by the handle; (T2) picking a bowl
and placing it on the shelf; and (T3) picking a bottle from
the side and placing it on the shelf. We conduct 100 trials for
each task under the two settings (S1) and (S3), and upright
and arbitrary object poses respectively.

As shown in Fig. 5, all approaches achieve high success
rates of tasks (T1)-(T3) for the setting (S1). We observe
that MIMO4 achieves the best result in all cases, with
MIMO3 ranked slightly below. It is important to note that

https://sites.google.com/view/mimo4


TABLE I: Unseen object pick-and-place success rate with setting (S3) (single viewpoint, single demonstration).

Mug (T1) Bowl (T2) Bottle (T3) Mean

Grasp Place Overall Grasp Place Overall Grasp Place Overall Grasp Place Overall

NDF 0.95 0.73 0.72 0.89 0.93 0.84 0.90 0.69 0.65 0.91 0.78 0.74
NIFT 0.99 0.92 0.92 0.98 1.00 0.98 0.96 0.94 0.90 0.98 0.95 0.93
MIMO3 1.00 0.92 0.92 0.99 1.00 0.99 0.92 0.93 0.91 0.97 0.95 0.94
MIMO4- 0.99 0.92 0.92 0.98 0.98 0.97 0.94 0.64 0.62 0.97 0.85 0.84

U
pr

.P
os

e
U

MIMO4 1.00 0.98 0.98 1.00 0.99 0.99 0.97 0.97 0.95 0.99 0.98 0.97
NDF 0.53 0.58 0.34 0.76 0.80 0.64 0.42 0.91 0.40 0.57 0.76 0.46
NIFT 0.46 0.90 0.42 0.96 0.88 0.87 0.38 0.93 0.37 0.60 0.90 0.55
MIMO3 0.86 0.94 0.80 0.94 0.99 0.94 0.77 0.87 0.71 0.86 0.93 0.82
MIMO4- 0.53 0.96 0.50 0.97 0.95 0.94 0.67 0.52 0.50 0.72 0.81 0.65
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MIMO4 0.92 0.97 0.90 0.98 0.97 0.95 0.95 0.97 0.93 0.95 0.97 0.93
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Fig. 5: Success rate of the pick-and-place tasks (T1)-(T3)
with unseen objects under setting (S1) for models NDF ,
NIFT , MIMO3 , and MIMO4 , respectively.
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Fig. 6: Angle error of bowls and bottles. Colors as Fig. 5.

the overall success rates of MIMO4 only drop by 2% in
arbitrary pose compared to upright pose, which is less than
other approaches, showcasing a better SE(3)-equivariance
property of our neural descriptor field. In contrast, as shown
in Table I, MIMO4 significantly outperforms others in setting
(S3), especially in the case of arbitrary object poses in
tasks (T1) and (T2). We highlight the best success rates
of each (sub-)task. MIMO3, NIFT only perform slightly or
equally well than MIMO4 in the placing phase of (T2),
where bowls are involved. The reason is that the partially-
observed point cloud of bowls with large opening has already
covered a large portion of the object and it is much easier to
distinguish the up and down direction compared to the mugs
and bottles used in (T1) and (T2). Table I shows that methods
using shape reconstruction (MIMO3, MIMO4) outperform
methods without shape reconstruction (NDF, NIFT, MIMO4-
). This verifies the effectiveness of the shape reconstruction.
Note that, NIFT is trained on bottles hollowed out at the
bottom to achieve a high success rate in task (T3), while
our approach achieves better results without the need to
manipulate the training dataset. As discussed in Section III-
A and Fig. 3, NDF and NIFT often fail to distinguish the
top and bottom of the bottle and mug handle. Inaccurate

TABLE II: Success rates of unseen object rearrangement. U
and A stand for upright and arbitrary poses, respectively.

(T4) (T5) (T6) Mean

Models U A U A U A U A

(S1)
R-NDF 0.71 0.55 0.75 0.75 0.80 0.54 0.75 0.61
MIMO3 0.91 0.87 0.92 0.91 0.84 0.85 0.89 0.88
MIMO4 0.88 0.85 0.91 0.89 0.87 0.93 0.89 0.89

(S2)
R-NDF 0.56 0.53 0.64 0.61 0.12 0.18 0.44 0.44
MIMO3 0.89 0.89 0.90 0.88 0.85 0.87 0.88 0.88
MIMO4 0.92 0.92 0.90 0.87 0.91 0.93 0.91 0.92

(S3)
R-NDF 0.29 0.21 0.10 0.13 0.16 0.07 0.18 0.14
MIMO3 0.85 0.85 0.88 0.87 0.72 0.70 0.82 0.81
MIMO4 0.89 0.86 0.90 0.88 0.90 0.83 0.90 0.86

correspondences can cause objects to be transformed into
wrong poses, leading to low success rates in (T1) and (T3). In
contrast, our descriptor field is more informative, achieving
more accurate pose transfer and thus higher success rates. We
showcase the pose accuracy in Fig. 6 by computing the angle
error between the object’s upright direction and the gravity
direction at the target pose for bowls and bottles in (T2) and
(T3). A smaller angle indicates a more precise placement
pose. We observe that our MIMO4 has the smallest average
angle error and smallest variance across all tasks, further
verifying the superiority of our neural descriptor.

4) Comparison with R-NDF: We adopt the simulation
environments from R-NDF [9] with three tasks, namely:
(T4) hanging a mug on the hook of a rack; (T5) placing a
bowl on a mug; and (T6) and placing a bottle in a container.
All three settings are considered, namely (S1), (S2) and (S3).
In contrast to the experiments in Section IV-A.3, we focus
only on the target configurations of the object and neglect the
grasp procedure for this evaluation. The task is successful
if the source object is placed on the target object without
falling or exerting a large interaction force. We conduct
100 trials for each task and compute the success rates. As
shown in Table II, MIMO4 and MIMO3 perform equally
well in setting (S1) with a success rate of about 89%. In both
settings (S2) and (S3), MIMO4 significantly outperforms R-
NDF by about 48% and 70%, respectively. We kept the same
dimension of the descriptor space and optimization steps as
R-NDF, and we do not need their extra refinement, allowing
faster pose transfer while achieving higher accuracy. Note
that MIMO3’s performance drops in (S2) and further in (S3),
showcasing the effectiveness of the novel ESCF and CDD



feature in the partly shared decoder of MIMO.

B. Evaluation of the Grasping Framework

To evaluate the performance of MIMO in the context
of our grasping framework presented in Section III-B, we
performed multiple experiments in simulation using Isaac
Gym [45] and on the humanoid robots ARMAR-6 [48] and
ARMAR-DE in real-world manipulation tasks. We define
four tasks, namely: (T7) grasp a mug at its rim and place
it upright in a container; (T8) grasp a mug at its handle
and pour into a bowl; (T9) grasp a bottle at its neck and
place it upright in a container; and (T10) grasp a bottle
at its body and pour it into a bowl. Object poses are
randomly initialized, with mugs positioned to ensure handle
visibility. We use MIMO4 to reconstruct object shapes from
the partially observed object point clouds. The grasp poses
are sampled from the GMM, transferred to the observed
objects, and evaluated by the grasp evaluator (see Section III-
B.3). If the estimated success probability drops below 0.9,
the grasp pose is optimized with a learning rate of 10−3 (see
III-B.4). We then optimize the target pose for rearrangement
using MIMO4 and execute the grasp and rearrangement
action.

1) Evaluation in Simulation: We simulate a humanoid
hand in Issac Gym equipped with a depth camera positioned
in front of a table. We use NIFT with BPS as a baseline
approach without the grasp evaluation and refinement. Note
that tasks (T7)-(T10) are successful if both grasping and
rearrangement are successful. We execute each task for 50
trials under setting (S3). As shown in Table III, MIMO4
outperforms NIFT in all tasks, especially in task (T9) by
about 72%. NIFT cannot differentiate between the top and
bottom of the bottle and, therefore, fails to place the bot-
tle in the container. In contrast, MIMO4 achieves higher
success rates, benefiting from the reconstructed shape and
the powerful descriptor space. In addition, MIMO4 achieves
an average success rate of 95% for grasping, including
difficult side grasps at the mug handle, which demonstrates
the effectiveness of our grasp evaluator.

2) Evaluation in the Real World: Similarly to Section IV-
B.1, we replicate tasks (T7)-(T10) using the same GMM
and MIMO4 with two humanoid robots: ARMAR-DE and
ARMAR-6. We use an Azure Kinect camera mounted on
the robot head to obtain RGB and depth images and extract
object point clouds as explained in Section III-B.1. For the
experiments on ARMAR-DE, the grasp pose was validated
and executed using the mobile manipulation framework [49].
On ARMAR-6, we use a task-space impedance controller
to execute the motions generated by the learned movement
primitives (see Section III-B.1), where the target poses are
the corresponding grasp pose in the grasp phase and the
object rearrangement pose in the placement or pouring phase.
We show qualitative results in Fig. 7 and in the accompany-
ing video, showcasing the efficacy of our approach in one-
shot imitation learning of manipulation tasks.

TABLE III: The success rates of unseen object grasping (G)
and rearrangement (R).

(T7) (T8) (T9) (T10) Mean

Models G R G R G R G R G R
NIFT 0.80 0.62 0.92 0.80 0.86 0.08 0.92 0.68 0.88 0.55

MIMO4 0.94 0.88 0.96 0.94 0.90 0.80 0.98 0.88 0.95 0.88

(a) Mug Pick and Place (T7). (b) Mug Pick and Pour (T8).

(c) Bottle Pick and Place (T9). (d) Bottle Pick and Pour (T10).

Fig. 7: Real-world experiments on ARMAR-DE.

V. CONCLUSION

We propose Multi-feature Implicit Model (MIMO), a novel
implicit neural field that provides informative and SE(3)-
equivariant point and pose descriptors. Trained on multiple
spatial features, MIMO facilitates finer correspondence de-
tection and more accurate pose transfer compared to state-of-
the-art approaches. MIMO also allows for shape reconstruc-
tion to account for partial observations. Based on MIMO, we
propose a task-oriented grasping and object rearrangement
framework with a novel evaluation and refinement procedure
to further increase success rates. Our approach outperforms
others in one- and few-shot visual imitation learning of pick-
and-rearrangement tasks. In future works, we will investigate
local neural descriptors and inter-category generalization of
manipulation skills.
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