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Abstract— Task-oriented object grasping and rearrangement
are critical skills for robots to accomplish different real-world
manipulation tasks. However, they remain challenging due
to partial observations of the objects and shape variations
in categorical objects. In this paper, we propose the Multi-
feature Implicit Model (MIMO), a novel object representation
that encodes multiple spatial features between a point and an
object in an implicit neural field. Training such a model on
multiple features ensures that it embeds the object shapes
consistently in different aspects, thus improving its performance
in object shape reconstruction from partial observation, shape
similarity measure, and modeling spatial relations between
objects. Based on MIMO, we propose a framework to learn
task-oriented object grasping and rearrangement from single
or multiple human demonstration videos. The evaluations in
simulation show that our approach outperforms the state-of-
the-art methods for multi- and single-view observations. Real-
world experiments demonstrate the efficacy of our approach in
one- and few-shot imitation learning of manipulation tasks.

I. INTRODUCTION

Performing accurate manipulation tasks with everyday
objects is an intricate problem that poses several challenges
for robots. The robot must first find the optimal grasps
for specific tasks and generate a suitable motion trajectory
to achieve this configuration. For instance, a side grasp
by the mug handle is suitable for pouring water out of a
mug (see Fig. [Ta), while a top grasp by the rim is more
suitable when placing the mug into a container to avoid
collision between the hand and the container (see Fig. [ID).
Additionally, suitable pose configurations of the mug relative
to the bowl and the container are needed in such an object
rearrangement task.

To generate task-oriented grasps, previous works [1]—[3]
have focused on training neural networks on large man-
vally annotated datasets. Despite their performance, these
approaches fail to generalize to novel objects with large
shape variations. Moreover, manual annotation is costly and
difficult to acquire. In contrast, visual imitation learning
(VIL) approaches like [4], [S] provide efficient means to
teach robots manipulation skills from human demonstrations
and enable generalization to new scenarios with categorical
objects. This paper focuses on the line of works that utilize
neural fields, e.g., [6]-[9], which implicitly encode object
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(b) Top-down Grasp and Placement.

Fig. 1: Learning task-oriented object grasping and rearrange-
ment from human demonstration videos of manipulation
tasks. We illustrate two tasks: |(a)| side picking a mug and
pouring into a bowl; and [(b)] top-down picking a mug and
placing it into a container. For each task, we show the RGB
image, the observed point clouds ( e ), reconstructed object
meshes (1 ), extracted hand mesh ( mm ), grasp poses
(Tg), and the execution on a humanoid robot.

spatial properties. Neural fields can be trained in a self-
supervised manner by exploiting an inherent bias towards
object classes, thus eliminating the need for manual annota-
tion. This bias plays an important role in establishing dense
3D correspondences across categorical objects, enabling the
adaptation of object manipulation skills to previously unseen
object instances. However, these approaches require multiple
views of the object, which are often unavailable in real-world
applications. When presented with a partial view or categori-
cal objects with large shape variations, these approaches may
yield less precise grasp or object target poses, potentially
resulting in collisions or unstable placement.

To address the above-mentioned challenges, we introduce
the Multi-feature Implicit Model (MIMO), which is designed
to predict multiple spatial properties of a 3D point relative
to an object. This enables our model to generate a richer
descriptor space and thus more precise dense correspon-
dences, which facilitates the accurate transfer of grasps
and object target poses to new situations. MIMO can also
reconstruct object shapes when only a partial observation is
available, which is beneficial for coping with task constraints



defined on the hidden part of the object. Leveraging MIMO’s
capabilities, we propose a framework that efficiently learns
and generates task-oriented grasps from single or multiple
human demonstration videos. Moreover, we use an eval-
vation network to predict the success probability of the
generated grasps and refine them if necessary.

The contributions of this paper are twofold: (1) We pro-
pose the novel Multi-feature Implicit Model (MIMO) that
predicts multiple spatial features of a point relative to an
object, which yields an informative point and pose descriptor
space. It outperforms the state-of-the-art neural field methods
in terms of dense correspondence, shape reconstruction,
and pose transfer. The model can be trained in a self-
supervised manner without relying on human annotations.
(2) We integrate MIMO into visual imitation learning and
propose a framework to efficiently learn, generate, and refine
task-oriented grasps. We achieve one- and few-shot imitation
learning and demonstrate a direct transfer of the learned
manipulation tasks to categorical objects.

II. RELATED WORK

Deep learning-based methods for grasping have made
significant progress in robotics thanks to advances in implicit
object representation. Explicitly modeling the relevance of
manipulation skills for a given task is important for gener-
alization to novel situations. In this regard, we focus on im-
plicit representation through neural fields, along with recent
advancements in task-relevant grasping and manipulation.

A. Neural Fields and Neural Descriptors

Neural-fields-based approaches involve training neural net-
works to learn a continuous representation by predicting the
physical and spatial properties of a 3D point relative to its
surroundings [6]. The learned representations, known as de-
scriptors, are used in various tasks such as 3D reconstruction
[10], [11] and manipulation [12], [13]. Leveraging dense
correspondences in the descriptor space allows the transfer of
manipulation skills between similar objects. Previous works
[14]-[16] used Convolutional Neural Networks to obtain
pixel-wise descriptors for detecting correspondences from
RGB images. However, these approaches rely on visible 2D
descriptors, which fail to account for task constraints on
the hidden parts of the objects. To overcome this limitation,
Neural Descriptor Fields (NDFs) [7] directly encode SE(3)-
equivariant point and pose descriptors from the 3D point
cloud of objects. Although a richer descriptor space was
proposed in [8] by leveraging the space coverage feature
(SCF) [17], it sacrificed the ability to reconstruct object
shapes. Despite their performance for grasp transfer in multi-
view cases with a few demonstrations (5-10), the accuracy
degenerates where only a partial view or a single demon-
stration is available. In contrast, we train the implicit model
to predict multiple spatial features of a point relative to an
object, resulting in a more informative descriptor space while
preserving the shape reconstruction capability. We outper-
form the approaches presented in [7] and [8] in tasks such
as shape similarities measure and pose transfer, especially

with partial view. This also leads to better performance in
one-shot imitation learning of manipulation tasks.

B. Modeling Task Relevance

In the context of task-oriented grasping, it is crucial to
consider the modeling of task relevance as this enables the
determination of grasp poses that are most conducive to
the downstream task. In previous works, semantic segmen-
tation models have been trained to detect grasp affordance
regions from either RGB images [1]-[3], [18] or 3D point
clouds [19]-[22]. However, these methods often rely on large
annotated datasets, necessitating time-consuming manual an-
notation. Furthermore, they are tailored to grasping rather
than object rearrangement tasks. The former challenge is
alleviated in [23], [24] via self-supervision in simulation.
To address the latter, recent works focus on modeling task
relevance using general 2D or 3D neural descriptors, e. g., 2D
affordance regions [25], [26] and 3D affordance maps [27],
[28]. These neural descriptors measure shape similarity,
enabling the modeling of task relevance and facilitating the
transfer of task-relevant grasps, object poses, or regions to
new scenarios. However, the approaches in [25] and [26]
are limited to top-down planar grasps, while multiple cali-
brated RGB images are required in [27] and [28] for scene
reconstruction, which is time-consuming and not always
feasible. In contrast, we use a novel neural pose descriptor
derived from partial observations, which can be used for
modeling task-oriented grasp distributions and downstream
rearrangement tasks.

C. Category-Level Manipulation

Previous works, like [29]-[31], utilized semantic keypoints
for transferring manipulation skills between categorical ob-
jects. However, overlooking the category-level inductive bias,
these approaches necessitate extensive manual annotation for
keypoint detection and careful assignment of keypoints for
each task and object. To address this problem, category-level
non-rigid registration [32]-[34] was proposed to reconstruct
object shapes and infer object 6D poses. However, these
models face difficulties in transferring to objects with large
shape variations. Another line of work [7], [8] leverages
category-level neural descriptors for transferring skills. How-
ever, these models assume one interacting object is known
and fixed. Relational-NDF (R-NDF) [9] relaxed this limi-
tation by manually selecting keypoints and associated local
frames in task-relevant regions. However, it faces challenges
in predicting precise dense correspondences with partial
observation, a limitation addressed by [35] through subtasks,
including pose estimation, shape reconstruction, similarity
measure, and grasp transfer. Yet, each subtask demands a
separate model. In contrast, we address partial observation
by leveraging MIMO’s capability in shape reconstruction.
This enhances the precision of task relevance and knowledge
transfer for object grasping and rearrangement and allows the
usage of MIMO for all tasks, offering an efficient solution
for manipulation tasks.
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Fig. 2: Multi-feature Implicit Model (MIMO) and its applications. MIMO takes as input an object point cloud P and a
point coordinate x and outputs multiple spatial features of x relative to P, including occupancy ®,.., signed distance ®qs,
extended space coverage feature (ESCF) ®.¢ and closest distance direction (CDD) ®.49. The concatenation of activation
layers of the decoder for ®¢.s and P.qq forms the point descriptor z of x. @ The CDD is represented as the inner product
of two unit vectors v, and vg. The high-dimensional point descriptors of each reference object are reduced to a 3D
space using Principal Component Analysis (PCA) representing the RGB channels of the color map. Each point of other
categorical object instances is colorized according to the most similar point (smallest L1 distance in point descriptors) from
the corresponding reference object. The MIMO can be used for @ object shape reconstruction and @ grasp pose transfer.
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Fig. 3: Point correspondence and shape similarity measure
using point descriptors from partially-observed point clouds
(e). Given a point on a reference object, we colorize
the novel object mesh based on the L1 distance of point
descriptors to the reference point, where blue means more
similar, and mark the most similar points ( ).

III. MIMO FOR MANIPULATION

In this paper, we focus on learning task-oriented grasping
and object rearrangement tasks from human demonstration
videos. We first introduce the Multi-feature Implicit Model
(MIMO) and its applications in Section [lI-A] and then
propose a novel grasping framework in Section [[IlI-B|to learn
and generate task-oriented grasps.

A. Multi-feature Implicit Model

As shown in Fig. 2a] MIMO uses a shared PointNet [36]
encoder £(P) embedding the geometric information of the
point cloud P in a latent code, and a partly shared Multi-
layer Perceptron (MLP) decoder with multiple branches,
representing spatial relations of a point x relative to P. The
occupancy P, [10] and signed distance P44 [11] branches
enable MIMO to reconstruct object shapes. Specifically,
given the fully- or partially-observed point cloud of an object,
we extract the object mesh from the trained occupancy
branch using the Multi-resolution IsoSurface Extraction al-
gorithm [10] (see Fig. @) We experience that, jointly
training the signed distance branch yields more precise shape

reconstruction compared with training the occupancy branch
alone. Additionally, we introduce two novel feature branches,
namely, 1) the extended SCF (ESCF) branch ®.ys; and
2) the closest distance direction (CDD) branch ®.4. In
contrast to the SCF branch utilized in NIFT [8], where the
power spectrum of each degree in the spherical harmonics
expansion is considered, our ESCF branch is directly super-
vised by the coefficients of spherical harmonics expansion
across all orders and degrees. This enables ESCF to capture
finer geometric details. To further enhance the neural field’s
direction-awareness, we introduce CDD, defined as the inner
product of unit vectors v4 and v, where v points from a
point x to the closest point on the object, and v, follows
a chosen principal direction, e.g., pointing upward when
the object is positioned vertically (see Fig. [2b). Similarly
to NDF, we concatenate the activation layers of the partly-
shared decoder for ®.; and ®.qq as the point descriptor
z = r(x|P), which forms a descriptor space to measure ge-
ometric similarity (see Fig. 2d). Trained with four branches,
our descriptor space is more informative in distinguishing
fine geometric details. In practice, we observed that the
performance of the similarity measure drops when directly
inferring z from the noisy partially-observed point cloud
P. To address this problem, we reconstruct the mesh, from
which a point cloud P,. is sampled as input to MIMO to infer
the point descriptor z = x(x|P,). As shown in Fig. 3} MIMO
finds point correspondence between the reference object and
a partially-observed categorical object precisely, while NDF
yields an imprecise point correspondence and NIFT often
fails to distinguish the up and down direction of the bottle or
the mug. Further evaluation results are shown in Section
[A] Since all the features can be automatically computed, no
further human annotation is required to collect the training
dataset. Next, we detail the loss functions for training MIMO.

1) Multi-task Loss Function: For training MIMO, having
four distinct feature branches, we combine the loss functions
of each branch through a weighted sum. However, manually
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Fig. 4: Proposed MIMO-based Grasp Framework. (a) Given a human demonstration of a grasping scene, we obtain the
object point cloud P* and a grasp pose T¢. We generate task-agnostic grasp poses {T4%} using a grasp generator [38], and
use MIMO as a discriminator to select the task-relevant candidates {T}} based on pose descriptor similarities between Tg
and T¢. Alternatively, we can directly transfer the demonstrated grasp pose T¢ to the canonical point cloud P¢ using MIMO.
We then simulate the candidates {T}} to find the successful grasp poses {T}} to train a GMM. (b) Given an object point
cloud P, a grasp pose T, and a set of hand keypoints P*, the grasp evaluation network encodes P using the frozen encoder
¢(-) of MIMO and outputs the grasp success probability using MLP. (c) During inference, the sampled grasp pose T, relative
to the canonical point cloud P¢ is transferred to a partially-observed point cloud P° using MIMO, and the transferred grasp
pose T, is evaluated and refined (if necessary) to obtain the optimal grasp pose T;.

adjusting the weights for these loss functions is challenging.
To address this problem, we introduce homoscedastic uncer-
tainty [37] for each branch, where the likelihood is defined as
a Gaussian p(yi|fw,(x)) = N(fw,(x),0?),i € [1,4] with
the model output fyw,(x) as the mean and the variance o;
representing the uncertainty. The objective is to maximize the
overall likelihood, or equivalently to minimize its negative
log-likelihood, i.e, £ = Yi_, (55 L:i(Wi) + log(0y)),
where L£; are binary cross entropyl loss for occupancy,
clamped L1 loss for signed distance, and L1 losses for ESCF
and CDD, respectively. For better numerical stability, we set
s; = log(c?),i = {1,2,3,4} following [37]. Thus, the total
loss is reformulated as £ = Zle(e_slﬁi (Wji)+s;). During
the training, we minimize the loss function with respect
to weights of the model W; and uncertainty s;. In this
way, uncertainty is automatically optimized without manual
tuning.

2) Pose Descriptor: Similarly to [7], we adopt the Basis
Point Set (BPS) [39] sampling strategy, and concatenate the
point descriptors of a set of points around an object as
their pose descriptor Z. Specifically, given a set of points
X € RV*3 sampled from a rigid object Op in pose T around
the point cloud P# of object O4, we obtain pose descriptor
of Op using the trained MIMO of object category A, i.e.,
AZp = o(T,X|P4). It measures the similarity of the poses
relative to 04, where similar poses have a small L1 distance
between their pose descriptors. Speaking in terms of the
example in Fig. [l ©4 would be an instance of the “mug”
class, while O would be the hand and, therefore, 4Zg
associated to a grasp pose T. Similarly to Section
we reconstruct the mesh of 04, from which a point cloud
P2 is sampled as input to MIMO to infer the pose descriptor

3) Pose Transfer: Given a trained MIMO of object
category A, a reference pose descriptor 4Zp and a pair
of arbitrary object instances (O4,0p) from category A
and B, we optimize the pose of Op relative to O, by
T* = argminy ||o(T, X|PA) — 4Zp||;, where P2 is the re-
constructed point cloud of O4. We adopt the same opti-
mization procedure as in [7]. In a visual imitation learning
(VIL) setup, the reference pose descriptor can be derived
from human demonstration videos. Specifically, we find the
closest point pair on O4 and Op at the last timestep of
the demonstration as keypoints. Similarly to [9], we then
sample BPS around keypoints of O4 and Op respectively, to
compute the corresponding reference pose descriptors. which
can be used to transfer O 4 and Op to align with O4 and Op,
respectively, with the optimization steps described above.
The rearrangement target pose of Op relative to O, can be
derived from the optimized poses. Note that the keypoints
and sampled BPS do not need to lie on the object. We
refer interested readers to [9] for more details. In terms of
grasping, where Op is the human or robot hand and 04 is an
arbitrary object to be grasped, the pose descriptors measure
the grasp similarity, which can be used for transferring
grasps to similar objects. Next, we introduce a novel grasp
framework based on MIMO.

B. MIMO-based Grasp Framework

Leveraging MIMO’s strengths in measuring pose simi-
larities and transferring poses, we introduce a framework
designed to learn task-specific grasping and object rear-
rangement from one or multiple human demonstrations. This
framework can generate optimal grasp poses for new object
instances based on partial observations, as shown in Fig. [



1) Human Observation: Given human demonstration
videos consisting of sequences of RGB and depth images of
a manipulation task, we estimate the hand poses in all frames
using [40] and train a movement primitive [41] representing
the hand motion. We then determine the grasping timestep
ty and detect grasp pose Ty € SE(3) following [42]. The
object being grasped is the source object O, and the other
object, which sets a reference frame for placing O, at the last
timestep tr, is the target object O,. We obtain the segmented
point clouds of both objects at ¢, and t7 using Grounded
SAM [43], [44].

2) Task-oriented Grasp Learning: As shown in Fig. [ (a),
we generate task-agnostic grasp candidates {Tg} using [38]
on a canonical point cloud P¢ for the class of the source
object O,. We present two strategies to obtain task-relevant
grasp candidates, i.e., (i) using MIMO as a discriminator for
pose similarity to find the most similar grasps in {T%} to T4
(see Section [[II-A.2)); or (ii) using MIMO to directly transfer
the demonstrated grasp Tg relative to P to a set of candidate
grasps relative to canonical space (see Section [[II-A.3). We
fuse the task-relevant grasp candidates {T}} from the two
strategies and simulate them with a humanoid hand in Issac
Gym [45]. Specifically, the grasp is successful if the object
is picked up and does not drop after a random shaking
action. We then simulate the object rearrangement given
the successful grasps and determine the set of task-relevant
grasps if the tasks are accomplished without failure (see
Section [[V] for a definition of possible tasks). The successful
and task-relevant grasps {Tj} in canonical space are used
to train a GMM on a Riemannian manifold (i.e., R® x S%),
which can be used to generate task-oriented grasps.

3) Grasp Evaluation: The sampled task-relevant grasps
from the GMM are not guaranteed to be successful. To
address this problem, we propose a task-agnostic grasp
evaluation network to compute the success probability of
a grasp pose T, relative to an arbitrary point cloud P
(see Fig. @). We first encode P using the frozen encoder
of MIMO, i.e., c=¢(P). We then use a MLP decoder
conditioned on c to predict the success probability given
a set of keypoints P* on the humanoid hand representing
its pose, i.e., ¢(T,, P*e(P)) € [0,1]. We train this model
using a binary cross-entropy loss on a dataset fusing the task-
agnostic grasp candidates for all objects in all tasks, along
with their binary labels indicating successful grasps obtained
in Section [M=B.21

4) Inference: During inference, we sample grasp poses
T, from the trained GMM relative to the canonical point
cloud P¢, which are then transferred to a partially-observed
point cloud P° of a novel categorical instance following
Section We compute the success probability of
the transferred grasps T, using the trained task-agnostic
grasp evaluation network. If the grasp success probability
is lower than a certain threshold &, we refine the grasp
pose by maximizing the grasping success likelihood using
the grasp evaluation network from Section [II-B.3] i.e.,
AT; = argmaxap, (AT, Ty, P*(P)), and finally obtain
the optimal grasp pose T; = AT;T,.

IV. EVALUATION

We evaluate the proposed MIMO and grasping frame-
work in different manipulation tasks and compare with
NDF [7], R-NDF [9], and NIFT [8]. More details,
evaluation videos, and source code are available at
https://sites.google.com/view/mimo4.

A. Evaluation of MIMO in Simulation

We first evaluate the performance of MIMO against dif-
ferent approaches from the state of the art. To show the
effectiveness of the novel ESCF and CDD features in MIMO
(denoted MIMO4), we provide additional evaluation results
of a variant of MIMO (denoted MIMO?3) with three branches
in the decoder to predict occupancy, signed distance, and
SCF separately.

1) Generation of Training Data: Training MIMO can be
done without manual annotation of the training data. NDF
and NIFT each provide their own datasets that could be
used for training. However, we observed two issues in these
datasets, namely (i) the bottom of the bottle’s meshes from
NDF is hollowed out, which influences the shape reconstruc-
tion quality; (ii) the mesh scaling is non-uniform, leading to
wrong labels for SCF and signed distance. Therefore, we
generate a new dataset made from watertight meshes from
the ShapeNet dataset [46] using [47] with rendered point
clouds for each mesh. The remainder of the data generation
and training of the models is similar to the procedure used for
NIFT. We train NIFT and our model using the new dataset
on a single NVIDIA A100 GPU, and use the pre-trained
weights of NDF and R-NDF provided by the authors.

2) Setup and Metrics: We consider three settings, namely
(S1) 10 demonstrations and four viewpoints, where the point
cloud is fused from 4 depth cameras at 4 corners of the
table; (S2) a single demonstration and four viewpoints, with
the same camera positions as before; and (S3) a single
demonstration and single viewpoint, in which the mug handle
and bottle opening are visible. We use BPS for all models
in the evaluation tasks. To evaluate SE(3)-equivariance of
the trained neural fields, we distinguish between upright (U)
and arbitrary (A) initial object poses, where the objects are
positioned upright on the table for U while the objects are ar-
bitrarily positioned in the air for A. For MIMO4 and MIMO3,
we reconstruct object shapes from partial observations and
transfer poses as discussed in Section The overall
task is successful if the object is grasped without dropping
(grasp success) and the bowl/bottle stands upright on a shelf,
or the mug is hung on the rack without penetration at the
optimized target pose (placement success).

3) Comparison with NDF: We use the simulation envi-
ronment and evaluation proposed from NDF, including 3
pick-and-place tasks: (T1) picking a mug by the rim and
placing it on the rack by the handle; (T2) picking a bowl
and placing it on the shelf; and (T3) picking a bottle from
the side and placing it on the shelf. We conduct 100 trials for
each task under the two settings and and upright
and arbitrary object poses respectively.
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TABLE I: Unseen object pick-and-place success rate with setting [(S3)| (single viewpoint, single demonstration).

Mug |(T1), Bowl |(T2) Bottle |(T3) Mean
Grasp Place Overall ~ Grasp Place Overall  Grasp Place Overall ~ Grasp Place Overall
- NDF 0.95 0.73 0.72 0.89 0.93 0.84 0.90 0.69 0.65 0.91 0.78 0.74
2 R-NDF 0.90 0.77 0.69 0.90 1.00 0.90 0.53 0.97 0.51 0.78 0.91 0.70
&£  NIFT 0.99 0.92 0.92 0.98 1.00 0.98 0.96 0.94 0.90 0.98 0.95 0.93
£  MIMO3  1.00 0.92 0.92 0.99 1.00 0.99 0.92 0.93 0.91 0.97 0.95 0.94
=  MIMO4 1.00 0.98 0.98 1.00 0.99 0.99 0.97 0.97 0.95 0.99 0.98 0.97
< NDF 0.53 0.58 0.34 0.76 0.80 0.64 0.42 0.91 0.40 0.57 0.76 0.46
2  R-NDF 0.50 0.70 0.35 0.78 0.97 0.77 0.12 0.90 0.09 0.47 0.86 0.40
£ NIFT 0.46 0.90 0.42 0.96 0.96 0.94 0.38 0.93 0.37 0.60 0.93 0.58
£ MIMO3 0.86 0.94 0.80 0.94 0.99 0.94 0.77 0.87 0.71 0.86 0.93 0.82
<  MIMO4 0.92 0.97 0.90 0.98 0.97 0.95 0.95 0.97 0.93 0.95 0.97 0.93
Vo _ TABLE II: Success rates of unseen object rearrangement. U
10 pright Pose Arbitrary Pose . i .
;;; and A stand for upright and arbitrary poses, respectively.
0.9
§ 08 (T4) (T5) (T6) Mean
A o7 Models U A U A U A U A
Grasp  Place  Overall Grasp  Place  Overall R-NDF 071 055 075 075 0.80 0354 075 0.61
Fig. 5: Success rate of the pick-and-place tasks [(T1)H(T3) (ST MIMO3 091 0.87 092 091 0.84 0.85 0.89 0.88
with unseen objects under setting [(ST)| for models NDF =, MIMO4 088 085 091 089 0.87 093 0.89 089
NIFT MIMO3 d MIMO4 tivel R-NDF 0.56 0.53 0.64 061 0.12 0.18 044 044
’ > an » respectively. (S2) MIMO3  0.89 0.89 0.90 0.88 085 0.87 0.88 0.88
MIMO4 092 092 090 087 091 093 091 0.92
o R-NDF 029 021 0.10 0.13 0.16 0.07 0.18 0.14
e 2 SD] Upr. Pose U Arb. Pose A
T pr. ose . Tose 53] MIMO3 085 085 088 087 072 070 082 0.81
5 o i' MIMO4 0.89 086 090 0.88 0.90 0.83 0.90 0.86
K]
en 5
: . = = % = = L .
S — more accurate pose transfer and thus higher success rates. We
Qg %0 Upr. Pose U Arb. Pose A showcase the pose accuracy in Fig. [6|by computing the angle
5 » error between the object’s upright direction and the gravity
I Q direction at the target pose for bowls and bottles in and
10 . . .
<, é %l = él é == (T3)l A smaller angle indicates a more precise placement

NDF NIFT MIMO3 MIMO4 NDF NIFT MIMO3 MIMO4

Fig. 6: Angle error of bowls and bottles. Colors as Fig.

As shown in Fig. ] all approaches achieve high success
rates of tasks for the setting We observe
that MIMO4 achieves the best result in all cases, with
MIMO3 ranked slightly below. It is important to note that
the overall success rates of MIMO4 only drop by 2% in
arbitrary pose compared to upright pose, which is less than
other approaches, showcasing a better SE(3)-equivariance
property of our neural descriptor field. In contrast, as shown
in Table [} MIMOA4 significantly outperforms others in setting
[(S3)] especially in the case of arbitrary object poses in tasks
and We highlight the best success rates of each
(sub-)task. MIMO3, NIFT and R-NDF only perform slightly
or equally well than MIMO4 in the placing phase of
where bowls are involved. The reason is that the partially-
observed point cloud of bowls with large opening has already
covered a large portion of the object and it is much easier to
distinguish the up and down direction compared to the mugs
and bottles used in[(T1) and[(T2)} As discussed in Section [[TI
[A] and Fig. 3] NDF and NIFT often fail to distinguish the
top and bottom of the bottle and mug handle. Inaccurate
correspondences can cause objects to be transformed into
wrong poses, leading to low success rates in and[(T2)} In
contrast, our descriptor field is more informative, achieving

pose. We observe that our MIMO4 has the smallest average
angle error and smallest variance across all tasks, further
verifying the superiority of our neural descriptor.

4) Comparison with R-NDF: We adopt the simulation
environments from R-NDF [9] with three tasks, namely:
(T4) hanging a mug on the hook of a rack; (T5) placing a
bowl on a mug; and (T6) and placing a bottle in a container.
All three settings are considered, namely [(ST)} [(S2)] and [(S3)}
In contrast to the experiments in Section [[V-A.3| we focus
only on the target configurations of the object and neglect the
grasp procedure for this evaluation. The task is successful
if the source object is placed on the target object without
falling or exerting a large interaction force. We conduct 100
trials for each task and compute the success rates. As shown
in Table [l MIMO4 and MIMO3 perform equally well in
setting [(ST)| with a success rate of about 89%. In both settings
and MIMO4 significantly outperforms R-NDF by
about 48% and 70%, respectively. Therefore, we do not need
the extra alignment and refinement steps as in NIFT [9]. Note
that MIMO3’s performance drops in[(S2)|and further in [(S3)]
showcasing the effectiveness of the novel ESCF and CDD
feature in the partly shared decoder of MIMO.

B. Evaluation of the Grasping Framework

To evaluate the performance of MIMO in the context
of our grasping framework presented in Section [[II-B] we



TABLE III: The success rates of unseen object grasping (G)
and rearrangement (R).

(T10)

Models G R G R G R G R G R
NIFT 0.80 0.62 0.92 0.80 0.86 0.08 0.92 0.68 0.88 0.55
MIMO4  0.94 088 0.96 094 0.90 0.80 0.98 0.88 0.95 0.88

Mean

performed multiple experiments in simulation using Isaac
Gym [45] and on the humanoid robots ARMAR-6 [48] and
ARMAR-DE in real-world manipulation tasks. We define
four tasks, namely: (T7) grasp a mug at its rim and place it
upright in a container; (T8) grasp a mug at its handle and
pour into a bowl; (T9) grasp a bottle at its neck and place it
upright in a container; and (T10) grasp a bottle at its body
and pour it into a bowl. Object poses are randomly initialized,
with mugs positioned to ensure handle visibility. We use
MIMO4 to reconstruct object shapes from the partially-
observed object point clouds. The grasp poses are sampled
from the GMM, transferred to the observed objects, and
evaluated by the grasp evaluator (see Section [[II-B.3). If
the estimated success probability drops below 0.9, the grasp
pose is optimized with a learning rate of 103 (see [[TI-B.4).
We then optimize the target pose for rearrangement using
MIMO4 and execute the grasp and rearrangement action.

1) Evaluation in Simulation: We simulate a humanoid
hand in Issac Gym equipped with a depth camera positioned
in front of a table. We use NIFT with BPS as a baseline
approach without the grasp evaluation and refinement. Note
that tasks [[TH(TIO0)| are successful if both grasping and
rearrangement are successful. We execute each task for 50
trials under setting [(S3)] As shown in Table MIMO4
outperforms NIFT in all tasks, especially in task by
about 72%. NIFT cannot differentiate between the top and
bottom of the bottle and, therefore, fails to place the bot-
tle in the container. In contrast, MIMO4 achieves higher
success rates, benefiting from the reconstructed shape and
the powerful descriptor space. In addition, MIMO4 achieves
an average success rate of 95% for grasping, including
difficult side grasps at the mug handle, which demonstrates
the effectiveness of our grasp evaluator.

2) Evaluation in the Real World: Similarly to Section [[V7]
Bl we replicate tasks [[TH(TI0)| using the same GMM
and MIMO4 with two humanoid robots: ARMAR-DE and
ARMAR-6. We use an Azure Kinect camera mounted on
the robot head to obtain RGB and depth images and extract
object point clouds as explained in Section [[lI-B.1} For the
experiments on ARMAR-DE, the grasp pose was validated
and executed using the mobile manipulation framework [49].
On ARMAR-6, we use a task-space impedance controller
to execute the motions generated by the learned movement
primitives (see Section [[II-B.T), where the target poses are
the corresponding grasp pose in the grasp phase and the
object rearrangement pose in the placement or pouring phase.
We show qualitative results in Fig. [7]and in the accompany-
ing video, showcasing the efficacy of our approach in one-
shot imitation learning of manipulation tasks.

(a) Mug Pick and Place (T7) (b) Mug Pick and Pour |(T8)
~a -

(c) Bottle Pick and Place (d) Bottle Pick and Pour |(T10)
Fig. 7: Real-world experiments on ARMAR-DE.

V. CONCLUSION

We propose Multi-feature Implicit Model (MIMO), a novel
implicit neural field that provides informative and SE(3)-
equivariant point and pose descriptors for shape similarity
measure. Trained on multiple spatial features, MIMO fa-
cilitates finer correspondence detection and more accurate
pose transfer compared to state-of-the-art approaches. MIMO
also allows for shape reconstruction to account for partial
observations. Based on MIMO, we propose a task-oriented
grasping and object rearrangement framework with a novel
evaluation and refinement procedure to further increase suc-
cess rates. Our approach outperforms others in the one- and
few-shot visual imitation learning of pick-and-rearrangement
tasks. In future works, we will investigate local neural
descriptors and inter-category generalization of manipulation
skills.
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