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Abstract A novel approach for global self-localization is presented. It is based
on a graph world-model and active stereo vision using density gaussian spheres.
Evolved appearance-based object recognition components deliver noisy percept
subgraphs which are filtered and fused into an ego-centered reference frame. In sub-
sequent stages, the required vision-to-model associations are extracted by selecting
ego-percept subsets in order to prune and match the corresponding world-model-
subgraph. Ideally, these coupled subgraphs hold necessary information to obtain the
model-to-world transformation, i.e. the pose of the robot. However, the estimation of
the pose is not robust due to the uncertainties introduced when recovering euclidean
metric from images and during the mapping from the camera to the ego-center. The
approach models the uncertainty of the percepts with a radial normal distribution.
This formulation allows a solution-optimization in a closed-form which not only de-
rives the maximal density position depicting the optimal ego-center but also ensures
the solution even in situations where pure geometric spheres might not intersect.

1 Motivation

Autonomous systems require the fundamental capability of self-localization in or-
der to properly process, associate and interpret the incoming environmental sensor
signals. A remarkable example of such systems are humanoid robots operating in
structured environments also called human-centered environment, see Fig.1-a.

The use of a formal representation of the elements composing the surroundings
and their interrelationships is needed to enable the robot to perform complex tasks
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2 D. González-Aguirre, T. Asfour, E. Bayro-Corrochano and R. Dillmann

through the composition of multimodal skills accomplished through a perception-
action cycle.

Fig. 1 a) The humanoid robot ARMAR-IIIa and its kitchen environment [1]. b) The active vision
Karlsruhe humanoid head [2].

An effective mechanism to achieve the self-localization in these environments
ought to profit from the intrinsic topological and geometric structure of the world
by either constrainting the search within a tailored feature space or by extracting
invariant properties of the world elements.

This mechanism has to sagaciously face many diminishing factors that compli-
cate the self-localizing task, i.e. the granularity of the model, the nature of the sen-
sors and the acquired uncertainty during the perception-recognition cycle.

This chapter presents a novel geometric and statistical approach to achieve the
model based global self-localization using an active-vision sensing paradigm for
humanoid robots, see Fig.1.

The global character of the localization concerns about the position and orienta-
tion (6D-pose) of the robot during the initialization which can also be stated as the
kidnapping problem.

The natural and inherent usage of conformal geometric algebra [4] arise from the
fundamental key idea of using conjuncted restriction subspaces in order to constraint
and find the location of the robot. In this manner, the formulation profits from those
sophisticated features of this powerful mathematical framework [5], for instance, the
generalized intersection operator of geometric entities such as planes, lines, spheres,
circles, pair of points and single points is the ideal instrument to attain the generation
and validation of the ego-center location candidates of the robot.

This elegant treatment of subspaces helps to reduce the complexity of the
percept-to-model matching by a computationally efficient, conceptually clear and
consistent apparatus for expressing the intersection among the geometric primitives.
In opposition to standard methods in linear algebra where usually a case-based pro-
cedure is applied to determine the intersection subspaces, the conformal geometric
algebra provides a generalized mechanism, i.e. the meet operator [4][5].
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2 Outline of Visual Self-Localization

The upper bar of the Fig.2 shows the three strata comprising the self-localization.
First, the physical space encloses the real world were the robot is located. The visual
space refers to the stratum of the process where the image information from the
world is contained. Finally, the world-model space is a graph-based representation
of the surroundings consisting of two sublayers; the geometric-level with the 3D
vertices and their composition information and the topological-level describing the
interrelation of object components.

1 2 3 4 5 6 7 8 9 10

Fig. 2 Model-based visual self-localization approach, see [8]. 1) Appearance-based object recog-
nition components. 2) Extracted percepts mapped into the ego-frame. 3) Multi-trial percepts fusion.
4) Fused ego-percepts with their corresponding world-model associations. 5) Proximity filtering
for pruning purposes upon world-model. 6) Orientation filtering. 7) Hypotheses generation. 8) Hy-
potheses validation. 9) Geometric and statistical pose-estimation optimization. 10) Resulting pose.
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Due to the nature of the problem, a model-based scheme, the global localiza-
tion can be split into three sequential phases; visual acquisition of landmarks, data
association for model matching and pose estimation-optimization.

2.1 Visual Acquisition of Landmarks

The active-vision perception and recognition components are responsible of deliv-
ering the position and orientation of the instances of those elements described in the
world-model, see Fig.2.1-2. In opposition to previous approaches, the perception
layer is not based on image saliencies or singularities such as Harris corners [6]
or SIFT features [7] because these partially significant landmarks imply not only a
burden during data association, but at certain point the humanoid robot utterly need
to visually recognize the environmental elements in order to performing tasks.

K
mean

max
K

min
Kc

X

Fig. 3 Results of the class specific object recognition algorithms for door and door-handle, for a
detailed description see [8].

In this way, the visually perceived and recognized instances (from now on Per-
cepts) of those environmental objects provide not only useful information to per-
form actions but they also partially solve1 the data association between the visual
and model spaces. In this concrete context percepts are doors and door-handles in a
building, see Fig.3. The advantage of using class based object recognition schema
has been previously exploited [9]. In this way, faster and more robust methods can
be applied.

In contrast, general feature approaches [10] lack of feature model association,
besides offering poor reliability compared to those approaches mode for specific

1 Up to the class instance association level.
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domains. In this implementation, doors and door-handles were robustly recognized
by means of gaussian classification over characteristic feature spaces extracted from
class specific descriptors2 of the eigenvectors3 from color-segmented regions in
stereo images, i.e. 2D Recognition. For an detailed description of the methods see
[8]. Many specific recognition components may be added to improve the perfor-
mance of the system at graph filtering by increasing the partition of the graph, i.e.
reinforcing constraints and increasing pruning.

2.2 Data Association for Model Matching

There are two fundamental questions to be answered in order to properly solve the
data association;

• How to fuse multiple percepts corresponding to the same world-element arising
from multiple vantage points.

• How to match these fused-percepts against the world-model in order to compose
the kinematic chain linking the selected perceptions to the world-model, i.e. the
backwards transformation from the world to the robot, see Eq.5.

Fig. 4 a) Door-handle percepts recognized during scanning. b) Multiple percept corresponding

to the same element in the world. c) Fused percepts into a stationary point X{αi,ς0(t),ς1(t)}of the
underlying multimodal density function ∂̂α (x), delineation set and its bounding box.

Percepts Fusion

Initially, a reference ego-space frame is defined, it is attached to a stable position
of the humanoid robot, i.e. a kinematic frame of the robot which remains stationary
during the visual scanning phase. Then, the time varying kinematic chain of transfor-
mations coupling the stereo vision system with the ego-frame is taken into account

2 Specific tailored feature vector.
3 From the covariance matrix of the clustered binary regions.
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for the registration of the percepts. Subsequently, the percepts acquired during dis-
crete steps of the scanning trajectory are mapped into the reference ego-frame, see
Fig.4.

The underlying multimodal spatial density function,

∂̂α(x) :�3 �→�

of the α-type percepts implies that stationary points

X{αi,ς0(t),ς1(t)}.

These points are the locations of the α-modes, which describe the fused locations
of the α-elements of the set. Percepts converging to X{αi,ς0(t),ς1(t)} constitute the
fusion set, i.e. the cluster delineation in [12]. This is the key to properly fuse the
multiple view percepts, see Fig.2.3.

These ideas are commonly used in the non-parametrical density estimation tech-
niques as Parzen Windows [11] and Mean Shift [12]. The problem of estimating
the bandwidth matrix and kernel type is coherently solved by using the geometric
class-description of the percept, i.e. the inverse covariance matrix obtained from the
3D vertices of the geometric model.

The Epanechnikov kernel was chosen over the gaussian kernel because of its
faster convergence. Although its faster convergence, the Epanechnikov kernel pro-
duces only negligible differences in the resulting delineation set compared with the
results when using the gaussian kernel.

By exploiting these ideas, the multiple view perceptions are efficiently fused into
a common reference space constituting the fused percepts set H f , see Fig.2.4.

Fused-Percepts Matching

Previously merged landmarks are matched with the model by simultaneously trim-
ming and coupling the elements of the world and those fused percepts, see Fig.2.5-6.
In order to achieve this mechanism a graph based representation of the world is im-
plemented whereas the fused percepts are arranged into a set of subgraphs according
to their spatial distribution.

This coupling process requires to adequately incorporate the previous noisy
fused-percept subgraphs as proper constraints to trim the model graph. In this way,
the elements in the model which correspond to the selected acquired percepts re-
main active in the model space. Those elements which cannot satisfy the constraints
are dismissed.

A selected percept subset could be partially matched against the model by using
relative distances and orientations among them, i.e. removing elements which have
no relative incidence within the perceived range of relative distances and orienta-
tions. This is the key idea of the proximity and orientation filtering.
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For these purposes the world has been computationally modeled with two levels
of abstraction. The first one describes the geometric composition of the elements and
their relative pose. This is basically a CAD4 structure. On this level the entities are
data arrangements with information concerning 3D vertices and their composition
describing geometric primitives. In the second level the latter structures compose
instances of object-model5 Om

i with attributes, e.g. identifier, type, size and pose.
The collection of object-model instances constitutes the node set ν , whereas the

link set

Λ ⊂ {Om
i ×Om

j : Om
i ,Om

j ∈ ν, i > j, ||Xi −Xj|| < ζ}

depicts the connections λi, j formed by all object model instances which relative
distance6 falls below ζ .

Proximity Filtering

When filtering links in the world-model graph, noise is taken into account in the
form of deviation parameter ε i function of the distance between the perceived-
recognized objects7 O

pf
i

εi =
1
ζ

(||X f
i −CL||)2 (1)

with location X f
i and center of the left camera CL [14]. The result of the proximity

filter is a set of links

ψ{α ,β ,φ ,τ} ⊂ Λ

connecting nodes of type α to nodes type β , e.g. door to door-handle, which are
separated by a distance φ with an error-tolerance

τ = maxk∈Θ (εk),

where Θ denotes the subset of recognized objects of both types:

ψ{α ,β ,φ ,τ} ⊂ {Om
(i,α)×Om

( j,β ) : (φ −||Xi −X j||) < τ}.

The active link set consists of nodes from the intersection of those q proximity
filtering partial results

4 Coin3D: www.coin3d.org
5 Note that the ”m” superscript emphasizes the fact that this is a model object instance.
6 The magnitude of the threshold ζ corresponds to the maximal length of the 3D-FOV, see [13].
7 Note that the ” f ” superscript emphasizes the fact that this is a fused percept instance.
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ψact :=
q⋂
i

ψ{αi,βi,φi,τi}.

Each filtering stage performs a strong reduction of the cardinality of the set ψ act

because those remaining nodes are tightly constrained, i.e. nodes should have neigh-
bors with restricted types at constrained distance ranges. Fast performance was
achieved by using a distance-lookup table when filtering only previously selected
nodes.

Orientation Filtering

A more powerful, but computational expensive, technique to reduce the nodes
within ψact is attained by accepting only those nodes which incidences have a rela-
tive pose. In this sense, the definition of the frame transformation has to be consistent
while considering the noisy nature of the percept as follows:

First, three non-collinear elements are selected

O
pf
i ,O

pf
j and O

pf
k ∈ Hf

then a frame is specified

Si, j,k
Percept = [Ri, j,k

Percept ,X
f

i ]

relative to the ego-perception frame8,

δ̂1 =
X f

j −X f
i

||X f
j −X f

i ||
, δ̂2 =

[
δ̂1 ∧ (X f

k −X f
i )

]∗
∣∣∣∣∣∣[δ̂1 ∧ (X f

k −X f
i )

]∗∣∣∣∣∣∣ and δ̂3 =

[
δ̂1 ∧ δ̂2

]∗
||
[
δ̂1 ∧ δ̂2

]∗ || ,
which yields to

Ri, j,k
Percept =

[
δ̂ n · ên

]
n=1...3

.

Note these computations take place in G(3,0), thus the dual of the wedge product
of two vectors corresponds to the cross product in vector calculus.

Next, the relative displacement expressed on the frame of perception is computed

V
pf

i,jk = Si, j,k
Percept(X

pf
j −X

pf
k ),

such a vector merges the relative orientations of the three percepts in a signature-
like consistent manner.

Therefore, it is possible to reject nodes which do not have a ”similar” displace-
ment vector among two of the neighbors with corresponding type and proximity.

8 Which orthonormal basis vectors are {ê1, ê2, ê3}
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This noisy-similarity is quantified by the length and angle discrepancies μ and κ
between the perception signature V p

i,jk and the model signature V m
u,uw vectors, ex-

pressed on the world-model Su,w,v
model .

Σ

om

2

λ
λ

5,8

2,5

Vm

5,82

om

8

om

5

μmax

κ
max

Fig. 5 World-model graph at pruning by means of proximity and orientation filtering. Example of
accepted node Om

5 with vector Vm
5,8,2 inside Σ . Notice, the subspace Σ corresponds to the boolean

subtraction of two spherical cones [3]. The aperture of the implicit cone depicts the noise para-
metrical tolerance of the orientation filtering, see Eq.3. The radii of both implicit spheres differ by
μmax, i.e the proximity filtering noise parametrical tolerance, see Eq.2.

Fig.5 shows the subspace Σ bounded by

||V p
i,jk−Vm

u,vw|| < μmax, (2)

arccos(V̂ p
i,jk · V̂ m

u,vw) < κmax. (3)

When filtering a node, the combinational burst is avoided by computing only
subgraphs which link lengths falls into the range

(|V p
i,jk|− μmax) < ||[Opf

j ,Opf

k ]|| < (|V p
i,jk|+ μmax).

2.3 Pose-Estimation Optimization

Previously extracted model subgraphs which simultaneously match the typed inci-
dences and relative pose of those acquired percepts subgraphs embody the associa-
tion coupling the visual space, world-model and physical world.

They simultaneously impose restraints which are the geometric-compelling keys
to deduct the pose of the robot. Each association
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Fig. 6 a) Constrained-subspace embodies the surface on the sphere. b) Cooccurring constrained-
subspaces depicting a circle. c) Three acting in conjunction constrained-subspaces yielding to a
pair of points. d) Four constrained-subspaces yielding to a simultaneity-point.

〈
O

pf
i ,Om

j

〉
constraints the position of the robot to the subspace of all points which are ||X pf

i ||
units away from X m

j .
This subspace is actually the surface on a sphere, i.e.

Ω
〈

O
pf
i ,Om

j

〉
︸ ︷︷ ︸

Restriction Subspace

:= Xm
j +

1
2

(
||Xm

j ||− ||X pf
i ||

)
︸ ︷︷ ︸

Perception−Model Matching

e∞ + e0 ∈ PK3 (4)

centered at X m
j with radius ||X pf

i ||, see Fig.6-a.

Note that the sphere in Eq.4 is a element of the conformal geometric space PK 3

which has the Clifford algebra signature G (4,1) [4].
For a single percept this idea provides no benefit, but on second thought, when

observing the same concept with two different percepts it turns out to be a very
profitable formulation because the ego-center should yield in both constrained sub-
spaces, meaning it has to be on the surface of both spheres at the same time.

Consider two restriction spheres simultaneously constraining the position of the
robot,

Ω1

〈
O

pf
i ,Om

j

〉
and Ω2

〈
O

pf
k ,Om

l

〉
they implicate that the position of the robot belongs to both subspaces. Thus, the

restricted subspace is a circle, i.e. an intersection of spheres, see Fig.6-b,
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Z(1∧2) = Ω1

〈
O

pf
i ,Om

j

〉
∧Ω2

〈
O

pf
k ,Om

l

〉
.

Following the same pattern, a third sphere Ω 3 enforces the restriction to a pair of
points

J(1∧2∧3) = Z(1∧2) ∧Ω3

〈
O

pf
r ,Om

s

〉
i.e. circle-sphere intersection, see Fig.6-c. Finally, a fourth sphere Ω 4 determines

the position of the robot, i.e. the intersection point from the latter pair of points, see
Fig.6-d,

P(1∧2∧3∧4) = J(1∧2∧3)∧Ω4

〈
O

pf
t ,Om

h

〉
.

Latter concepts outline a technique which uses the previously partially matched
elements of the world-model and process them by a geometric apparatus for gener-
ating the ego-center candidates. This apparatus uses the centers of the spheres within
the model space and the radii from the fused-percepts, see Fig.2.6-8 and Fig.7.

The computational complexity of this location hypotheses management process
is upper bounded by O(n4), where n is the cardinality of the subset of percepts-
spheres.

The amount of spheres n is by no means bigger than 6 while generating candi-
dates, besides in rare cases the internal partial result of the intersection stages are
densely populated. This could be easily seen when intersecting two spheres. The
resulting circle occupies a smaller subspace which in successive stages meets only
fewer remaining spheres. One important factor why there are less operations in this
combinational computation is because the child primitives that result from the in-
tersection of parent spheres should not be combined with their relatives avoiding
useless computation effort and memory usage.

Hypotheses Generation

Each percepts subgraphs is used to produce the zero-level set, composed of spheres,
see Fig.2.7,

Φ0 =
{

Ωζ

〈
Om

i ,Op
j

〉}
ζ=1...n

.

These spheres are then intersected by means of the wedge operator ∧ in an upper
triangular fashion producing the first-level set Φ1 containing circles.

The second-level set Φ2 is computed by intersecting those circles with spheres
from Φ0 excluding those directly above. Then the latter resulting pair-points are
intersected in the same way creating the highest possible stratum (third-level set)
Φ3, here the points resulting of the intersection of 4 spheres are contained.

Finally, elements of Φ2 which have no descendants in Φ3 and all elements on Φ3

represent location hypotheses
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Fig. 7 Location hypotheses generation-validation mechanism systematically manages the
location-hypotheses.

Δ :=
∧
ξ

Ωξ

〈
Om

i ,Op
j

〉
.

Hypotheses Validation

Hypotheses are checked by selecting associations, see Fig.2.8,〈
O

pf
i ,Om

j

〉
which were not considered when the current validating hypothesis was gener-

ated. In case there is more than one prevailing hypothesis, which rarely happens
in non-symmetric repetitive environments, an active validation needs to take place
selecting objects from the model and then localizing them in the visual space. The
criterion to select the discriminator percept Dm

i, j (priming instance) is the maximal
pose difference between hypotheses pairs.

Ideal Pose Estimation

Once the location hypothesis has revealed the position of the robot X ego (see
Fig.2.10) the orientation Sego is expressed as
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Sego︸︷︷︸
Sel f−Localization

= Su,w,v
model︸ ︷︷ ︸

Model−Matching

[Si, j,k
Percept ]

−1︸ ︷︷ ︸
Visual−Perception

, (5)

Fig. 8 Kinematic frames involved in the ideal visual self-localization. Notice the directions of the

coupling transformations in order to reveal the frame Sego.

which is actually the transformation from the kinematic chain that couples the
world-model frame Smodel (forwards) and the perception frame [Si, j,k

Percept ]
−1 (back-

wards), see Fig. 8.
There are situations where a variety of diminishing effects alter the depth calcu-

lations of the percepts in a way that the ideal pose calculation may not be robust or
could not be assessed. The subsequent sections describe the sources and nature of
the uncertainties, which are modeled and optimized by the proposed technique to
find the location of the robot, i.e. the maximal probabilistic position.
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3 Uncertainty

The critical role of the uncertainty cannot only strongly diminish the precision of
the estimated pose, but it can also menace the existence of it by drawing away the
intersection of the restriction subspaces, i.e. the spheres might not intersect due to
numerical instability and errors introduced by the perception layer.

In order to sagaciously manage these conditions and other derived side effects,
it is crucial to reflect upon the nature of the acquired uncertainties regarding this
localization approach. There are two remarkable categorical sources of uncertainty,
image-to-space and space-to-ego uncertainties.

3.1 Image to Space Uncertainty

Image-to-space uncertainty is obtained from the appearance-based vision recogni-
tion process. It starts with the pixel precision limitations, e.g. noise, discretization,
quantization, etc. and ends with the error-limitations of the camera model and its
calibration, e.g. radial-tangential distortion and intrinsic parameters [15]. This un-
certainty could be modeled, according the central limit theorem [16] as a normal
distribution where the variance is strongly related to the perceptions depth

1
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Fig. 9 The image-space uncertainty factors in a front-parallel configuration.

ρi = (xi −CL) · êd, (6)
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i.e. the distance between camera center CL and point in space xi along the stereo
rig normal vector êd , see Fig.9,

σi
∼= 1

ζ
ρ2

i , (7)

where ζ > 1 ∈� is an empirical scalar factor depending on the resolution of the
images and the vergence angle of the stereo rig. This variance model arises from the
following superposed facts: first, considering only the monocular influence in each
camera of the stereo rig.

The surface patch Ai on the plane perpendicular to the optical axis of the camera
imaged into a single pixel PA grows linearly as function of the distance ρ i

Ai = 4ρi tan

(
θh

2h

)
tan

(
θv

2v

)
,

where θh and θv represent the horizontal and vertical angular apertures of the
field of view, whereas h and v depict the width and height resolutions of the image,
see Fig.9.

Consequently, the stereo triangulation has an additional effect during the esti-
mation of the 3D position Mstereo(Xi) of a matched pair of points. The distance ρ i

affects the magnitude of the disparity di. Therefore, the precision of the pixel com-
putations plays a decisive role, i.e. the 3D space points which are closer to the base
line have wider disparities along the epipolar lines, meanwhile those points located
after distance ρTh > f b have a very narrow disparity, falling in subpixel domain
d < 1, which results in inaccurate depth calculations.

This situation also produces a sparse distribution of the iso-disparity surfaces[17],
meaning that the subspace contained between this surface-strata grows as

di =
f b
ρi

, (8)

where the focal distance f and the base line size play relevant role in the mea-
surement precision

b = ||CL −CR||.

Fig.9 shows the ideal front parallel case iso-disparity edges delineating the sub-
spaces contained between two discrete steps in the disparity relation of the Eq.8.

In this manner, points contained within one of these subspaces produce the same
discrete disparity when matching corresponding pixels. Hence, the location uncer-
tainty ought to be proportional to the distance contained between iso-disparity sur-
faces. These two applied factors produce an uncertainty growing in an attenuated
quadratic fashion, which is reflected in the model as a variance spreading in the
same pattern reflexted upon Eq.6.
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3.2 Space to Ego Uncertainty

The space-to-ego uncertainty is acquired while relating the pose of the percepts from
the left camera frame to the ego-frame (head-base frame of the humanoid robot, see
Fig.10-a).

It is caused by the physical and measurement inaccuracies, which are substan-
tially magnified by projective effects, i.e. those almost negligible errors in the en-
coders and mechanical joints of the active head of the humanoid robot are amplified
proportional to the distance ρ i between the ego center and the location of the per-
cept.

Xi

e2
e1

U x

y

z

B

T
N

H

C

T

N

H
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xT

yTzT

xN

yNzN

xH

yH
zH
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yC

zC
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Xi
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E

E

L

a) b)

stereo(Xi)

stereo(X
i)

Fig. 10 The space-ego uncertainty acquisition process produced by the mapping of percepts from
camera coordinates to the ego-frame. a) The whole transformation X́i = Mt

ego(Mstereo(Xi)). b) The
transformation Mt

ego = [T(t)N(t)HCL]−1.

Fig.10-b shows the kinematic chain starting at xL
i , the left camera coordinates of

the space point Xi. Subsequently, the transformation from the left camera frame CL

to the shoulders base T (t) passing through the eyes base H and neck frame N(t), is
given by

X́i = Mt
ego(xi), (9)

Mt
ego = [T(t)N(t)HCL]−1, (10)
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where Mt
ego is the ego-mapping at time t. Here, the transformations T(t) and N(t)

are time-dependant because they are active during the execution of the scanning
strategy, see Fig.10-b.

4 Geometry and Uncertainty Model

Once the visual recognition components provided all classified percepts within a
discrete step of the scanning trajectory, these percepts are mapped into the reference
ego-frame using Eq.9. This ego-frame is fixed during the scanning phase. In this
fashion all percepts from different trials are located in a static common frame, see
Fig.10-b.

The unification-blending process done by the fusion phase simultaneously al-
lows the rejection of those percepts which are far from being properly clustered and
creates the delineation set which is later melted into a fused percept.

Next, the geometric and statistical phase which determines the position of the
robot based on intersection of spheres is properly formulated by introducing the
following gaussian sphere and its apparatus for intersection-optimization.

4.1 Gaussian Spheres

The considered restriction spheres Ω i are endowed with a soft density function

f̂ (Ωi,x) Ωi ∈ PK3, x ∈�3 �→ (0,1] ∈�.

The density value decreases exponentially as a function of the distance from an
arbitrary point x to the surface of the sphere Ω i

S(x,Xi,ri) = |(||x−Xi||− ri)| , (11)

f̂ (Ωi,x) = e
−S(x,Xi,ri)

2

2σ2
i . (12)

Latter function depicts the non-normalized 9 radial normal distribution

Ň(μ := {x | ker(S(x,Xi,ri))},σ2
i )

for x to be in the surface of Ω i, i.e. the null space of S(x,Xi,ri). Note that here the
variance σi refers to Eq.7.

The density of a point x in relation with a sphere Ω i represents the non-
normalized probability for the point x to belong to the surface of the sphere Ω i.
Obviously the maximal density is on the surface of the sphere itself.

9 By the factor 1
σ
√

2π .
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Fig. 11 Gaussian spheres meeting. a) Two gaussian spheres meeting Ω1∧Ω2 describing a density-
subspace Δ(Ω1 ∧Ω2). b) Three gaussian spheres Ωi=1,2,3 meeting in two regions depicting a sub-
space Ω1 ∧Ω2 ∧Ω3. c) Detailed view of one of the previous subspaces. d) Discrete approximation
of the maximal density location xs. e) Details of the implicit density-space Δ(Ω1 ∧Ω2 ∧Ω3). f)
Implicit radius rx when estimating the density at position x.

It is necessary to propose an effective mechanism which applies intersections of
restriction spherical subspaces as essential idea for finding the robot position. The
nature of the applied intersection has to consider the endowed spatial density of the
involved gaussian spheres.

In the following sections, the restriction spheres and their conjuncted composi-
tion properly model both uncertainties, allowing the meeting of spheres by finding
the subspace where the maximal density is located, see Fig.11.

This could be better understood as an isotropic dilatation or contraction of each
sphere in order to meet at maximal density of the total density function, see Fig.12
and Fig.13,
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Fig. 12 Gaussian circles, i.e. 2D gaussian spheres. a) Three gaussian circles setup. b) The total
accumulative density f̂c(x) = ∑n

i f̂ (Ωi,x) allows a better visualization of the composition of its
product counterpart f̂t(x), see also Fig.13. c) Density contours with seeds and their convergence
by means of gradient ascendant methods.

f̂t(x) −→ (0,1] ∈�, x ∈�3 (13)

f̂t(x) =
n

∏
i

f̂ (Ωi,x). (14)

Due to the geometric structure composed by n spheres, it is possible to foresee the
amount of peaks and the regions Ws where the density peaks are located. Therefore,
it is feasible to use state-of-the-art gradient ascendant methods [18] to converge to
the modes using multiple seeds. These should be strategically located based on the
spheres centers and intersection zones, see Fig.12.

Finally, the seed with maximal density represents the solution position x s

xs = argmax f̂t(x). (15)

However, there are many issues of this shortcoming solution. The iterative solu-
tion has a precision limited by the parameter used to stop the shifting of the seeds. In
addition, the location and spreading of the seeds could have a tendency to produce
undesired oscillation phenomena, under or oversampling and all other disadvantages
that iterative methods present.
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Fig. 13 The gaussian circles, i.e. 2D gaussian spheres. a) Three gaussian circles setup. b) The
total density f̂t(x) = ∏n

i f̂ (Ωi,x). c) Density contours and ego-center Xego, notice that the resulting
distribution is not gaussian.

The optimization expressed by Eq.15 could be properly solved in a convenient
closed-form. In order to address the solution x s, it is necessary to observe the con-
figuration within a more propitious space, which simultaneously allows an advanta-
geous representation of the geometrical constraint and empowers an efficient man-
agement of the density, i.e. incorporating the measurements according their uncer-
tainty and relevancy while avoiding density decay.

4.2 Radial Space

The keys to attain a suitable representation of the latter optimization resides in the
exponent of the Eq.12. There, the directed distance from a point x to the closest
one on the surface of the sphere is expressed by the Eq.11. When considering the
total density function (see Eq.14) it unfolds the complexity by expressing the total
density as a tensor product.

The inherent nature of the problem lies in the radial domain, i.e. the expression
S(x,Xi,ri)2 is actually the square magnitude of the difference between the radius
ri and the implicit defined radius rx between the center of the spheres Xi and the
point in question x, see Fig.11-f. Hence, the optimization configuration can be bet-
ter expressed in radial terms and the geometrical constraints restricting the relative
positions of the spheres is properly and naturally uncluttered in the following sec-
tions.
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4.3 Restriction Lines

Consider the case of two spheres Ω1 and Ω2, see Fig.14-a. Here, the radii of both
spheres and the distance between their centers

δ1,2 = ||X1 −X2|| =
√
−2(Ω1 ·Ω2)

allow the formulation of the geometric restrictions, which ensure the intersection
of the spheres in at least a single point Pχ .

These restrictions are expressed by the inequation line L χ , which describes the
radial configuration subspace represented by pairs of the form

Pχ = [r1,r2]T ∈ S2,

the intersection of spheres Ω1 ∧Ω2, i.e. a circle with null radius, where the S2

refers to the radial configuration space of two spheres.
Notice in Fig.14-d the inequality line divides the configuration space into two

regions, the half space partially holding the restriction imposed by the inequation
line Lχ , however in this space there are still configurations which produce no inter-
section of spheres, in fact any configuration holding

r2 ≥ δ1,2 + r1.

In order to prevent these degenerated configurations two additional restriction
inequation lines arise, unveiled by following similar pattern.

In the same fashion, Fig.14-b shows the case where the minimal contact point Pβ
occurs, subject to

r1 ≥ δ1,2 + r2.

In this configuration subspace, the sphere Ω 1 fully contains sphere Ω2 and their
surfaces intersect solely at Pβ . Once again, in order to ensure at least this contact
point, the fluctuation of the radii of both spheres is restricted by a linear relation
expressed by the inequality line Lβ .

The latter restriction actually happens in a symmetric manner by interchanging
the roles from Ω1 with Ω2, resulting in a third restriction, i.e. the inequality line Lα ,
see Fig.14-c,d.

As a result, the configuration space is divided in four regions Kα , Kβ , Kχ and
Kmeet all open except Kχ .

Only those configurations within the subspace Kmeet represent non-empty inter-
sections of the spheres, e.g. the point xcon f in Fig.14-d with

xcon f = [r
′
1,r

′
2]

T ∈ Kmeet .
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the first restriction for ensuring non-empty intersection of spheres. b) The derivation of reminding
right side empty intersection restriction line Lβ . c) The left side symmetric case, generating the
third restriction Line Lα .

The edge surface separating Kmeet from the other regions depict single point inter-
sections of spheres, whereas elements within Kmeet represent intersection depicting
a circle with non-zero radius.

Latter conceptualization soundly amalgamates the distance among centers of the
spheres with their radii. It produces a robust and general criteria to establish inter-
section guarantee, see Fig.14-d.

4.4 Restriction Hyperplanes

The previous derivation of the restriction lines was achieved by considering only the
case involving two spheres, however, it is possible to extend these restrictions to n
spheres.

Formally, this affirmation is theoretically supported by representing the n sphere
radial configuration space Sn as the Hilbert space Cn, where each dimension depicts
the radius of one sphere. In element xcon f ∈ Sn of the n-dimensional radial configu-
ration space can be uniquely specified by its coordinates with respect to orthonormal
basis vectors
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êi ∈ Sn | i ∈ {1, · · · ,n} ⊂ Z,

which are, as expected in a Hilbert space, perpendicular to each other, because
the radius of each sphere is independent from the others. In this manner, the previous
restriction lines could be perpendicularly extruded in n−2 dimensions creating the

restriction hyperplanes Φ (i, j)
α .

Here again, each hyperplane divides the space in two subspaces. Configurations
within the region opposite to the normal vector VLα (back of the hyperplane) repre-
sent non-intersecting spheres, see Fig.15.
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Fig. 15 The radial density space Sb3 containing the open polytope which delineates the subspace
Kmeet . Observe the transformation-optimization vector Vopt which implies an isotropic variation in
the underlying density domain while creating a general dilatation within the implicit radial domain.

Even more, the set of hyperplanes expressed in their hessian form could be used
to compose a matrix inequality
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Ax ≤ b, (16)

where A is a m× n matrix, with m bounding half-spaces (normal vectors of the
hyperplanes) and b represents a m×1 column vector formed by stacking the Hessen
distances of the hyperplanes, i.e. an open polytope, see Fig.15.

Consider the case where n = 3. Three spheres implying an open polyhedron,
within the radial space each line

L(i, j)
α ,L(i, j)

β and L(i, j)
χ

could be extruded in the complementary dimension creating restriction planes

given by Φ (i, j)
α . Next, the face cells, ridges and vertices of the polytope are found

using a simple and fast implementation for vertex enumeration [19], see Fig.15.
At this stage, it could be conveniently established whether the current configura-

tion is a valid, in other words, determine if the point xcon f belongs to the polytope.
This assertion is formally given by

Axcon f < b.

In case this assertion is held, there is no need to go through the following opti-
mization phase because the spheres meeting on their surface, resulting the maximal
density

f̂ (xcon f ) = 1.

The opposite situations represent those degenerated configurations resulting from
noise measurements and previously discussed errors. For instance, the point x con f

represents an invalid configuration, outside of the polytope where no intersection of
spheres exist, see Fig.15.

The target solution for the latter cases necessarily implies a decay in the density,
because at least one of the vector components has to be modified for the point x con f

in order to become a valid configuration xcon f . This offset signifies a dilatation or
relative contraction of the sphere(s) depending on the magnitude and direction of
the displacement

xcon f = xcon f +Vopt,

which transforms the degenerated configuration into a valid one, see Fig.15.
Here, the optimal criterion to accomplish is to calculate the minimal length offset
vector transformation Vopt

Vopt := [vr1 , ...,vrn ] ∈ Sn,

retaining as much density as possible by eluding degradation of the spheres, re-
ducing the radial variance within Eq.12.
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The geometric intuitive way of finding such a vector is to find the closest point
from xcon f on the cells or ridges of the polytope, which could be efficiently com-
puted by perpendicularly projecting the point x con f to each hyperplane

x(i, j)
con f

= xcon f − (V (i, j)
α · xcon f )V

(i, j)
α , (17)

and selecting the closest one from those points holding the assertion given by
Eq.16. Although this technique is computationally efficient and geometrically cor-
rect the outcoming solution is not the optimal. Because within this space only the
absolute directed distance is considered. No contribution effects of different vari-
ances are assessed, producing non-minimal density decay.

This limitation could be vanquished by considering a homothety transformation
H(Sn), i.e. a variance normalization of the radial configuration space inspired by the
concept behind the Mahalanobis [3] distance.

The spatial density function of a gaussian sphere Ω i given by Eq.12 could be
conveniently reformulated in the radial domain as

f̂ (Ωi,x) = e
− 1

2

(
rx
σi
− ri

σi

)2

, (18)

in such a way the variance of the endowed normal distribution scales the implicit
defined radius rx and the mean radius ri of the sphere Ωi by the factor σ−1

i . This nor-
malization mapping could be generalized for the whole radial configuration space
Sn as

H = diag
[
σ−1

1 , . . . ,σ−1
n

]
. (19)

This matrix actually represents the inverse covariance matrix Σ −1 of the total
density function given by Eq.20. This could be easily visualized by the alternative
expression10

f̂t(x) = e
− 1

2 ∑n
i=1

( ||x−Xi||
σi

− ri
σi

)2

. (20)

Based on Eq.20 and taking into account the uncorrelated radial distributions, it
is clear that the underlying covariance matrix H−1 = Σ has zero elements outside
its trace. Because of this fact, the proposed normalization Sdn = H(Sn) could take
place by applying the matrix H as an operator over the orthonormal vector bases of
Sn as

éi = Hêi.

The euclidean metric within this resulting space is uniformly isomorphic with
the density space. Displacements of the same length arising from the same position
imply equal density decay in all directions reflecting different dilatation or contrac-
tions of those involved gaussian spheres. Note, this normalization takes place before
the vertex enumeration for the polytope extraction has been computed, reflecting the

10 By rewriting the exponent as a vector column and arranging in a standard form xt Σ−1x.
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effects within the affine11 strata while computing the optimal points in Eq.17, see
Fig.15.

The application of the previous methods within the normalized radial configu-
ration space Sdn does not only ensures the optimal solution with minimal decay,
but it also benefits from the available certainty provided from those spheres with
smaller variance (higher reliable percepts) by introducing smaller displacements in
the corresponding dimension of the displacement vector V d

opt ∈ Sdn.
In other words, the spheres which have a wider variance can easily expand (or

contract) their surfaces than those with smaller ones in order to obtain the highest
possible density at the meeting operation.

This method delivers the optimal trade-off fusion while performing the manage-
ment of the modeled uncertainty.

4.5 Duality and Uniqueness

In case the latter method has taken place in Sd3 (considering three spheres) obtain-
ing the optimal configuration xcon f ∈ Sd3, there is still a duality to solve while back
mapping this configuration into the physical euclidean space. This issue is solved ia
a straightforward way by computing the pair of points solution

J∧3
i=1

=
3∧

i=1

Ωi(σi(xcon f · êi),Xi).

In case both solutions lie within the valid12 subspace a simple cross-check against
the location of percepts which were not involved in previous calculations will ro-
bustly disambiguate the solution.

It is possible to obtain a unique solution by using four spheres for the optimiza-
tion task, i.e. to represent the setup within Sd4.

In this way xcon f ∈ Sd4 could be again mapped back into the physical euclidean
space by means of the meet operator unveiling the position of the robot as

P∧4
i=1

=
4∧

i=1

Ωi(σi(xcon f · êi),Xi).

5 Conclusion

This approach solves the model-based self visual localization using conformal geo-
metric algebra and gaussian spheres. The proposed method translates the statistical

11 In the Hessian normal form of the hyperplanes.
12 Above the floor and inside the modeled space.
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optimization problem of finding the maximal density location for the robot into a ra-
dial normalized density space Sdn which allows a very convenient description of the
problem. Within this domain it is not only possible to draw the geometric restrictions
which ensure the intersection of spheres, but it also attains the optimal fusion and
trade-off of the available information provided from the percepts by incorporating
the available information of each landmark according to its uncertainty.

Fig. 16 The scanning sequence executing the self-localization, the results from the door-handle
recognition component are highlighted.

The considered world-model13 of the kitchen consists of 611 rectangular prisms,
124 cylinders, 18 general polyhedra with 846 faces, all arranged by 1,524 general
transformations (rotation, translation and scaling) with a total of 13,853 vertices
and 25,628 normal vectors composed in the scene-graph from the CAD model and
verified against real furniture with laser devices, see Fig.1-a.

The global self-localization of the humanoid robot ARMAR-III [1] within the
modeled environment was successfully performed using this approach. The scan-
ning strategy takes 15-20 seconds processing 20 real stereo images. The Graph
model pruning takes 100-150 ms. The hypotheses generation-validation takes 200-
500 ms. Finally, the vertex enumeration takes approximately 15−50 ms depending
on the configuration.
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