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Abstract. In this article an autonomous visual perception framework
for humanoids is presented. This model-based framework exploits the
available knowledge and context acquired during global localization in
order to overcome the limitations of pure data driven approaches. The
reasoning for perception and the properceptive components are the key
elements to solve complex visual assertion queries with a proficient per-
formance. Experimental evaluation with the humanoid robot ARMAR-
III is presented.
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1 Introduction

The emerging research field of humanoid robots for human daily environment is
an exciting multidisciplinary challenge. In order for humanoid robots to properly
and effectively interact and operate within daily environments it is indispensable
to equip them with an autonomous perception framework. Recently, consider-
able results in this field have been achieved (see [2],[1]) and several humanoid
robots exposed various knowledge-driven capabilities and skills. However, those
approaches mainly concentrate on manipulation knowledge for graspable objects
and fixed object-centered attention zones, e.g. kettle tip while pouring tee or wa-
ter faucet while washing a cup. These approaches assume fixed pose of the robot
in their environment in order to perceive and manipulate objects and environ-
mental elements within a kitchen. In addition, the very narrow field of view with
no objects in the background constrains their applicability.

These perception limitations can be overcome through an enhanced exploita-
tion of the available knowledge and model information by including a compact
reasoning sublayer within the perception of the humanoid. There exist works on
humanoids reasoning for task planning and situations interpretation [3]. How-
ever, they focus on atomic operations and discrete transitions between states
of the modeled world for behavior generation and verification. This high level
reasoning is not the focus of the present work, but the inclusion of the essential
reasoning mechanism while perception takes place in order to robustly recognize
and interpret complex patterns, i.e. distinguish and track environmental objects
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in presence of cluttered backgrounds, grasping occlusion and different poses of
both the humanoid and/or the environmental object.

The manipulation of low-level sensor data and higher-level models for seg-
mentation, rejection and recognition constitutes the reasoning for visual per-
ception, which bridges the image processing and object recognition components
through a cognitive perception framework [7].

In order to make this reasoning mechanism tractable and implementation
plausible it is necessary to profit from both the vision-to-model coupling resulting
from the model-based approach and the association-linkage acquired during the
global localization by means of our previous work (see [4],[5]).

The main focus is placed on rigid elements of the environment which could
be transformed through parametric (rotational or translational) transformations,
e.g. furniture, kitchen appliances, etc.

In the following sections the perception framework and its methods are in-
troduced along experimental results of the demonstration application scenario
where these concepts were implemented and evaluated providing remarkable
real-time results which pure data driven algorithms would hardly provide.

2 Perception Framework

The aim of the perception framework is to extract valuable information from
the real world in the form of stereoscopic color images and joint-encoders values
from the humanoids active vision head. The adequate representation, unified
storage, automatic recall and task-driven manipulation of this information take
place within different layers (states of cognition) of the perception framework.
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Fig. 1. The perception framework, including states of cognition and principal cycles.

Latter cognition states are categorically organized according to [6] as sensing,
attention, reasoning, recognition, planning, coordination and learning. In this
manner three principal cycles arise, namely perception-cycle, coordination-cycle
and learning-cycle, see Fig.1.
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Memory; World and Ego Spaces. The formal representation of the real ob-
jects within the domain and the relationships between them constitutes the long
term memory, i.e. the world-model. Appropriate description has been done by
simultaneously separating the geometric composition from the pose and encap-
sulating the attributes which correspond to the configuration of the instances,
e.g. name, identifier, type, size, parametric transformation, etc. This structure,
along the implemented mechanism for pruning and matching lay down the spa-
tial query solver used in Sec.4. On the other hand, the mental imagery (see
Sec.3.1) and the acquired percepts are contained within an ego centered space
which corresponds to the short term memory.

3 Visual Sensing and Planning

a)

b)

c)

Fig. 2. a) Restriction subspace Ψ where the target node can be robustly recognized,
top view. b) Restriction subspace Ψ , side view. c) Geometric elements involved during
the spatial reasoning for perception.

Sensing. The noise tolerant vision-to-model coupling consist of the full config-
uration of the active vision system including the internal joint configuration,
external position and orientation of the cameras centers as well as all required
mechanisms to obtain euclidean metric from stereo images ( see [8], [9]).
Planning. It involves three fundamental aspects. First, once the visual target-
node has been established it provides a frame and the definition of a subspace
Ψ where the robot has to be located, therewith the target-node can be robustly
recognized, see Fig.2-a,b. Notice that this subspace Ψ is not a single pose like
in [1], but a wide range of reachable poses allowing a more flexible applicability
and more tolerance for uncertainties in the navigation and self-localization.

Subsequently, the visual-planner uses the restriction subspace and target
node frame to generate a transformation from the current pose to a set of valid
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poses. These poses are submitted to the navigation layer [10] to be unfolded and
executed into a safe trajectory. Once the the robot has reached his desired po-
sition, once again the visual-planner uses the description of the node to predict
parametric transformations and appearance properties, namely, how the image
content should look like, and how the spatial distribution of environmental ele-
ments is related to the current pose. This is done by the following properception
mechanism.

3.1 Mental Imagery

The properception skills (prediction, clue extraction, etc.) allow the humanoid
to capture the world through internal means by exploiting the full scene-graph
of the CAD world-model and the hybrid virtual cameras, see Fig.3. These vir-
tual devices use the full-stereoscopic calibration of the real stereo rig in order
to set the projection volume and matrix within the virtual visualization, a com-
mon practice in the augmented reality [11] for image composition and overlay.
However, here this hybrid virtual stereo rig is used to predict and analyze the
image content within the world-model, including those previous discussed para-
metric transformations, extraction of cues like position and orientations even for
trajectories of elements, see Fig.3.

Fig. 3. Properceptive mental imagery for trajectory prediction. Notice the blue lines
in the left and right image planes of the hybrid virtual cameras depicting the ideal
trajectory of the point of interest (door handle end point) during the opening of the
door. This predicted subspace not only allows to reduce region of interest, but it also
helps to reject complex outliers.

4 Visual Reasoning for Recognition

The reasoning process for perception could be decomposed in two phases; the
visual domain and the spatial domain.
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2D Reasoning. The pose estimation of the partial occluded door handle, when
the robot has already grasped it, turns out to be a difficult task because there are
many perturbations factors. No size rejection criteria may be assumed, because
the robot hand is partially occluding the handle surface and also the hand slides
during task execution, producing variation of the apparent size. No assumption
about the background of the handle could be made, because when the door is
partially open and the perspective view overlaps handlers from lower doors same
chromatic distribution appear. On the top of that, the glittering of the metal
surfaces on both, the robots hand and doors handle, produce very confusing
phenomena, when using previously standard segmentation techniques [4].

Fig. 4. Left; Input Image. Notice that the book (the white paper side) in the back-
ground shows not only similar color distribution, but almost the same size of the door
handler. Right; The power image results. Based only on the pure data-driven classifica-
tion it will be hardly possible to reject the presence of a handler in the current location
of the book.

In this context, we propose an application dependent but very robust and
fast technique (15-20 ms) to simultaneously segment the regions and erode the
borders, producing non-connected regions which suits our desired preprocessing-
filtering phase. First, the raw RGB -color image IRGB(x, y) ∈ �3 is split per
channel and used to compute the power image Iφ, see Fig.4

Iφ(x, y, n) = [IR(x, y) · IG(x, y) · IB(x, y)]n , n and Iφ(x, y, n) ∈ �.

After a linear normalization and adaptive thresholding a binary image IB(x, y) ∈
{0, 1} is produced, which is used to extract the blobs Bk and build feature vectors
for rejection purposes.

The feature vector F (Bk) is formed by the blobs area ω(Bk), the energy
density δ(Bk), and the elongation descriptor, i.e. the ratio of the eigen val-
ues Eσi,j (Bk) of the energy covariance matrix MBk

expressed by F (Bk) :=
[δ(Bk), ω(Bk), Eσ1 (Bk)/Eσ2(Bk)]. This characterization enables a powerful re-
jection of blobs when verifying the right-left cross matching by only allow-
ing candidates in pairs (Bk, Bm) where the criterion is fulfilled, i.e. the ori-
entation of their axis shows a discrepancy less than arccos(Kmin) radians, i.e.
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K(Bk, Bm) := ‖Eσ1(Bk) · Eσ1 (Bm)‖ > Kmin. The interest point Ip in both im-
ages are selected as the furtherest pixel along the blobs main axis in opposed
direction of the vector ΓRAxis , i.e. unitary vector from the door center to the
center of the line segment where the rotation axis is located, see Fig.2. This
vector is obtained from the mental imagery as stated in Sec.3.1. Moreover, the
projected edges of a door within the kitchen aids the segmentation phase to ex-
tract the door pose and improves precision by avoiding to consider edges pixels
close to the handle. The key factor of this vision-to-model coupling relies on
the fact that very general information is used, i.e. from the projected lines and
blobs using the mental imagery, only their direction is used (i.e. noise-tolerant
criterion Kmin) and not the position itself, which differs to the real one, due to
the discretization, quantization, noise and uncertainty.
3D Reasoning. One of the most interesting rewards of our approach is the
usage of the vision-to-model coupling dealing with limited visibility. In order to
provide the required information from the global planner or coordinator module
it is necessary to estimate the interest point Ip, and the normal vector Np of the
grasping element (see Fig.2-c, e.g. the door handle).

Because of the sizes of both, the door and the 3D field of view (3DFOV,
see Fig.2-c), it can be easily corroborated that the minimal distance within
the subspace Ψ , where the robot must be located for the complete door to be
contained inside the robots 3DFOV, lie outside of the reachable space. In this
situation reasoning perception switches from pure data driven algorithm to the
following recognition method which only requires three partially visible edges of
the door and uses the context (robots pose) and model to assert the orientation
of the door’s normal vector and the door’s angle of aperture. First, a 2D-line
Υi on an image and the center of its capturing camera Cj define a 3D-space
plane Φ(i,j), hence two such planes Φ(L,L) and Φ(μ(ΥL,ΥR),R), resulting from the
matching μ(ΥL, ΥR) of two lines in left and right images in a stereo system define
an intersection subspace Λi = Φ(L,L) ∧ Φ(μ(ΥL,ΥR),R) , i.e. a 3D-line. These 3D-
lines Λi are subject to noise and calibration artifacts. Thus, they are not suitable
to compute 3D intersections. However, their direction is robust enough. Next,
the left image 2D points H(L,i) resulting from the intersection of 2D-lines Υi are
matched against those in the right image H(R,j) producing 3D points X(R,j) by
means of triangulation in a minimal square solution. In this way it is possible
to acquire corners of the door and directions of the lines connecting them, even
when only partial edges are visible. Herein, the direction of the vector ΓRAxis

(provided by the mental imagery and the spatial reasoning) is the long-term
memory clue simultaneously used to select 3D line edge direction DAxis and
its point PAxis. In addition, the framework uses proximity knowledge to switch
between our components for door and handle recognition and pose estimation.

5 Experiment

Advanced manipulation tasks to perform physical interaction with the environ-
ment are important on humanoid robots to be useful in daily life and in cooper-



On Environmental Model-Based Visual Perception for Humanoids 7

ation with humans. To demonstrate the advantages of the perception framework
and to verify our methods, we accomplished the task of door opening in a regu-
lar kitchen environment with the humanoid robot ARMAR-III. In this scenario,
the estimation of this normal vector Np, and therewith the minimization of the
external forces at the hand, is the main challenge, because the door changes its
orientation during manipulation. In our previous approach [14] the results using
only one sensory channel (force-torque sensor) are acceptable but not satisfac-
tory, because the estimation of the task frame depends on the accuracy of the
robot kinematics and the tangent is always imprecisely. To decrease the external
forces on the hand during the task execution, we use our perception framework to
estimate the inters point and normal vector of the door, see Fig.6. The compared
results achieved with both methods are shown in Fig. 5.

Fig. 5. Left; Cartesian position of the handle midpoint, related to the ego center frame.
Smooth movement in the three cartesian dimensions, until iteration 144 when the
handle is completely occluded. Right; Comparative plot of the total stress forces at
the task frame. The red curve represents the force in the pulling direction using only
force-torque sensor and previous kinematic configuration. The blue curve represents
our improved results when using the vision estimated task frame in a sensor fusion
fashion.

Robustness and reliability of the handle tracker are the key to reduce the force
stress in the robots wrist as it can easily be seen in Fig.5. In fact, the sensor fusion
in the task space improves the overall performance. Combining stereo vision and
force control provides the advantage of real-time task frame estimation by vision,
which avoids the errors of the robots kinematics and adjustment of actions by
the force control.

6 Conclusions

The world-model and the available context acquired during self-localization (the
associations between model elements and visual percepts) will not only make
it possible to solve, otherwise hardly possible, complex visual assertion queries,
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Fig. 6. Experimental evaluation of the perception framework.

but it will also dispatch them with a proficient performance. This is possible
through the previous introduced perception framework which implements the
basic reasoning skills by extracting simple but compelling geometrical cues from
the properception component and then applying them as filters for the classifica-
tion of percepts, tracking and optimization of the region of interest (in terms of
size and trajectory) and finally handling of incomplete visual information. The
present work is an on going work which is concern to certain kind of elements
in the world. A more general exploitation and exploration of those ideas are the
main axis of our future work.
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