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Abstract— A novel structural and statistical approach for
model-based visual object recognition using geometric radiance
saliencies is presented. The approach acquires accurate high
dynamic range images to properly capture complex heteroge-
neously lighted scenes. Based on these images, the receptive
radiance saliency is computed through a Gabor kernel set. This
oriented saliency is used to extract and refine the radiance edge-
graphs. Subsequently, the combination of two distributions, (i)
the topological connectivity and (ii) the spatial arrangement
of the subpixel nodes provides a propitious insight into the
underlying geometrical composition of the radiance edges. The
proposed characterization of the combined distribution prof-
itably unveils and simultaneously segments the geometric edge
primitives. Finally, uncovering the complementary geometric
patterns and reinforcing the structural regularity is accom-
plished by the proposed extended perceptual organization.
Experimental evaluation with the humanoid robot ARMAR-
III is presented.

I. INTRODUCTION

In everyday application, humanoid robots should be able to
visually explore and recognize objects in their environment
for self-localization [1], environmental status mapping [2],
grasping and manipulation [3],[4]. In these active fields
much research is being done and as a consequence, con-
siderable results have been recently achieved and several
humanoid robots expose elaborated visual recognition capa-
bilities [5],[6]. However, these approaches assume restricted
light conditions. This illumination assumption is explicitly
attained either by controlling the light sources or restricting
the 6D-pose of the robot during recognition [6],[7].

Due to these limitations, the flexibility and applicability
of humanoid robots are strongly reduced in the presence of
everyday high-contrast and/or dynamically varying illumina-
tion, for instance, the backlighting of a window, the interior
of an oven, the complex structures inside a dishwasher or
the metallic/reflective surface of a microwave, see Fig.1.

Avoiding the ubiquitous high-contrast image-content in
everyday humanoid robot applications is not plausible. Nei-
ther is it possible to mend the dynamic range issue through
adaptive exposure in order to allow recognition approaches to
implicitly hold the illumination assumption. This issue arises
because the adaptively selected exposure attempts to preserve
the majority of the image-content at the cost of losing
the extremal regions. This condition generates severe rate-
distortion quantization effects which substantially diminish
the image quality producing local over- or under-exposure.

Additionally, even if the objects are completely captured
within an unclipped image region (where the discrete values

Fig. 1. The ubiquitous wide intra-scene radiance range. In made-for-
humans environments, humanoid robots are confronted with high-contrast
scenes, dynamically varying illuminations and complex materials. On the
left side, the humanoid robot Armar-III [9] encounters a wide intra-scene
illumination in a household environment. On the right side, the HDR image
captured with the LDR (low dynamic range) camera of the robot using the
method presented in Sec.II. The pseudo-color representation allows better
visualization of the radiance levels in the a) bright, b) dark and c) complex
material regions which require precise mechanisms to acquire HDR images.

are neither white- nor black-clipped), the resulting intensity
values are still rarely a true measurement of the relative
radiance in the scene. Under such non-injective circum-
stances, a single discrete intensity value comprises a wide
range of scene radiance. This many-to-one mapping makes it
unfeasible to robustly and accurately extract structured visual
cues, namely geometric saliencies such as edges or corners,
even when using computationally expensive approaches such
as automatic space-scale selection [8]. Without these essen-
tial saliencies, the recognition with robust pose estimation
becomes notably complicated or intractable.

These limitations can be overcome through this depend-
able acquisition and processing mechanism of HDR images.
In Sec.II the acquisition mechanism robustly manages the
intra-scene radiance range providing consistent measure-
ments. Based on these HDR images, in Sec.III, the simul-
taneous extraction and segmentation of geometric consistent
primitives is organized into an effective graph representation
for object recognition. The experimental evaluation in Sec.IV
supports the reliability of the approach. Finally, the Sec.V
discusses the technical and theoretical contributions. See the
schematic representation of the approach in Fig.2.

II. HDR IMAGE ACQUISITION

Until now, HDR cameras are not widespread, especially
in applications with several tight constraints, for instance,
high frame rate, light weight, reduced space, low power
consumption and compliance with saccadic movements.
These are the restrictions in the eyeball of the humanoid



Fig. 2. Eccentricity edge-graphs from HDR images for object recognition. a) Complex high-contrast heterogeneously lighted scene as in Fig.1. b) HDR
acquisition component. c) Oriented saliency is the receptive radiance energy for edge extraction and subpixel refinement. d) Edge-graph extraction, pruning
and outspreading for the cohesiveness enhancement of the combined statistical distribution. e) Eccentricity characterization. f) Eccentricity segmentation
and geometrical-statistical perceptual organization. g) 3D-Euclidean metric mapping. h) Object model(s) and matching elements.

robot ARMAR-III, see the detailed composition [10] and
applications [11]. Due to these restrictions, an appropriate
mechanism for capturing HDR images by suitably employing
the humanoid robot LDR cameras is been introduced. The
mechanism consists of two elements: First, the nonlinear
transformation from the scene radiance to the discrete values
of the image is attained, namely the radiometric calibration.
Second, the proper exposure control of the camera by means
of the shutter speed and the exposure-stability analysis was
performed. Using these two elements, it is possible to capture
the intra-scene wide radiance range by fusing a collection of
m differently exposed images, the so called Wycoff set for
bracketing in [12]. During the HDR image synthesis, the
short-exposed images sample the high radiance regions of
the scene, inversely, the long-exposed images sample the low
radiance regions.

A. Camera Radiometric Calibration

In contrast to [12] due to the image-content independence,
the radiometric calibration gλ : N 7→R was initially computed
as described by Debevec [14], see Fig.3-a. However, the
Debevec approach has two critical issues: i) There is no
explicit criterion for the selection of the λ -smoothing re-
gression factor. ii) The essential assumption of reciprocity
between exposure and intensity values is not held on the
extremal of the radiometric calibration curve. The results
are noisy calibrations propagating into salient artifacts in the
HDR image, see Fig.3. In order to anticipate these issues, an
experimental evaluation of the smoothing factor for optimal
selection was performed (see Fig.4) and an improvement
extension for calibration is presented:

1) Continuous Reciprocity-Consistent Calibration Model:
The exponential domain transformation of the discrete cali-
bration curve

g∗
λ
(It (x)) := exp(gλ (It (x)) (1)

leads to a weighted regression within this convenient domain
in order to obtain a continuous model, see Fig.5,

gL
λ

: R 7→ R ; gL
λ
(It(x))≈ g∗

λ
(It(x)),

in contrast to the results from [12] and [14], this calibration
function properly holds the reciprocity assumption even at
the extremal intensity, see Fig.6. In addition, the calibration
model gL

λ
also allows the proper estimation of the sensor

response function at real value intensities arising during the
blending of n images with the same j := Et ∝ ∆t exposure in
order to decrease the sensor noise, namely

I j
n(x) =

1
n

n

∑
t=1

I j
t (x) (2)

gM
λ
(I j

n(x)) = log
(

gL
λ

(
I j
n(x)

))
, (3)

where I j
n(x) is the j-iso-exposed mean of n images and gM

λ
is

the standard domain of the radiometric calibration model.

B. Camera Exposure Control
When capturing the Wycoff set of a scene, the exposure

value was precisely controlled by the shutter speed of the
camera ∆t−1

i according to [13] in a closed loop, see Fig.2-b.
The storage trigger Tt was fired by means of the exposure-
stability analysis, see Fig.7. This component takes into ac-
count the overall latency1 of the capture system. This is done
by the normalized exposure-stability index S j(t) : N2 7→ R+

S j(t) =
1
ω

∑
x

I j
t (x), (4)

which integrates the image intensity while controlling the ex-
posure value j. The smoothed-gradient analysis of this index
helps to determine reliable capture intervals Dn. Without this
component, the storage trigger could be dispatched within an
unstable interval, e.g., in Fig.7-b the instantaneous flickering
between t1 and t4 with the peak at the index value S2.

C. HDR Image Synthesis
Finally, the fusion of the captured Wycoff set using the

model calibration gM
λ

is expressed as

Φ(x) = exp

∑
m
j=1 N

(
I j
n (x)

)(
gM

λ

(
I j
n (x)

)
− log(∆t j )

)
∑

m
j=1 N

(
I j
n(x)

)
 , (5)

1Slightly irregular delays resulting from the data bus and the non-real-
time humanoid robot modular controller architecture.
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Fig. 3. The exponential domain of the Debevec radiometric calibration allows the detection of the detrimental artifacts. a) The direct output of the
Debevec calibration curves g∗

λ
(It(x)) per color channel. The top right image shows the source scene with a very wide intra-scene radiance range. This high

range is ideal for calibration purposes. Notice the light gray masked region, within this region the straightforward application of the Debevec calibration
produces detrimental artifacts. b) The zoom-box and the zoom-circle showing the resulting artifacts. c) Prominent artifact in the HDR image. Notice that
this distortion is not easily detected by the human perception in the bottom right radiance map. However, these kind of artifacts severely impact the
structural feature extraction for object recognition. d) The source Wycoff image element E2 with shutting speed ∆t = 4.375ms [13]. e) The HDR radiance
image. Notice in particular the region where the peaks were produced by the high radiance of the kitchen lamps.
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Fig. 4. The Debevec λ -optimal radiometric camera calibration by experimental evaluation of the λ -smoothing factor. a) The λ -smoothing curves of
the red-channel shows that this is the most noisy channel of the camera. b) The λ -smoothing curves of the green-channel. This channel has the higher
signal-to-noise ratio of all three channels. It is not surprising since the color camera has a Bayer-pattern sensor. c) The blue-channel λ -smoothing curves.
Notice that for each λi plot, the horizontal axes were 2i units right shifted to conveniently display the comparative effects of the λ -smoothing factor.

where I j
n(x) is the j-exposed blending intensity from Eq.2

and N is the Gaussian kernel used for regression in Fig.5.
The acquired spatial discrete non-quantized radiance map,
namely the HDR image Φ : N2 7→ R3 is a consistent up-to-
scale manifold of the scene radiance L, see Fig.8.

III. ECCENTRICITY EDGE-GRAPHS

Because of its nature, the continuous intensity values of
the HDR image cannot be reliably processed with edge de-
tectors like n-order directional derivatives such as the Sobel,
Prewitt, Canny filters or even more elaborate approaches
as in [8]. This occurs because the parameters that these
methods require are image-content dependent and can hardly
be estimated automatically. In other words, the magnitude of
the n-order directional derivative of a HDR image has a wide
range multimodal distribution where the local maxima are
indiscriminately spread. Moreover, when using global meth-
ods, the non-prominent local maxima cannot be substantially

distinguished due to the inherent effects (kernel/bandwidth
selection resulting in over- or under-smoothing) produced
during the density estimation used to represent the mag-
nitude distribution. In addition, when using local methods,
the parameter-varying batch analysis such as scale-space
methods do not perform satisfactory and are neither com-
putationally efficient nor geometrically consistent. This lack
of consistency arises when geometric structured elements
on the images have widely dispersed directional-derivative
magnitudes along them, resulting in split segments since nei-
ther hysteresis nor adaptive-thresholding can adequately cope
with such dynamic range. As a consequence, slightly salient
structures are neglected, despite of their sound geometrical
significance.

In order to manage these issues, a novel parameterless
and non-iterative method for geometric edge extraction
and representation is introduced. The method extracts the
geometric primitives based on the characterization of the
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Fig. 5. The model calibration gL
λ

is accomplished by a weighted linear regression in the exponential domain. The magenta dashed weighting Gaussian
kernel N (µ = 128, σ2 = 1779.34) ponderates the Debevec λ -optimal g∗

λ
Debevec calibration in order to estimate the linear model calibration gL

λ
.

a) The resulting red-channel model-calibration is gL
λ ,r (It,r (x)) = log(0.007961 ∗ It,r (x)− 0.001419). b) The resulting green-channel model-calibration is

gL
λ ,g (It,g (x)) = log(0.007602 ∗ It,g (x)+ 0.003388). c) The resulting blue-channel model-calibration is gL

λ ,b

(
It,b (x)

)
= log(0.007798 ∗ It,b (x)+ 0.001609).

The kernel selection and its bandwidth allow the proper integration of the information within the smooth region of the curve g∗
λ

while gradually disregard
the broken-reciprocity regions. In this manner, the calibration deviations and detrimental artifacts are correctly removed. These results were obtained using
16 images with 273 pixels per image. The location of the pixels were selected according to the maximal intensity variance heuristic with a 32 pixels radius
dominance.
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Fig. 6. The λ -factor selection is based on the minimal deviation of the regression model, namely argmin{λ : ∑
255
i=0(g

M
λ
(i)− gλ (i))2}. The plots of the

Debevec λ -optimal, the continuous model gM
λ

and their mutual deviations. a) Red-channel λr = 0.94726. b) Green-channel λg = 0.95421. c) Blue-channel
λb = 0.96014. These results were obtained using the left peripheral camera of the humanoid robot Armar-III.

Fig. 8. The Φ HDR image. This representation is log(Φ) compressed in order to allow a suitable visibility of the sensibility and consistency of the
acquisition component. All three images correspond to a single HDR image captured by the humanoid robots Armar-III with its left peripheral camera in
the scene setup of Fig.1. The variation of the perspective displays the discussed regions in Sec.I, compare these superior results with those in the Fig.3.



Fig. 7. Camera exposure control. a) The normalized exposure-stability
index St in blue dashed line is closely correlated to the commanded exposure
Et shown in a continuous red line. Notice that the exposures E0−E5 are the
time stamps where the Wycoff set was captured. b) The zoom window shows
the importance of the exposure-stability analysis in order to consistently
capture HDR images. The Dt reliable exposure intervals are 70± 12ms
away from each other when capturing at 15 fps. c) The Wycoff set of the
scene setup in Fig.1, see the HDR synthesis of these images by the Eq.5
into the Fig.8.

Fig. 9. The Gabor kernel set Ψ(x,α+ qπ

2 ,γ1,γ2,λ ), q∈ {0,1} is composed
of orientation-complementary band-pairs.

subpixel-nodes by means of their combined topological-
saliency distribution.

A. Oriented Saliency Extraction
The receptive radiance saliency Γ : N2 7→ R2 is computed

by the composed Gabor kernel, see Fig.2-c,

Ψ(x,α,γ1,γ2,λ ) = exp
(
−1

2
xT

Σ
−1x
)

sin
(

π
U〈α〉 ·x

λ

)
, (6)

in contrast to [15], this formulation provides the means to
conveniently control the impulse response function by
• Kernel Orientation: In Eq.6 and Eq.7, the semi-axes

U〈α〉 = [cosα sinα]T and V〈α〉 = [−sinα cosα]T ,

allow the saliency extraction in a α-target direction.
• Kernel Support: It is adjusted by the ratio γ1 : γ2 in the

Eq.6 by the covariance matrix Σ,

Σ = diag [γ1 γ2]
[
U〈α〉 V〈α〉

]
, (7)

Fig. 10. Saliency extraction process. a) Wide intra-scene radiance range
with complex structures and metallic surfaces. Notice the selected yellow
window used in Fig.11. b) The HDR image Φ. c) Receptive radiance
saliency ‖Γ‖ from Eq.8. d) Active map ϒ from Eq.9. The coherency factor
µ = cos(π/8) improves the quality of the map and is tightly related to
the image discretization, thus higher values require to increase the image
resolution by interpolation.

this adjusts the smoothing extraction trade-off.
The computation of the receptive radiance saliency Γ

requires k≥ 1 band-pairs (α,q) of orientation-complementary
kernels (see Fig.9), namely

Γ(x) =
k

∑
p=1

1

∑
q=0

U〈pπ/2k〉

{
Φ(x)~Ψ(x, pπ/2k+

qπ

2
,γ1,γ2,λ )

}
,

(8)
where ~ denotes the convolution operator, see Fig.10.

B. Dual Non-maximal Suppression
Based on the saliency direction Γ̂(x) = Γ(x) · ‖Γ(x)‖−1, the

pixel location x ∈ N2 has two neighbors x̃± ∈ N2 along Γ̂(x),

x̃± = x±ω

[
Γ̂(x) ·η

(
Γ̂(x)

)−1
]
,

where the function η : R2 7→ R+ attains the largest absolute
component of the unitary vector Γ̂(x) and the function ω :
R2 7→ N2 rounds its vector argument by component.

In contrast to edge detectors (see Fig.11), the dual non-
maximal suppression ϒ : N2 7→ {0,1} selects pixels close to
the edge by considering not only the saliency norm ‖Γ(x)‖
but also the saliency direction coherency µ, see Fig.10-d,

ϒ (x)=


1, 〈‖Γ(x)‖> ‖Γ(x̃+)‖〉∧

〈
|Γ̂(x) · Γ̂(x̃+)|> µ

〉
∧

〈‖Γ(x)‖> ‖Γ(x̃−)‖〉∧
〈
|Γ̂(x) · Γ̂(x̃−)|> µ

〉
0, Otherwise.

(9)

C. Edge Subpixel Optimization
In order to properly extract the edge-graphs, it is necessary

to optimize the edge-pixels to their subpixel position. Every
active pixel x on the binary map ϒ (x) is located at most

√
2

units away from the local maximum edge on ‖Γ(x)‖. In order
to reach this maximum, the discrete location x is refined to
its subpixel counterpart ẋ ∈ R2 by a gradient ascent along
the radiance saliency direction using the bicubic convolution
algorithm Λ [17], see Fig.12-a,

ẋ = Λ[x, Γ̂(x)] ⇒ 〈‖Γ(ẋ)‖ ≥ ‖Γ(x)‖〉∧
〈
‖ẋ−x‖<

√
2
〉
. (10)



Fig. 11. Comparative edge-extraction results from the yellow window
in Fig.10-a. The Canny filter applied with maximal sensitivity (the lower
and the higher threshold set to 0, i.e., only non-maximal suppression). a)
Column results from the implementation in IVT [16]. b) Column results
from the implementation in OpenCV. c) Edge resulting from the method
presented in Sec.III supporting the greater quality of the approach. Notice
that the red edges obtained in a-1, a-3, b-1 and b-3 present connectivity to
residual clutter which corrupts the underlying geometric structure. Besides,
the broken segments in a-2 forbid the primitive detection. In b-2, the fast
but deficient Canny filter poorly reflects the inherent edge structure.

After this refinement, it is possible to computationally
profit from the discretization grid of the pixels for the
expansion while establishing the node links according to
the subpixel distances. In this manner, the structure of the
radiance edge is correctly embodied by the graph incidence.

D. Edge-Graph Extraction

Now, the graph extraction proceeds analogously to the
A* algorithm in a region growing fashion. The edge-graphs
Gk are extracted by a heuristic recursive expansion. The
extraction traversal priority stack is sorted by the subpixel
distances

∥∥ẋi− ẋ j
∥∥, see Fig.12-b.

E. Edge-Graph Characterization

The edge-graphs Gkare acyclic linked collections of active
subpixel nodes, namely edge-trees. They extend along the
radiance edges revealing their distinctive structural compo-
sition. In order to properly characterize this composition, a
two-stage preprocessing was performed;
• Pruning: It improves the representativeness of the link-

age by eliminating the superfluous leaf nodes of the
trees. This is done by a tree-depth analysis.

• Outspreading: It enhances the cohesiveness of the graph
linkage with the Euclidean distances of the nodes.
The outspreading is performed by a uniform arc-length
arrangement χ :R2 7→R2 of the ẋi nodes contained within
the tree branch paths βu,v, see Fig.12-c,

x̌i = χ(ẋi,βu,v). (11)

Fig. 12. The eccentricity edge-graph processing stages. a) Subpixel
optimization from Eq.10. b) Graph extraction. c) Outspreading from Eq.11.
d) r-Zone node set. e) Eccentricity ellipses from the Eigenvalues and
Eigenvectors of the covariance matrix in Eq.13. f) Geometric primitive
segmentation. g) Evidence-based grouping transform.

During this arrangement, the branch-paths are treated as
parametric curves where the supporting points are the sub-
pixel node locations ẋi. This way, the implicit parametric
curve of the edge remains unaffected, while the graph and
Euclidean distance are cohesively correlated.

The resulting cohesively combined statistical distribution
is the key to characterize the nodes x̌i by the proposed
eccentricity ξi of their r-zone2, see Fig.12-e,

ξ (x̌i) = κ

[
2
π

arctan(ν
σ1

σ2
)− 1

2

]
, (12)

where σ1 and σ2 are the Eigenvalues of the x̌i-centered
covariance matrix,

Σ(x̌i) =
1
|Zr

i |

|Zr
i |

∑
j=1

(x̌ j− x̌i)(x̌ j− x̌i)
T . (13)

In Eq.12, the saturation factor ν shifts the clipping Eigen-
ratio, whereas the normalization, offset and amplitude factors
conveniently shape the eccentricity response function ξ in
order to suitably distinguish the k := {C,T,E} eccentricity
types, see Tab.I.

F. Edge-Graph Segmentation

Geometric primitives emerge by grouping nodes according
to their k-type. These cliques ς r

k:={x̌i} constitute nodes in a
geometric primitive graph Gr

i , see Fig.12-f.

G. Edge-Graph Extended Perceptual Organization

In contrast to [18] and [19], proximity and continuity
among geometric primitives are not detected exclusively
based on the length, position, orientation and distance be-
tween their end-points. The improved detection incorporates
structural likelihood by the Mahalanobis distance induced

2The node subset Zr
i (x̌i) := {x̌ j} reachable within a maximal r graph-

distance, see Fig.12-d. Its cardinality is denoted as |Zr
i |.



k - Type ξ - Range ξ - Level σ1 : σ2 x̌i - Ridge Segment Zr
i - Subtree

E - Elongated [ξH = 40,∞) High σ1 >> σ2 Line Segments or Low Curvature Paths
T - Transitional [ξL,ξH = 40) Medium σ1 > σ2 Middle Curvature Intermediate Zone
C - Compact [1,ξL = 10) Low σ1 ≈ σ2 Corners or Junctions Leafs or Splitters

TABLE I
THE ECCENTRICITY ξ CHARACTERIZATION.
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Fig. 13. Precision analysis by absolute error plots. The ground truth
is the 116mm length of the physically measured segment. a) The plot
shows the precision attained with artificial lighting plus the natural morning
illumination incoming from the windows. b) Plot with artificial lighting plus
the natural evening illumination. c) Only artificial lighting, see Tab.II.

Set Mean Length Std. Deviation Max-Abs Error Distance

Morning 116.91 1.07 3.15 1032.62
Evening 116.31 1.18 2.9 1043.38

Night 116.57 1.28 3.45 1064.23

TABLE II
THE PRECISION PERFORMANCE IN DIFFERENT ILLUMINATION SETUPS.

between the edge-node combined statistical distributions
Σ(x̌i) (from Eq.13) of the periphery of the clique and the
intersection point, see Fig.12-g. This morphologic evidence-
based grouping transforms the geometric primitives from ς r

k
nodes to consistently matchable geometric percepts.

H. Spatial Invariant 3D Features for Matching

The extracted geometric primitives from the left and right
HDR images from the calibrated stereo-rig of the humanoid
robot are used to calculate their 3D pose [20],[16]. The
resulting Euclidean length and angles of the percepts are
reasonably pose-invariant. These geometric primitives orga-
nized and grouped into a 3D spatial graph representation
allows inexact graph matching methods [21] to identify
model instances in the field of view. In this paper, the focus
is placed on the reliable low-to-middle level processing of
the object recognition. Thus, in Sec.IV a simple but effective
matching method was used, see Fig.14.

IV. EXPERIMENTAL EVALUATION

The presented method for radiometric calibration requires
about 5-7 minutes per trial and usually there are 15-25
convergence iterations per color channel for each camera.
This process is done only once per camera.

In Fig.15, the HDR images were captured with 8mm focal
length lenses with 10 equally exposed images for blending
and 6 differently exposed images for fusion. Each capture
takes 5-7s using the cameras [13] at 15 fps with 640x480
pixels. The fusion phase takes 250-350ms. The saliency
extraction using HDR images for edge-graph requires 1.68s
with 2 kernel band-pairs. The graph extraction and eccentric-
ity characterization take 1.46s with a standard deviation of

Fig. 14. The recognition of a dishwasher basket is a perception challenge
for the complexity of the overlapping structures and the wide intra-scene
radiance. a) Scalable vector graphics output of the recognition component.
The selected region shows the grasping target region to be recognized. The
upper schematic shows the geometric graph to be matched. b) First zoom.
c) Second zoom. d) At the third zoom, it is possible to see the eccentricity
types in red, green and blue covariance ellipses from Eq.13. The subpixel
graph configuration along the curve of the metal wire of the basket shows the
simultaneous extraction and geometric primitive segmentation. See Fig.12
for the sequential detailed formation of the edge-graphs.

3.52s depending on the image-content. Finally, the geometric
regressions and perceptual organization estimate the line
segments and meeting points in 25-50ms, see Fig.12.

In the presented experiments (see Fig.14), the matching
method used to recognize the grasping-target region of the
dishwasher exploits the stereo Euclidean metric to find a
line-segment node with a known length (116mm), i.e., the
grasping segment between two incident line-segment nodes.

The complete single threaded execution time of 10-12s
can be reduced by at least two thirds. Notice that there is
an upper performance boundary by the delay of the camera
response to exposure commands.

In the evaluation, there were no false positives. However,
the accomplished recognition rate of 93.04% can be im-
proved by using more compelling matching methods like in
the geometric hashing approaches [22],[18].

When computing the length of the grasping segment, a
maximal absolute error of 3.45mm was obtained and no
detrimental performance was measured by lighting varia-
tions, see Fig.13 and Tab.II.

V. CONCLUSIONS

The main contribution of the approach is to manage the
illumination issues by means of the HDR image capturing
and the novel processing method. The technical contribution
lies in the HDR exposure control module, whereas the
theoretical contributions are: i) The continuous reciprocity-
consistent radiometric calibration model. ii) The automatic
extraction and segmentation of geometric primitives from
the radiance edge by the combination of the topological and



Fig. 15. HDR image acquisition results. a) The microwave metallic surface and LCD display. b) The interior of the empty dishwasher. c) The dishwasher
loaded with glittering plastic elements. d) The sink and stove. Notice the saliencies inside the cupboard.

statistical distributions of the subpixel edge nodes. iii) The
evidence based perceptual organization includes the novel
structural eccentricity edge information in order to reinforce
the structural regularity.

The presented methods have no parameters which depend
on the image-content, whereas the content-independent pa-
rameters discussed here have only well-bounded impact on
the performance of the execution. In the experiments, the
exhaustive geometric primitives search took at most 15s
using a Intel-CPU@1.8 GHz with no code optimization.
Technical improvements such as parallelization using a GPU
and faster interfaces to HDR-enabled cameras will improve
the performance to real-time execution.

Surprisingly, the use of HDR images for model-based
object recognition using stereoscopic vision has not been
done before in robotic applications with no controlled light
conditions and accurate pose estimation.

This approach attains the robust acquisition of visual cues
for recognition allowing new algorithms to dependably solve
the visual recognition assertions required for autonomous
intelligent humanoids robots. Additional material including
HDR images and SVG output of the algorithms is available
at http://i61www.ira.uka.de/users/gonzalez.

VI. ACKNOWLEDGMENTS

This work was partially conducted within the German
Humanoid Research project SFB588 funded by the German
Research Foundation (DFG: Deutsche Forschungsgemein-
schaft) and the EU GRASP project (IST-FP7-IP-215821)
funded by the European Commission.

REFERENCES

[1] D. Gonzalez-Aguirre, T. Asfour, E. Bayro-Corrochano, and R. Dill-
mann, “Model-based visual self-localization using geometry and
graphs,” in ICPR, 2008, pp. 1–5.

[2] D. Gonzalez-Aguirre, S. Wieland, T. Asfour, and R. Dillmann, “On en-
vironmental model-based visual perception for humanoids,” in CIARP,
2009, pp. 901–909.

[3] M. Kojima, K. Okada, and M. Inaba, “Manipulation and recognition
of objects incorporating joints by a humanoid robot for daily assistive
tasks,” in 2008. IROS 2008. IEEE/RSJ International Conference on,
2008, pp. 1564–1569.

[4] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,
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