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An autonomous environmental visual perception approach for humanoid robots is presented. The
proposed framework exploits the available model information and the context acquired during global
localization by establishing a vision-model coupling in order to overcome the limitations of purely
data-driven approaches in object recognition and surrounding status assertion. The exploitation of the
model-vision coupling through the properceptive components is the key element to solve complex visual
assertion-queries with proficient performance. An experimental evaluation with the humanoid robot
ARMAR-IIIa is presented.
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1. Introduction

The emerging research field of humanoid robots for human dai-
ly environments is an exciting multidisciplinary challenge. It
embodies multiple aspects and disciplines from mechanical engi-
neering up to artificial intelligence. The physical composition and
appearance of humanoid robots differentiate them from other
robots according to their application domain. This composition
will ultimately allow the robots to noninvasively and effectively
operate in human-centered environments. In order to properly
and efficaciously interact in those environments it is indispens-
able to equip the humanoid robots with autonomous perception
capabilities.

Recently, considerable results (Okada et al., 2006, 2007,
2008a,b) in this field have been achieved and several humanoid ro-
bots expose various knowledge-driven capabilities.

However, these approaches mainly concentrate on knowledge
processing for grasping with fixed object-centered attention zones,
e.g. a kettle’s tip for pouring tea, a water faucet for washing a cup,
etc.

These approaches assume a fixed pose of the robots in order to
perceive and manipulate unattached objects and environmental
elements within a kitchen. In addition, the very narrow field-of-
view with no objects in the background and the fully saturated col-
ors of the auxiliary localization props constrains their applicability
in real daily scenarios.
ll rights reserved.
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These perception limitations can be overcome through a proper-
ceptive1 stratified sensing approach. It allows an enhanced exploita-
tion of the available model information by including compact but
concise cue-extraction from the model and reasoning sublayers
within the visual perception system.

There are works on humanoid robots reasoning for task plan-
ning and situation interpretation, see (Okada et al., 2008a,b). These
approaches focus on atomic operations and discrete transitions be-
tween states of the modeled scenario for behavior generation and
verification.

This high-level scenario reasoning is not the focus of the present
work, but the inclusion of the essential properceptive and reason-
ing mechanism while perception takes place in order to robustly
recognize and interpret complex patterns, i.e. distinguish and track
environmental objects in presence of cluttered backgrounds,
grasping occlusions and different poses of both the humanoid ro-
bots and the objects.

This article focuses on rigid elements of the environment which
could be transformed through rigid-parametric transformations,
e.g. furniture, kitchen appliances, etc.

In the following sections, the model-based stratified visual per-
ception for humanoid robots and its implementation are intro-
duced. It comes with the experimental results of a demonstration
scenario, where the concepts were evaluated providing remarkable
Properception is the counterpart of perception. The properception deals with the
external world by internal means through models and knowledge mechanisms,
whereas the perception captures the world through external sensory stimuli. In
contrast to the properception, the proprioception deals with the sense related to
limbs position, self-posture, awareness of equilibrium, and other internal conditions.
Both properception and proprioception provide awareness of the outside (models)
and inside (interoceptive senses) respectively, see Fig. 1.
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real-time results which purely data-driven algorithms would
hardly provide.

2. Stratified visual perception

The Fig. 1 shows the strata or spaces of abstraction involved in
this approach. By dividing the whole approach into these container
spaces it is possible to establish the bridge (see Figs. 1e and f) be-
tween the reality and the models. The vision-model coupling is
composed by the confluence of the stimuli-novelty (percepts)
and inference-prediction (symbols) respectively provided by the
perception and properception processes.

In order to make this coupling mechanism tractable and its
implementation plausible, it is necessary to profit from both the vi-
sion-to-model association acquired during the global localization
by our previous work (Gonzalez-Aguirre et al., 2006, 2008, 2010,
2009; Wieland et al., 2009) and the model-to-vision resulting from
the inference rules in the model-based approach.

3. Visual perception framework

The processing of low-level sensor data and higher-level world-
model information for segmentation, recognition, and association
constitutes the visual perception. It bridges the gap between the
image processing and the object recognition components through
a cognitive perception framework (Patnaik, 2007). This framework
actively extracts valuable information from the real world through
stereo color images and the kinematic configuration of the human-
oid robots active vision head (Asfour et al., 2008).

The adequate representation, efficient unified storage, auto-
matic recall, and task-driven processing of this information takes
place within different states of cognition. These cognition states
are categorically organized according to their function as sensing,
attention, reasoning, recognition, planning, coordination, and learn-
ing, see Fig. 2.

3.1. Memory: model and ego spaces

The formal representation of real objects within the application
domain and the relationships between them constitute the long
Fig. 1. The model-based stratified visual perception for humanoid robots: a) the phy
projection from the reality to percepts by means of sensor devices and active recognition
self-localization, d) the model-space contains the geometrical and topological descriptio
process from visual-space to ego-space. It converts incoming signals from the visual-spac
f) the symbols-to-percepts process fuses the percepts corresponding to abstracted entity
term memory. Particularly in the environmental perception, the
world-model and the defined transformations compose this non-
volatile memory. In this approach, an appropriate description has
been done by separating the geometric composition from the pose.
The attributes are the configuration state of the instances, e.g.
name, identifier, type, size, parametric transformation, etc. This
persistent graph structure together with the implemented mecha-
nism (see Sec. 2.3-4 in Gonzalez-Aguirre et al. (2008)) for pruning
and inexact matching constitute the spatial query solver, see Fig. 2.

On the other hand, the mental imagery (see Section 3.4) and the
acquired percepts are contained within an ego-space which corre-
sponds to the short term memory. By attaching the base platform
pose (the frame B in Fig. 3a) to the registration pose of the con-
tained percepts, it is possible to have a short term registration
frame for the fusion and model exploitation. Obviously, when the
humanoid robot moves its platform, the temporal registration
frame and the contained percepts of the ego-space are automati-
cally discarded.

3.2. Sensing

The noise-tolerant vision-to-model (see Fig. 1e) coupling arises
from the full configuration of the active vision system including
the calibrated internal joint configuration (Welke et al., 2008),
the external position and the orientation of the camera centers
as well as all required mechanisms (Azad and Dillmann, 2009)
to obtain Euclidean metric from stereo images (Hartley and
Zisserman, 2004), see Figs. 3a and b.

3.3. Planning

Visual planning determines two fundamental aspects for the ro-
bust perception;

3.3.1. Target subspace
When the target-node has been established (usually by the

coordination cycle), the visual-planner provides a frame and the
definition of a subspace W where the robot has to be located, so
the target-node can be robustly recognized, see Figs. 3c and d. No-
tice that the subspace W is not a single pose as in Okada et al.
sical-space embraces the tangible reality, b) the visual-space embodies the image
components, c) the ego-space is the short term registration storage for percepts and
n of the entities of the physical-space, e) the signals-to-percepts is the transducer
e to outgoing percepts corresponding to abstracted entities of the model-space, and
in the model-space.



Spatial Query Solver

Fig. 2. The states of cognition and cycles involved in the model-based visual perception approach. The properception is implemented by the mental imagery module which
fuses information from the long- with the short-term memory, i.e. world- and ego-spaces respectively. The mental imagery provides the properceptive cues for rule-based
reasoning and attention planning. The integration of these cues takes place in the image and space domain reasoning submodules, see Section 4. The communication interface
with the coordination cycle is done through assertion queries, see an example in Section 5.

Fig. 3. a) Mapping of percepts from physical-space to the ego-space by the composed transformation �Xi ¼Mt
ego½MstereoðXiÞ�, b) the partial transformation from visual-space to

the ego-space Mt
ego ¼ ½T ðtÞNðtÞHCL��1, see also (Gonzalez-Aguirre et al., 2010), c) the restriction subspace W where the target-node can be robustly recognized, and d)

alternative view of the subspace W.
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(2008a,b). It is a rather wide range of reachable poses allowing
more flexible applicability and more robustness through wider tol-
erance for uncertainties in the navigation and self-localization.

3.3.2. Appearance context
Once the robot has reached a valid position within W, the vi-

sual-planner uses the CAD geometric composition of the node to
predict parametric transformations and appearance properties,
i.e. how the modeled image content looks like and how the spatial
distribution of environmental elements is related to the current
pose. Notice that this is not a set of stored image-node associations
as in the appearance graph approaches (Koenig et al., 2008) but a
novel generative/extractive continuous technique implemented
by the following properception mechanism.

3.4. Properception: towards visual mental imagery

The properception skills cue-extraction and prediction allow the
humanoid robot to capture the world by internal means by exploit-
ing the world-model (scene-graph) through the hybrid cameras,
see Fig. 4. These hybrid devices use the full stereoscopic calibration
of the real stereo rig in order to set the projection volume and the
projection matrix within the virtual visualization. This half virtual/
half physical device is inspired by the inverted concept of aug-
mented reality approaches (Koenig et al., 2008) for overlay image
composition. In contrast to augmented reality, this hybrid stereo
rig is used to predict and analyze the image content in the
world-model, e.g. rigid parametric transformations, extraction of
position and orientation cues either for static or dynamic configu-
rations, i.e. rotation or translation over time as in Fig. 4.
4. Visual reasoning for recognition

The reasoning process for perception is decomposed into two
interdependent domains;

Visual domain: The 2D signals-to-percepts process (see Fig. 1e)
deals with the image content and includes all
the chromatic-radiometric sensor calibration and
signal processing components required for seg-
mentation, saliency estimation, and geometric
primitive extraction. Furthermore, these compo-
nents are capable of incorporating additional
information for purpose-driven extraction, i.e.
model-based segmentation. For a detailed exam-
ple see Section 4.1.

Spatial domain: The 3D percepts-to-symbols matching and rea-
soning process (see Fig. 1f) manages the geometric
entities from both the ego-space and the model-
space. This management includes the coupling
and the inference through (until now) simple geo-
metric rules, for a more detailed illustration see
Section 4.2.



Fig. 4. The properceptive mental imagery for prediction of dynamic configuration trajectories. The blue lines in the left IpL ðtÞ and right IpRðtÞ image planes of the hybrid cameras
show the ideal trajectory of the interest point Ip (door handle end-point) during a door opening task. The predicted subspace reduces the size of the region of interest. In
addition, the predicted orientation helps to reject complex outliers, see example in Section 4.1. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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4.1. Signals-to-percepts

The pose estimation of a partially occluded door handle, when
the robot has already grasped it, turns out to be difficult because
of many perturbation factors:

� No size rejection criterion can be assumed, because the robot’s
hand is partially occluding the handle surface and the hand
slides during task execution, producing variation of the appar-
ent size.
� No assumption about color or edges in the background of the

handle could be made. This happens when the door is partially
open and the perspective view overlaps handles from lower
doors similar chromatic distributions appear. This image con-
tent avoids the edge tracking (Azad et al., 2009).
� In addition, the glittering of the metal surfaces on both the

robot’s hand and door’s handle produce very confusing phe-
nomena when using standard segmentation techniques
(Comaniciu et al., 2002; Hui Zhang and Fritts, 2008).

In this context, we propose an environment-dependent but very
robust and fast technique (25–50 ms) to simultaneously segment
the regions and erode the borders, producing non-connected
regions.

First, the raw RGB-color image IrgbðxÞ 2 N3; x 2 N2 is split per
channel and used to compute the power image I/ 2 R, namely

I/ðx;pÞ ¼ IrðxÞ � IgðxÞ � IbðxÞ
� �p

;

where p 2 R and p > 1, see Fig. 5.
After linear normalization and locally adaptive threshold

(Chang et al., 2006), a binary image IB(x) is produced. It is used to
extract the pixel-connected components (blobs) Bk :¼ fxign

i¼1 and
build the corresponding feature vectors F(Bk) for rejection and/or
matching purposes (see Fig. 5b), namely

FðBkÞ :¼ ½n; dðBkÞ; Er1 ðBkÞ=Er2 ðBkÞ�T :

This feature vector is formed by the blob’s discrete area jBkj = n, its
power density

dðBkÞ :¼ 1
n

Xn

i¼1

I/ðxi;pÞ;

and the elongation descriptor, i.e. the ratio of the blob’s eigenvalues
Er1 : Er2 computed by the singular value decomposition

Er1;2

��!
; Er1;2

h i
¼ SVDðMBk

Þ

of the �x-centered and k-weighted covariance matrix MBk
, namely
�x :¼ 1
n � dðBkÞ

Xn

i¼1

I/ðxi;pÞ � xi;

kðxiÞ :¼ I/ðxi;pÞ � dðBkÞ
� �2

MBk
:¼
Pn

i¼1kðxiÞ xi � �x½ � xi � �x½ �TPn
i¼1kðxiÞ

:

This characterization allows a powerful rejection of blobs when ver-
ifying the right-left cross matching by allowing only candidates in
pairs (Bk,Bm) which fulfill the coherence criterion K(Bk,Bm) > Kmin,
i.e. the orientation of their main axes shows an angular discrepancy
less than arccos(Kmin) radians.

Until this point, the image feature extraction methods proceed
without any model information or knowledge rule, i.e. data-driven.
In the next step, the properceptive cue selection and usage is
introduced.

The interest point Ip in both images is selected as the furthest
pixel along the blob’s main axis in the opposed direction of the vec-
tor C, i.e. unitary vector from the door center to the center of the
line segment where the rotation axis is located, see Figs. 6 and 7.
This vector is obtained from the mental imagery as stated in Sec-
tion 3.4. Moreover, the projected edges of a door within the kitchen
improves the segmentation results while extracting the door pose.
It improves the overall precision by avoiding to consider edge pix-
els close to the handle, see Fig. 6a.

The key factor of this model-vision coupling relies on the fact
that very general information is applied. In other words, from the
projected lines and blobs extracted employing mental imagery,
only their direction is used (e.g. injected through a noise-tolerant
criterion Kmin) and not the position itself, which normally differs
from the real one. These deviations are produced due to the dis-
cretization, quantization, sensor noise, actuator deviations, and
model uncertainties.
4.2. Percepts-to-symbols

One interesting feature of this approach is the usage of the vi-
sion-model coupling to deal with limited visibility. For instance,
because of the size of both the door and the 3D field-of-view
(3DFOV, see Figs. 3c and d and Fig. 7), it can be easily corroborated
that the minimal distance where the robot must be located for the
complete door to be contained inside the robot’s 3DFOV, lies out-
side of the reachable space. Therefore, triangulation techniques
cannot be used. In this situation, the reasoning for perception uses
a simple geometric rule for the recognition and pose estimation of
the door.



Fig. 5. a) Input image Irgb. Notice that the book (particularly the white paper side) in the background. It shows not only a similar color distribution, but is has almost the same
size as the door handle and b) the power image I/ and the blobs Bk. Based only on the feature vector Bk (data-driven) recognition it will be hardly possible to reject the
presence of a door handle in the location of the book.

Fig. 6. a) The input image Irgb with recognized edges, projected model edges and the properceptive cue (unitary vector C) and b) segmentation results for block and edge
analysis.

Fig. 7. Geometric elements involved during the spatial reasoning for perception.
The 3D field-of-view is the subspace resulting from intersecting the left and right
field-of-views of the stereo-rig (Gonzalez-Aguirre et al., 2006).
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The preconditions of the rule are: three partially visible edges of
the door, the context (robot joint configuration and pose) and the
model to assert. The post conditions are: the pose of the model
and the geometric derived information, e.g. door’s normal vector
and the door’s angle of aperture.

The rule is computed as follows: First, a 2D-line !i on an image
and the center of its capturing camera Lc or Rc define a 3D-space
plane U, see Fig. 7. Hence, two such planes UL and Ulð!L ;!RÞ, result-
ing from the matching l(!L,!R) of two lines in the left and right
images in a stereo system define an intersection subspace, i.e. a
3D-line

Kk ¼ UL ^Ulð!L ;!RÞ:

These 3D-lines Kk are subject to noise and calibration artifacts.
Thus, they are not suitable for direct computation of 3D intersec-
tions. However, their direction is robust enough.

Next, the left image 2D points H(L,i) resulting from the intersec-
tion of 2D-lines !i are matched against those in the right image
H(R,j) producing 3D points XðLi ;RjÞ by means of least square
triangulation.

Finally, it is possible to acquire corners of the door and direc-
tions of the lines connecting them, even when only partial edges
are visible. The direction of the vector C is the long-term memory
cue used to select the 3D edge line by its direction DAxis and the
closest point XðLi ;RjÞ, namely PAxis in Fig. 7.
5. Experimental evaluation

In order to demonstrate the advantages of the presented ap-
proach for visual perception and to verify these methods, we
accomplished the task of door opening in a regular kitchen with
the humanoid robot ARMAR-IIIa (Asfour et al., 2006).

In this scenario (see Fig. 8), the estimation of the relative pose of
the furniture not only allows to grasp the door’s handle but it also
helps to reduce the external forces on the hand during operation.
This results from the adaption of the task frame while the manip-
ulation changes the handle’s orientation.



Fig. 8. Experimental evaluation of the framework with the humanoid robot ARMAR-IIIa interacting with a cupboard in the kitchen environment.
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In our previous approach (Prats et al., 2008), the results using
only one sensory channel (force-torque sensor) were acceptable
but not satisfactory because the estimation of the task frame solely
depends on the accuracy of the robot kinematics.

In this experimental evaluation, the framework estimates the
interest point Ip and normal vector Np of the door to build the task
frame. During task execution this frame is estimated by the previ-
ously mentioned methods and the impedance control balances the
external forces and torques at the hand. For details on the sensor
fusion strategy see Wieland et al. (2009).

Robustness and reliability of the handle tracker are the key to
reduce the force stress in the robot’s wrist as it has been shown
in Wieland et al. (2009).

Combining stereo vision and force control provides the advan-
tage of real-time task frame estimation by vision, which avoids
the errors of the robot’s kinematics and adjustment of actions by
force control.
6. Conclusions

The world-model and the available context acquired during
self-localization do not only make it plausible to solve otherwise
hardly possible, complex visual assertion queries, but they also
help to dispatch them with a proficient performance. This is
achieved by the presented framework which implements the basic
reasoning skills by extracting simple but compelling geometrical
cues from the properception component. These cues are applied
as clue-filters for the association of percepts either for tracking
(by optimization of the region of interest in terms of size) or han-
dling incomplete visual information.

The novelty of our approach is the coupling of vision-model by
means of the properceptive cues generated with the mental imag-
ery and the visual extraction for spatial reasoning.
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